JPH10189552A - Terminal detecting method and device of plasma processing - Google Patents

Terminal detecting method and device of plasma processing

Info

Publication number
JPH10189552A
JPH10189552A JP30444297A JP30444297A JPH10189552A JP H10189552 A JPH10189552 A JP H10189552A JP 30444297 A JP30444297 A JP 30444297A JP 30444297 A JP30444297 A JP 30444297A JP H10189552 A JPH10189552 A JP H10189552A
Authority
JP
Japan
Prior art keywords
ratio
active species
relational expression
value
end point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30444297A
Other languages
Japanese (ja)
Other versions
JP3872879B2 (en
Inventor
Chien Koshimizu
地塩 輿水
Susumu Saito
進 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP30444297A priority Critical patent/JP3872879B2/en
Publication of JPH10189552A publication Critical patent/JPH10189552A/en
Application granted granted Critical
Publication of JP3872879B2 publication Critical patent/JP3872879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to detect the precise terminal regardless of the fluctuation in the plasma state by a method wherein the light emission intensity of the first and second active species is detected to find out the quasi approximate relational expressions of the first active species as well as the ratios and the differential values of both species from these expressions. SOLUTION: Assuming ordinate and abscissa respectively to be the light emission intensity and time, respective experimental expressions are found out by the method for least squares using the first and second wave forms 1, 2 of the light emission intensities within the mean times. Next, the quasi approximate linear relational expression A' of the first active species is found out from the approximate linear relational expression A of the first active species and the approximate linear relational expression of the second active species. Furthermore, the differential value d (A/A')/dt of the ratio A/A' is detected. The waveforms for A/A' are respectively stabilized in a specific forms before and after terminals. Finally, the terminals can be decided precisely by detecting the starting of change (slope start: S.S) and the ending of change (slope end: S.E) without fail.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラズマ処理の終
点検出方法およびその装置に関する。
The present invention relates to a method and an apparatus for detecting an end point of a plasma process.

【0002】[0002]

【従来の技術】プラズマ処理装置、特に、エッチング装
置は、従来から半導体製造工程あるいは液晶表示装置用
基板の製造工程に広く適用されている。このようなエッ
チング装置は、例えば、互いに平行に配設された上部電
極と下部電極とを備えており、上部電極と下部電極との
間の放電によりエッチング用ガスからプラズマを発生さ
せ、その活性種で被処理体としての上に酸化膜等の膜が
形成された半導体ウェハの膜をエッチングするものであ
る。このようなエッチング処理に際しては、エッチング
の進捗状況を監視し、その終点をできるだけ正確に検出
することにより、所定のパターン通りのエッチング処理
を行うことが望まれている。
2. Description of the Related Art Conventionally, a plasma processing apparatus, particularly an etching apparatus, has been widely applied to a semiconductor manufacturing process or a manufacturing process of a substrate for a liquid crystal display device. Such an etching apparatus includes, for example, an upper electrode and a lower electrode disposed in parallel with each other, and generates plasma from an etching gas by a discharge between the upper electrode and the lower electrode, and generates an active species of the plasma. Then, a film of a semiconductor wafer having a film such as an oxide film formed thereon as an object to be processed is etched. In such an etching process, it is desired to monitor the progress of the etching and detect the end point as accurately as possible to perform the etching process according to a predetermined pattern.

【0003】従来から、エッチングの終点を検出する方
法には、質量分析、分光分析等の機器分析手法が用いら
れており、それらの中でも比較的簡易で高感度な分光分
析が広く用いられている。エッチングの終点を検出する
場合に分光分析法を用いるときは、具体的には、エッチ
ング用ガス、その分解生成物もしくは反応生成物等のラ
ジカル、またはイオン等の活性種のうち特定の種類の活
性種を選択し、選択された活性種の発光の強度の時間に
対する変化を測定している。この場合、選択する活性種
は、エッチング用ガスの種類や被エッチング材により異
なる。例えば、CF4 等のフルオロカーボン系のエッチ
ング用ガスを用いてシリコン酸化膜をエッチングする場
合には、その反応生成物であり、終点時に急激に発光強
度が減少するCO* を用いている。この場合、CO*
らの時間に対する発光強度(219nmまたは483.5
nmの波長を使用)のみ(一波長のみを使用)を測定し、
その発光強度やその強度の一次微分値、二次微分値等の
時間に対する変化量を比較することによりエッチングの
終点を判定する方法と、特開昭63−81929に開示
されているように、CO* からの時間に対する発光強度
と、2波長の基準光(特開昭63−81929において
は、ヘリウム等の原子の発光スペクトル強度が706.
5nm並びに667.8nmの波長)の時間に対する発
光強度を測定し、それぞれの発光強度比又はその比の一
次微分値、二次微分値等の変化量を比較することにより
エッチングの終点を判定する方法と、同じく2波長を利
用する方法として、特開平5−29276(対応米国特
許No.5,322,590)にて開示されているよう
に、CO* からの時間に対する発光強度と上述の基準光
の代わりに終点時に発光強度が急上昇するエッチングガ
スの分解物であるCFの時間に対する発光強度とをそ
れぞれ測定し、それぞれの発光強度の比又はその比の一
次微分値、二次微分値等の時間に対する変化量を比較す
ることによりエッチングの終点を判定する方法が知られ
ている。
Conventionally, as a method of detecting the end point of etching, instrumental analysis techniques such as mass spectrometry and spectroscopic analysis have been used, and among them, relatively simple and highly sensitive spectroscopic analysis is widely used. . When spectroscopic analysis is used to detect the end point of etching, specifically, a specific type of active species such as an etching gas, radicals such as decomposition products or reaction products, or active species such as ions is used. The species is selected, and the change of the luminescence intensity of the selected active species with respect to time is measured. In this case, the active species to be selected differs depending on the type of the etching gas and the material to be etched. For example, when a silicon oxide film is etched using a fluorocarbon-based etching gas such as CF 4 , CO * , which is a reaction product thereof and whose emission intensity sharply decreases at the end point, is used. In this case, the emission intensity with respect to time from CO * (219 nm or 483.5)
nm) (only one wavelength is used),
A method of determining the end point of etching by comparing the amount of change in the emission intensity and the primary differential value and the secondary differential value of the intensity with respect to time, as disclosed in Japanese Patent Application Laid-Open No. 63-81929. * The emission intensity with respect to the time from * and the reference light of two wavelengths (in JP-A-63-81929, the emission spectrum intensity of atoms such as helium is 706.
A method of measuring the light emission intensity with respect to time of 5 nm and 667.8 nm) and comparing the respective light emission intensity ratios or the amount of change of the first derivative, the second derivative, etc. of the ratio, to determine the end point of etching. Similarly, as a method using two wavelengths, as disclosed in JP-A-5-29276 (corresponding U.S. Pat. No. 5,322,590), the emission intensity with respect to time from CO * and the above-described reference light Instead of CF * , which is a decomposition product of an etching gas whose emission intensity rises sharply at the end point, with respect to time, and measures the ratio of each emission intensity or the first derivative and second derivative of the ratio. There is known a method of determining the end point of etching by comparing the amount of change with respect to time.

【0004】一波長を用いる従来の終点検出方法では、
プラズマの揺らぎ等に起因する発光強度変動により、プ
ラズマ処理の終点が不明確になり正確に終点を検出する
ことができない。二波長を用いる従来の終点検出方法で
は、反応生成物の活性種であるCO の発光強度と基
準光又は終点時に発光強度が急上昇するエッチングガス
の分解物であるCF* の発光強度の終点時間に対する変
化量がプラズマの揺らぎやチャンバや電極やウエハの温
度変化、チャンバ壁に付着したデポ物等が原因で夫々異
なることを考慮せず、単純に両者の発光強度比をとり、
その比を使って終点検出を行うため、やはり正確に終点
検出を行うことが困難である。
In a conventional endpoint detection method using one wavelength,
The end point of the plasma processing becomes unclear due to the fluctuation of the light emission intensity due to the fluctuation of the plasma, and the end point cannot be detected accurately. In the conventional endpoint detection method using two wavelengths, the end point time of the emission intensity of CO * , which is the active species of the reaction product, and the emission intensity of CF * , which is a reference light or a decomposition product of etching gas whose emission intensity sharply increases at the end point, CF * The light emission intensity ratio between the two is simply taken into account, without taking into account that the amount of change with respect to the plasma fluctuation, the temperature change of the chamber, electrodes and wafer, and the deposits attached to the chamber walls, etc.
Since the end point is detected using the ratio, it is also difficult to accurately detect the end point.

【0005】米国特許No.5,565,114で、本
発明者達は、2波長を使用して夫々の波長における発光
強度比を使用してエッチングの終点を検出する際に、両
者の発光強度について時間に対する変化量を一致させて
(即ち、両者の時間に対する発光強度の変化曲線の傾き
を一致させる)から両者の比をとる思想を開示してい
る。確かに、単純に両者の比を監視するよりは、この公
報(米国特許No.5,565,114)で開示されて
いるように、事前に両者の変化曲線の傾きを一致させた
後に、両者の比を監視したほうがより正確に終点を検出
することが可能である。
[0005] US Pat. At 5,565,114, when the present inventors use two wavelengths to detect the end point of etching using the emission intensity ratio at each wavelength, the inventors agree on the amount of change with respect to time for both emission intensities. The idea of taking the ratio between the two (that is, making the slopes of the change curves of the light emission intensity with respect to time coincide) is disclosed. Certainly, rather than simply monitoring the ratio of the two, as disclosed in this publication (US Pat. No. 5,565,114), the slopes of the change curves of the two are matched beforehand. By monitoring the ratio, the end point can be detected more accurately.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、この米
国特許で開示されている両者の傾きを一致させる方法
は、終点前の指定区間における発光強度の変化曲線の平
均値を求め、その指定区間での夫々の変化曲線について
発光強度と平均値との差の絶対値の総和を求め、この総
和を利用して(即ち、面積を計算して)いるために、ノ
イズに弱いという欠点がある。本発明は、プラズマ状態
の変動を許容して正確に終点検出を行うことができるプ
ラズマ処理の終点検出方法およびその装置を提供するこ
とを目的とする。
However, according to the method disclosed in this US patent, the two slopes are made to coincide with each other by calculating the average value of the change curve of the light emission intensity in the designated section before the end point, and calculating the average value in the designated section. Since the sum of the absolute values of the difference between the light emission intensity and the average value is obtained for each of the change curves, and the sum is used (that is, the area is calculated), there is a disadvantage that it is weak to noise. SUMMARY OF THE INVENTION It is an object of the present invention to provide a method and an apparatus for detecting an end point of a plasma process which can accurately detect an end point while allowing a change in a plasma state.

【0007】[0007]

【課題を解決するための手段】本発明の第1の態様に係
わるプラズマ処理の終点検出方法は、被処理体にプラズ
マを用いた処理を施す際に、前記プラズマ処理中の指定
期間中及びこれ以降の、第1および第2の活性種の夫々
特定波長を有する発光強度を検出し、この発光検出情報
を出力する工程と、これら発光検出情報に基づいて、発
光強度と時間との関係において第1の活性種の近似関係
式Aおよび第2の活性種の近似関係式Bを求める工程
と、前記第1の活性種の近似関係式Aおよび前記第2の
活性種の近似関係式Bを用いて、第1の活性種の擬似近
似関係式A´を求める工程と、前記第1の活性種の近似
関係式Aおよび前記第1の活性種の擬似近似関係式A´
から、両者の比(A/A´)および前記比の微分値(d
(A/A´)/dt)を求める工程と、前記指定期間内
の前記比(A/A´)および前記比の微分値(d(A/
A´)/dt)のそれぞれの平均値および分散傾向を求
める工程と、前記比(A/A´)を横軸にとり、前記比
の微分値(d(A/A´)/dt)を縦軸にとり、前記
指定期間内の前記比(A/A´)の平均値と前記比の微
分値(d(A/A´)/dt)の平均値との交点を原点
としたグラフに、前記分散傾向の情報から算出した前記
比(A/A´)の所定値および前記比の微分値(d(A
/A´)/dt)の所定値から所定領域を設定する工程
と、前記指定期間以降の処理中における前記第1および
第2の活性種の発光検出情報を用いて比(A/A´)お
よび比の微分値(d(A/A´)/dt)を求め、求め
られた比(A/A´)および比の微分値(d(A/A
´)/dt)の前記グラフにおける位置が前記所定領域
から外れたときをプラズマ処理の終点として判定する工
程と、を具備することを特徴とする。
According to a first aspect of the present invention, there is provided a method for detecting an end point of a plasma process, comprising the steps of: Detecting the luminescence intensity of each of the first and second active species having a specific wavelength, and outputting the luminescence detection information; and, based on the luminescence detection information, determining the relationship between the luminescence intensity and time. Obtaining the approximate relational expression A of the first active species and the approximate relational expression B of the second active species, and using the approximate relational expression A of the first active species and the approximate relational expression B of the second active species. Obtaining a pseudo-approximate relational expression A ′ of the first active species, the approximate relational expression A of the first active species and the pseudo-approximate relational expression A ′ of the first active species
From the ratio (A / A ') and the differential value (d
(A / A ′) / dt), the ratio (A / A ′) within the designated period, and the derivative of the ratio (d (A /
A ′) / dt), and the ratio (A / A ′) is plotted on the horizontal axis, and the differential value (d (A / A ′) / dt) of the ratio is plotted vertically. On the axis, the graph having the origin at the intersection of the average value of the ratio (A / A ') and the average value of the differential value of the ratio (d (A / A') / dt) within the designated period, A predetermined value of the ratio (A / A ') calculated from the information of the dispersion tendency and a differential value of the ratio (d (A
/ A ′) / dt) to set a predetermined area from a predetermined value, and a ratio (A / A ′) using emission detection information of the first and second active species during processing after the specified period. And the derivative of the ratio (d (A / A ') / dt) are determined, and the ratio (A / A') and the derivative of the ratio (d (A / A '
Determining the time when the position in the graph of ') / dt) deviates from the predetermined area as the end point of the plasma processing.

【0008】本発明の別の態様に係わるプラズマ処理の
終点検出方法は、被処理体にプラズマを用いた処理を施
す際に、前記プラズマ処理中の指定期間、並びにそれ以
降に第1および第2の活性種からの発光の特定波長での
発光強度を光検出手段により逐次検出して発光検出情報
を出力する工程と、前記指定期間内の発光検出情報に基
づいて、発光強度と時間との関係において第1の活性種
の近似関係式Aおよび第2の活性種の近似関係式Bを求
める工程と、前記第1の活性種の近似関係式Aおよび前
記第2の活性種の近似関係式Bを用いて、第1の活性種
の擬似近似関係式A´を求める工程と、前記第1の活性
種の近似関係式Aおよび前記第1の活性種の擬似近似関
係式A´から、両者の比(A/A´)および前記比の微
分値(d(A/A´)/dt)を求める工程と、前記指
定期間内の前記比(A/A´)および前記比の微分値
(d(A/A´)/dt)のそれぞれの平均値および分
散傾向を求める工程と、前記比(A/A´)を横軸にと
り、前記比の微分値(d(A/A´)/dt)を縦軸に
とり、前記指定期間内の前記比(A/A´)の平均値と
前記比の微分値(d(A/A´)/dt)の平均値との
交点を原点としたグラフに、前記指定期間以降の処理中
における前記第1および第2の活性種の発光検出情報を
用いて求められた比(A/A´)および比の微分値(d
(A/A´)/dt)の前記グラフにおける位置が前記
原点から外れて再び横軸に近接するときをプラズマ処理
の終点として判定する工程と、を具備するすることを特
徴とする。 本発明のさらなる別のプラズマ処理の終点
検出方法は、被処理体にプラズマを用いた処理中に、前
記プラズマにより発生された第1および第2の活性種の
夫々特定波長での発光強度を、処理中の指定期間中及び
これ以降検出し、この発光検出情報を出力する工程と、
これら発光検出情報に基づいて、時間の経過に対する発
光強度の変化に近似し直線もしくは曲線を表す第1の活
性種の近似関係式Aおよび第2の活性種の近似関係式B
を求める工程と、前記第2の活性種の近似関係式Bの経
過時間を第1の活性種の近似関係式Aの経過時間に代入
して、第1の活性種の擬似近似関係式A´を求める工程
と、前記第1の活性種の近似関係式Aおよび前記第1の
活性種の擬似近似関係式A´から、両者の比(A/A
´)および前記比の微分値(d(A/A´)/dt)を
求める工程と、前記指定期間内の前記比(A/A´)お
よび前記比の微分値(d(A/A´)/dt)のそれぞ
れの平均値および分散傾向を求める工程と、直交座標の
一方の軸に前記比(A/A´)をとり、他方の軸に前記
比の微分値(d(A/A´)/dt)をとり、前記指定
期間内の前記比(A/A´)の平均値と前記比の微分値
(d(A/A´)/dt)の平均値との交点を原点とし
たグラフを準備し、このグラフに前記分散傾向の情報か
ら算出した前記比(A/A´)の所定値および前記比の
微分値(d(A/A´)/dt)の所定値から所定領域
を設定する工程と、前記指定期間以降の処理中における
前記第1および第2の活性種の発光検出情報を用いて比
(A/A´)および比の微分値(d(A/A´)/d
t)を求め、求められた比(A/A´)および比の微分
値(d(A/A´)/dt)の前記グラフにおける位置
が前記所定領域から外れたときをプラズマ処理の終点と
して判定する工程と、を具備することを特徴とする。
According to another aspect of the present invention, there is provided a method for detecting an end point of a plasma process, wherein when performing a process using a plasma on an object to be processed, a first period and a second period after the specified period during the plasma process. The step of sequentially detecting the light emission intensity at a specific wavelength of light emission from the active species by light detection means and outputting light emission detection information, and the relationship between the light emission intensity and time based on the light emission detection information within the designated period. Obtaining the approximate relational expression A of the first active species and the approximate relational expression B of the second active species in the step of; and the approximate relational expression A of the first active species and the approximate relational expression B of the second active species Calculating a pseudo-approximate relational expression A ′ of the first active species using the following equation; and, from the approximate relational expression A of the first active species and the pseudo-approximate relational expression A ′ of the first active species, Ratio (A / A ′) and the derivative of the ratio (d (A / A ′) / Dt), and a step of calculating the average value and dispersion tendency of the ratio (A / A ') and the differential value of the ratio (d (A / A') / dt) within the designated period. , The ratio (A / A ′) is plotted on the horizontal axis, the differential value of the ratio (d (A / A ′) / dt) is plotted on the vertical axis, and the average of the ratio (A / A ′) within the designated period is taken. A graph having the origin at the intersection of the value and the average value of the differential value of the ratio (d (A / A ') / dt) shows the emission of the first and second active species during the processing after the designated period. The ratio (A / A ′) obtained by using the detection information and the derivative of the ratio (d
(A / A ') / dt) when the position in the graph deviates from the origin and approaches the horizontal axis again as a finish point of the plasma processing. Still another method of detecting the end point of the plasma processing according to the present invention is that, during the processing using the plasma on the object to be processed, the emission intensity at a specific wavelength of each of the first and second active species generated by the plasma, Detecting during and after a designated period during processing, and outputting the light emission detection information;
Based on the light emission detection information, an approximate relational expression A of the first active species and an approximate relational expression B of the second active species that represent a straight line or a curve by approximating the change in the emission intensity with the passage of time.
And substituting the elapsed time of the approximation relational expression B of the second active species into the elapsed time of the approximation relational expression A of the first active species to obtain a pseudo approximated relational expression A ′ of the first active species From the approximate relational expression A of the first active species and the pseudo approximated relational expression A ′ of the first active species, the ratio (A / A
′) And the derivative of the ratio (d (A / A ′) / dt), and the ratio (A / A ′) and the derivative of the ratio (d (A / A ′) within the designated period. ) / Dt), and the ratio (A / A ′) is taken on one axis of the rectangular coordinate system, and the differential value (d (A / A) of the ratio is taken on the other axis. ') / Dt), and the intersection of the average value of the ratio (A / A') and the differential value of the ratio (d (A / A ') / dt) within the designated period is defined as the origin. A prepared graph is prepared, and a predetermined value of the ratio (A / A ′) calculated from the information of the dispersion tendency and a predetermined value of the differential value (d (A / A ′) / dt) of the ratio are prepared. Setting a region, and using the light emission detection information of the first and second active species during the processing after the designated period, the ratio (A / A ′) and the ratio Minute value (d (A / A ') / d
t) is determined, and when the position of the determined ratio (A / A ′) and the derivative of the ratio (d (A / A ′) / dt) in the graph deviates from the predetermined region, the plasma processing end point is determined. And a step of determining.

【0009】前記第1の活性種の近似関係式Aおよび第
2の活性種の近似関係式Bを求める工程は、前記第1の
活性種の近似一次関係式Aおよび第2の活性種の近似一
次関係式Bを求める工程であり、前記第1の活性種の擬
似近似関係式A´を求める工程は、前記第1の活性種の
近似一次関係式Aおよび前記第2の活性種の近似一次関
係式Bを用いて、第1の活性種の擬似近似一次関係式A
´を求める工程であり、前記比(A/A´)および前記
比の微分値(d(A/A´)/dt)を求める工程は、
前記第1の活性種の近似一次関係式Aおよび前記第1の
活性種の擬似近似一次関係式A´から、両者の比(A/
A´)および前記比の微分値(d(A/A´)/dt)
を求める工程であることが望ましい。
The step of obtaining the approximate relational expression A of the first active species and the approximate relational expression B of the second active species comprises the step of calculating the approximate linear relation A of the first active species and the approximation of the second active species. The step of obtaining a linear relational expression B, wherein the step of obtaining the pseudo-approximation relational expression A ′ of the first active species is performed by the step of obtaining an approximate linear relational expression A of the first active species and an approximate primary relation of the second active species. Using a relational expression B, a pseudo approximate linear relational expression A of the first active species
The step of calculating the ratio (A / A ′) and the differential value of the ratio (d (A / A ′) / dt) includes:
From the approximate linear relation A of the first active species and the pseudo approximate linear relation A ′ of the first active species, the ratio (A /
A ′) and the differential value of the ratio (d (A / A ′) / dt)
Is desirable.

【0010】本発明のプラズマ処理の終点検出装置は、
被処理体にプラズマを用いた処理を施す際にプラズマに
より発生した第1および第2の活性種の特定波長での発
光強度の時間に対する変化を検出して、発光検出情報す
る光検出手段と、指定期間内の発光検出情報に基づい
て、発光強度と時間との関係において第1の活性種の近
似関係式Aおよび第2の活性種の近似関係式Bを求め、
前記第1の活性種の近似関係式Aおよび前記第2の活性
種の近似関係式Bを用いて、第1の活性種の擬似近似関
係式A´を求め、前記第1の活性種の近似関係式Aおよ
び前記第1の活性種の擬似近似関係式A´から、両者の
比(A/A´)および前記比の微分値(d(A/A´)
/dt)を求め、前記指定期間内の前記比(A/A´)
および前記比の微分値(d(A/A´)/dt)のそれ
ぞれの平均値および分散傾向を求める演算手段と、前記
比(A/A´)を横軸にとり、前記比の微分値(d(A
/A´)/dt)を縦軸にとり、前記比(A/A´)の
平均値と前記比の微分値(d(A/A´)/dt)の平
均値との交点を原点としたグラフを作成するグラフ化手
段と、前記分散傾向の情報から算出した前記比(A/A
´)の所定値および前記比の微分値(d(A/A´)/
dt)の所定値から所定領域を設定し、前記指定期間以
降の処理中における前記第1および第2の活性種の発光
検出情報を用いて比(A/A´)および比の微分値(d
(A/A´)/dt)を求め、求められた比(A/A
´)および比の微分値(d(A/A´)/dt)の前記
グラフにおける位置が前記所定領域から外れたときをプ
ラズマ処理の終点として判定する判定手段と、を具備す
ることを特徴とする。
[0010] The end point detection apparatus for plasma processing according to the present invention comprises:
Light detecting means for detecting a change in emission intensity at a specific wavelength of the first and second active species with respect to time, which is generated by the plasma when performing processing using the plasma on the object to be processed, and performing emission detection information; An approximate relational expression A of the first active species and an approximate relational expression B of the second active species are obtained based on the emission detection information within the designated period, in relation to the emission intensity and the time,
Using the approximate relational expression A of the first active species and the approximate relational expression B of the second active species, a pseudo approximate relational expression A ′ of the first active species is obtained, and an approximation of the first active species is obtained. From the relational expression A and the pseudo-approximation relational expression A ′ of the first active species, a ratio (A / A ′) of the two and a differential value of the ratio (d (A / A ′))
/ Dt), and calculates the ratio (A / A ') within the designated period.
Calculating means for calculating the average value and dispersion tendency of the differential value (d (A / A ') / dt) of the ratio, and the ratio (A / A') on the horizontal axis, and calculating the differential value of the ratio ( d (A
/ A ′) / dt) is plotted on the vertical axis, and the intersection of the average value of the ratio (A / A ′) and the differential value of the ratio (d (A / A ′) / dt) is defined as the origin. Graphing means for creating a graph, and the ratio (A / A) calculated from the information on the dispersion tendency.
') And the derivative of the ratio (d (A / A') /
dt), a predetermined area is set from a predetermined value, and the ratio (A / A ′) and the differential value of the ratio (d) are determined using the emission detection information of the first and second active species during the processing after the specified period.
(A / A ') / dt), and the ratio (A / A)
') And a determination means for determining when the position of the differential value of the ratio (d (A / A') / dt) in the graph deviates from the predetermined area as the end point of the plasma processing. I do.

【0011】前記第1の活性種と第2の活性種として、
これの発光強度が、指定期間以後のプラズマ処理の終点
において、弱くなる活性種と、強くなる活性種とが使用
されることが望ましい。
As the first active species and the second active species,
It is desirable to use an active species whose emission intensity becomes weaker and an active species which becomes stronger at the end point of the plasma processing after the designated period.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態のプラ
ズマ処理の終点検出方法並びに装置を添付図面を参照し
て具体的に説明する。プラズマ処理中、プラズマ状態
は、印加電力、ガス流量、圧力、プラズマ温度等のさま
ざまな条件により影響を受けるので、不安定な状態であ
る(プラズマの揺らぎ)。したがって、プラズマ処理の
終点検出に使用する活性種の発光の強度も不安定であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method and an apparatus for detecting an end point of a plasma process according to an embodiment of the present invention will be specifically described with reference to the accompanying drawings. During the plasma processing, the plasma state is unstable because it is affected by various conditions such as applied power, gas flow rate, pressure, and plasma temperature (plasma fluctuations). Therefore, the emission intensity of the active species used for detecting the end point of the plasma processing is also unstable.

【0013】発光強度の変動には、図1に示すような周
期的または単発のノイズ変動と、図2に示すような時間
と共に徐々に増加または減少するドリフト変動の2つの
要素がある。図1並びに図2において、縦軸は発光強度
を、また横軸は時間を示す。このノイズ変動は、主に高
周波電力、ガス流量、圧力のわずかな変動に起因するも
のであり、ドリフト変動は、主にプラズマ温度の時間変
動に起因することが知られている。
The fluctuation of the light emission intensity has two components: a periodic or single noise fluctuation as shown in FIG. 1 and a drift fluctuation which gradually increases or decreases with time as shown in FIG. 1 and 2, the vertical axis represents the light emission intensity, and the horizontal axis represents time. It is known that the noise fluctuation is mainly caused by a slight change in the high frequency power, the gas flow rate, and the pressure, and the drift fluctuation is mainly caused by a time fluctuation of the plasma temperature.

【0014】ノイズ変動は、特開昭63−81929並
びに特開平5−29276に開示されているように、2
波長を用いることにより、両波長の強度比を求めること
で共通する変動成分を相殺でき、基本的に除去すること
ができる。しかしながら、活性種からの発光と基準光又
は他の活性種との比を単純にとり、その比を比較する
と、ドリフト(全体的な波形の傾き)が異なる場合に、
その変動成分を充分に除去することはできない。
As disclosed in JP-A-63-81929 and JP-A-5-29276, the noise fluctuation is 2
By using the wavelength, the common fluctuation component can be canceled out by obtaining the intensity ratio of both wavelengths, and it can be basically removed. However, when the ratio between the emission from the active species and the reference light or another active species is simply taken and the ratios are compared, when the drift (the overall slope of the waveform) is different,
The fluctuation component cannot be sufficiently removed.

【0015】本発明者らは、上記の点を鋭意検討し、米
国特許No.5,565,114にて開示されているよ
うに波長の光の発光強度の微分値を時間的に合わせた状
態で変化量を比較することにより、ドリフト変動を除去
して正確な終点検出を行うことができることを見出し
た。しかしながら米国特許No.5,565,114に
て開示されている2波長の光の発光強度の微分値を時間
的に合わせる方法(即ち、2波長の夫々の発光強度変化
曲線の傾きを一致させる)は、発明の背景で述べたよう
に、面積計算を利用しているために、ノイズに弱いとい
う欠点がある。そこで、本発明者達は、この欠点を考慮
して、更に2波長の夫々の発光強度変化曲線の傾きを一
致させる方法を改良し、ひいては、終点検出の精度向上
を図ることとした。
The present inventors diligently studied the above points and found that US Pat. As disclosed in US Pat. No. 5,565,114, drift variation is removed and accurate end point detection is performed by comparing the amount of change with the differential value of the light emission intensity of light having a wavelength temporally adjusted. I found that I can do it. However, U.S. Pat. The method disclosed in US Pat. No. 5,565,114 for temporally adjusting the differential values of the emission intensities of the two wavelengths of light (that is, matching the slopes of the emission intensity change curves of the two wavelengths) is the background of the invention. As described above, since the area calculation is used, there is a disadvantage that it is susceptible to noise. In view of the above, the present inventors have further improved the method of matching the slopes of the emission intensity change curves of the two wavelengths, and have therefore improved the accuracy of end point detection.

【0016】次に、本発明の終点検出方法を具体的に説
明する。まず、被処理体にプラズマを用いた処理を施す
際に、プラズマ処理中において指定期間(平均化時間)
に、夫々特定波長(例えば、ピーク波長)を有する第1
および第2の活性種の発光強度を光検出手段により逐次
検出する。次いで、平均化時間内の第1および第2の活
性種の発光検出情報(即ち、時間に対する発光強度の変
化)に基づいて、発光強度と時間との関係における、第
1の活性種の近似一次関係式Aおよび第2の活性種の近
似一次関係式Bを夫々求める。すなわち、縦軸を発光強
度、横軸を時間にとった図3に示すように、平均化時間
内の、第1の活性種の発光強度の変化波形1および第2
の活性種の発光強度の波形2を用いて最小二乗法から、
それぞれ実験式を求める。この場合には、実験式として
近似一次関係式AおよびB(式1および式2)を求め
る。
Next, the end point detecting method of the present invention will be specifically described. First, when performing a process using plasma on the object to be processed, a specified period (averaging time) during the plasma process.
First, each having a specific wavelength (for example, a peak wavelength)
And the emission intensity of the second active species is sequentially detected by the light detection means. Next, based on the luminescence detection information of the first and second active species within the averaging time (that is, a change in luminescence intensity with respect to time), the approximate primary of the first active species in the relationship between luminescence intensity and time A relational expression A and an approximate linear relational expression B of the second active species are obtained respectively. That is, as shown in FIG. 3 in which the vertical axis represents light emission intensity and the horizontal axis represents time, the change waveforms 1 and 2 of the light emission intensity of the first active species within the averaging time
From the least squares method using the emission intensity waveform 2 of
Find the empirical formula for each. In this case, approximate linear relational expressions A and B (Expression 1 and Expression 2) are obtained as experimental expressions.

【0017】 Y1 =a1 ×X+b1 (A) …式1 Y2 =a2 ×X+b2 (B) …式2 (式中、Y1 ,Y2 は、それぞれ第1および第2の活性
種の発光光量を表し、Xは経過時間を表し、a1 ,a2
は一次係数を表し、b1 ,b2 はY切片(Y−inte
rcept)を表す) 次いで、第1の活性種の近似一次関係式Aおよび第2の
活性種の近似一次関係式Bから、第1の活性種の擬似近
似一次関係式A´を求める。すなわち、式1のXに式2
のXを代入して擬似近似一次関係式A´(式3)を求め
る。
Y 1 = a 1 × X + b 1 (A) Equation 1 Y 2 = a 2 × X + b 2 (B) Equation 2 (where Y 1 and Y 2 are the first and second activities, respectively) X represents the elapsed time, and a 1 , a 2
Represents a linear coefficient, and b 1 and b 2 are Y intercepts (Y-int
Next, a pseudo approximate linear relation A ′ of the first active species is obtained from the approximate linear relation A of the first active species and the approximate linear relation B of the second active species. That is, X in Equation 1 is replaced by Equation 2
Is substituted to obtain a pseudo-approximation linear relational expression A ′ (Equation 3).

【0018】 Y1 =(a1 /a2 )×(Y2 −b2 )+b1 (A´) …式3 式(1)および式(3)はいずれも第1の活性種の発光
光量Y1 を表すものであり、この比(A/A´)(図3
中に参考のために符号3で示すカーブ)を求める。さら
に、この比(A/A´)の微分値(d(A/A´)/d
t)を求める。なお、この比(A/A´)は、2つの活
性種が同じような発光強度変化の傾向(特徴)を示す場
合には、ほぼ1となり、傾向が異なるのに従って1より
大きいか小さくなる。すなわち、2つの活性種が異なる
傾向を示す場合には、図3に示すように、この比の値
は、終点前(後述するスロープスタート:S.Sの前)
で一定であり、終点で大きく変化(増加または減少)
し、終点後(後述するスロープエンド:S.Eの後)は
再び一定となる。ここで、便宜上“終点”という用語を
使用したが、これは、瞬間を指すのではなく、一定の期
間(S.SからS.Eまでの時間)を指していること
は、図3並びに後述する説明から理解され得よう。
Y 1 = (a 1 / a 2 ) × (Y 2 −b 2 ) + b 1 (A ′) Equation 3 Both Equations (1) and (3) are the light emission amounts of the first active species. Y 1 and the ratio (A / A ′) (FIG. 3)
Inside, a curve indicated by reference numeral 3 is obtained for reference. Further, the differential value (d (A / A ') / d of this ratio (A / A')
Find t). Note that this ratio (A / A ′) becomes substantially 1 when the two active species show the same tendency (characteristic) of a change in emission intensity, and becomes larger or smaller as the tendency becomes different. That is, when the two active species show different tendencies, as shown in FIG. 3, the value of this ratio is determined before the end point (before a slope start: SS described later).
And constant at the end point, large change (increase or decrease) at the end point
Then, after the end point (after a slope end: SE described later), it becomes constant again. Here, the term “end point” is used for convenience, but this does not refer to an instant but refers to a certain period (time from SS to SE), as shown in FIG. It can be understood from the description that follows.

【0019】次いで、上記に示す結果に基づいて終点を
判定する。このように、比(A/A´)についての波形
は、終点手前と終点以降でそれぞれ一定に安定する(時
間経過で変化しない)。したがって、この2つの一定値
(終点手前と終点以降)間に閾値を設定することによ
り、この閾値検出で容易に終点の検出を行うことができ
る。ただし、このような終点の検出においては、比(A
/A´)についての波形における変化の始めや終りの非
常に近い位置に閾値を設定すると、安定して終点を検出
することはできないことがある。このために閾値は、
S.S.とS.E.との間で、両者から少し離れた期間
に設定することが望ましい。
Next, the end point is determined based on the results shown above. As described above, the waveform for the ratio (A / A ′) stabilizes constantly before the end point and after the end point (does not change over time). Therefore, by setting a threshold value between these two fixed values (before the end point and after the end point), the end point can be easily detected by the threshold value detection. However, in detecting such an end point, the ratio (A
If the threshold is set at a position very close to the beginning or end of the change in the waveform of / A '), the end point may not be detected stably. For this, the threshold is
S. S. And S. E. FIG. It is desirable to set a period slightly away from both.

【0020】本発明においては、以下のように変化の始
まり(スロープスタート:S.S.)と変化の終り(ス
ロープエンド:S.E.)を精度良く検出して終点の判
定を正確に行うことができる。
In the present invention, the start of the change (slope start: SS) and the end of the change (slope end: SE) are detected with high accuracy as described below to accurately determine the end point. be able to.

【0021】上記のようにして求めた発光強度の比(A
/A´)およびその微分値、すなわち傾き(d(A/A
´)/dt)の時間変化を図4に示す。図4から分かる
ように、比(A/A´)については、終点前で一定であ
り、終点で大きく減少し、終点後は再び一定となる。傾
き(d(A/A´)/dt)については、終点前で一定
であり、終点で大きく減少するピークを示し、終点後は
終点前と同じように一定となる。
The ratio of the emission intensities (A
/ A ') and its derivative, that is, the slope (d (A / A
FIG. 4 shows the time change of ') / dt). As can be seen from FIG. 4, the ratio (A / A ′) is constant before the end point, greatly decreases at the end point, and becomes constant again after the end point. The slope (d (A / A ') / dt) is constant before the end point, shows a peak that greatly decreases at the end point, and becomes constant after the end point in the same manner as before the end point.

【0022】発光強度の比(A/A´)を横軸にとり、
比の微分値(d(A/A´)/dt)を縦軸にとり、比
(A/A´)の平均値と比の微分値(d(A/A´)/
dt)の平均値との交点を原点とした2次元座標のグラ
フに値をプロットすると図5に示すようになる。時間の
経過を曲線で示す図5から分かるように、終点以前は、
座標中央に分布しており、終点付近で変化が始まると、
座標の第1象限または第3象限(図5の場合には第3象
限)に大きく飛び出してくる。そして、終点以降は横軸
上に近付いてこの近くに分布する。このように、2次元
座標上に表現することにより、比(A/A´)および比
の微分値(d(A/A´)/dt)の関係やそれぞれに
ついての波形の状態変化を可視化でき、例えば、プログ
ラム処理して画像として見ることができる。
The luminous intensity ratio (A / A ') is plotted on the horizontal axis,
The derivative of the ratio (d (A / A ') / dt) is plotted on the vertical axis, and the average of the ratio (A / A') and the derivative of the ratio (d (A / A ') /
When the values are plotted on a graph of two-dimensional coordinates having the origin at the intersection with the average value of dt), the result is as shown in FIG. As can be seen from FIG. 5 which shows the passage of time as a curve, before the end point,
It is distributed in the center of the coordinates, and when the change starts near the end point,
The coordinates largely jump to the first quadrant or the third quadrant (the third quadrant in FIG. 5). After the end point, it approaches the horizontal axis and is distributed near this. In this way, by expressing on the two-dimensional coordinates, the relationship between the ratio (A / A ′) and the differential value of the ratio (d (A / A ′) / dt) and the state change of the waveform for each can be visualized. For example, a program can be processed and viewed as an image.

【0023】終点の判定においては、まず、平均化時間
内の比(A/A´)および比の微分値(d(A/A´)
/dt)のそれぞれの平均値および分散傾向を求める。
平均化時間は、プラズマ処理の終点よりも前の期間で設
定する。なお、平均化時間の開始点は、プラズマ処理開
始時ではなく、プラズマが安定した時点に設定すること
が好ましい。
In determining the end point, first, the ratio (A / A ') within the averaging time and the differential value of the ratio (d (A / A'))
/ Dt) and the average value and the tendency of dispersion are determined.
The averaging time is set in a period before the end point of the plasma processing. The starting point of the averaging time is preferably set not at the start of the plasma processing but at the time when the plasma is stabilized.

【0024】次いで、比(A/A´)および比の微分値
(d(A/A´)/dt)の分散傾向の情報から算出し
た後述する所定値から、グラフにおける初期の変動範囲
(所定領域)を求める。この変動範囲(所定領域)は、
図6に示すように、指定期間(平均化時間)の分散傾向
の情報から算出した比(A/A´)の所定値と比の微分
値(d(A/A´)/dt)の所定値との二乗和の平方
根r1 により設定されることが好ましく、実際には、分
散傾向の情報から算出した比(A/A´)および比の微
分値(d(A/A´)/dt)の所定値の二乗和の平方
根{√[(比の所定値)2 +(傾き(比の微分値)の所
定値)2 ]}(C)を求め、その値を半径とし、平均値
を原点Oとする、点線Pで示す円形の範囲である。した
がって、終点以前は、この円P内に多く分布し、終点付
近の変化が始まると、この円から徐々に離れていく。こ
こで、分散傾向の情報から算出した比(A/A´)の所
定値として比と比の平均値との間の差の最大値を用い、
比の微分値(d(A/A´)/dt)の所定値として比
の微分値と比の微分値の平均値との差の最大値を用いる
ことができる。
Next, an initial fluctuation range (predetermined value) in the graph is calculated from a predetermined value, which will be described later, calculated from information on the dispersion tendency of the ratio (A / A ') and the differential value of the ratio (d (A / A') / dt). Area). This fluctuation range (predetermined area)
As shown in FIG. 6, a predetermined value of the ratio (A / A ') calculated from information on the dispersion tendency in the specified period (averaging time) and a predetermined value of the differential value of the ratio (d (A / A') / dt) It is preferably set by the square root r 1 of the sum of squares with the value. Actually, the ratio (A / A ′) calculated from the dispersion tendency information and the differential value of the ratio (d (A / A ′) / dt) ) Is calculated as the square root of the sum of squares of the predetermined value {[(predetermined value of ratio) 2 + (predetermined value of slope (differential value of ratio)) 2 ]} (C) This is a circular range indicated by a dotted line P, which is the origin O. Therefore, before the end point, a large amount is distributed within the circle P, and when the change near the end point starts, the circle gradually moves away from the circle P. Here, the maximum value of the difference between the ratio and the average value of the ratio is used as the predetermined value of the ratio (A / A ′) calculated from the information of the dispersion tendency,
As the predetermined value of the differential value of the ratio (d (A / A ') / dt), the maximum value of the difference between the differential value of the ratio and the average value of the differential values of the ratio can be used.

【0025】上記の事実に基づいて、上記変動範囲を超
えたときをスロープスタートとして判定する。ただし、
変動範囲の近傍ではスロープスタートを正確に判定する
ことができないので、例えば、グラフ上の変動範囲外で
終点を判定する位置(値)を設定し、その位置から原点
までの距離L1と、変動範囲の円の半径L2とを比較す
ることによりスロープスタートを判定する。すなわち、
平均化時間以降の処理中における第1および第2の活性
種の発光検出情報を用いて比(A/A´)および比の微
分値(d(A/A´)/dt)を求め、グラフ上の位置
から原点までの距離L1を求め、この距離と平均化時間
内の発光検出情報で求められた変動範囲の半径L2とを
比較する。
Based on the above fact, a time when the variation range is exceeded is determined as a slope start. However,
Since the slope start cannot be accurately determined near the fluctuation range, for example, a position (value) for determining the end point outside the fluctuation range on the graph is set, and the distance L1 from the position to the origin and the fluctuation range are set. The slope start is determined by comparing with the radius L2 of the circle. That is,
A ratio (A / A ′) and a differential value of the ratio (d (A / A ′) / dt) are obtained using the emission detection information of the first and second active species during the processing after the averaging time, and are graphed. The distance L1 from the upper position to the origin is obtained, and this distance is compared with the radius L2 of the fluctuation range obtained from the light emission detection information within the averaging time.

【0026】具体的には、終点を判定する位置に対応す
る比(A/A´)および比の微分値(d(A/A´)/
dt)の値と、それぞれの平均値(原点)との差の二乗
和の平方根{√[(比−比の平均値)2 +(傾き−傾き
の平均値)2 ]}(D)を求め、上記二乗和の平方根
(C)との比(D/C)があらかじめ設定した閾値より
大きくなったところをスロープスタートとして判定す
る。
Specifically, the ratio (A / A ') corresponding to the position for determining the end point and the differential value of the ratio (d (A / A') /
dt) and the square root of the sum of the squares of the differences between the respective average values (origins) {[(ratio−average value of ratio) 2 + (slope−average value of slope) 2 ]} (D) The point where the ratio (D / C) to the square root of the sum of squares (C) becomes larger than a preset threshold value is determined as a slope start.

【0027】一方、スロープエンドは、比の微分値(d
(A/A´)/dt)、すなわち傾きが再び横軸に近付
く(傾きの変動範囲に近付く)ことにより判定する。す
なわち、終点を判定する傾きとその分散傾向から求めら
れた所定値とを比較して、これから得られた((傾き−
傾きの平均値)/所定値)を求め、この値があらかじめ
設定した閾値より小さくなったところをスロープエンド
として判定する。なお、分散傾向から求められる所定値
は、上述したようにして算出する。
On the other hand, the slope end is the differential value of the ratio (d
(A / A ') / dt), that is, determination is made based on the inclination approaching the horizontal axis again (approaching the variation range of the inclination). That is, the slope for determining the end point is compared with a predetermined value obtained from the variance tendency, and the result is obtained from ((slope−
Average value of slope / predetermined value) is obtained, and a point where this value becomes smaller than a preset threshold value is determined as a slope end. Note that the predetermined value obtained from the dispersion tendency is calculated as described above.

【0028】スロープエンドを終点検出に使用する場
合、指定期間以降の処理中における第1および第2の活
性種の発光検出情報を用いて求められた比(A/A´)
および比の微分値(d(A/A´)/dt)のグラフに
おける位置が原点から外れて再び横軸に近接するときを
プラズマ処理の終点として判定する。
When the slope end is used for end point detection, the ratio (A / A ') obtained by using the emission detection information of the first and second active species during the processing after the designated period.
When the position in the graph of the differential value of the ratio (d (A / A ') / dt) deviates from the origin and approaches the horizontal axis again, it is determined as the end point of the plasma processing.

【0029】この場合、スロープスタートを終点検出に
使用する場合と同様に、変動範囲を設定して、指定期間
以降の処理中における第1および第2の活性種の発光検
出情報を用いて比および比の微分値を求め、求められた
比および比の微分値のグラフにおける位置が変動範囲
(所定領域)内に入ったときをプラズマ処理の他の終点
として判定しても良い。なお、変動範囲の設定は、スロ
ープスタートを終点検出に使用する場合と同様である。
In this case, similarly to the case where the slope start is used for detecting the end point, a fluctuation range is set, and the ratio and the ratio are determined by using the emission detection information of the first and second active species during the processing after the designated period. The differential value of the ratio may be obtained, and the time when the position of the obtained ratio and the differential value of the ratio in the graph falls within the fluctuation range (predetermined region) may be determined as another end point of the plasma processing. The setting of the fluctuation range is similar to the case where the slope start is used for detecting the end point.

【0030】スロープエンドを終点検出に使用する場合
においても、スロープスタートを終点検出に使用する場
合と同様に、順次新たな原点や変動範囲を設定して、複
数回の終点検出を行っても良い。
In the case where the slope end is used for detecting the end point, similarly to the case where the slope start is used for detecting the end point, a new origin and a variation range may be sequentially set, and the end point may be detected a plurality of times. .

【0031】このように、終点の判定において、閾値と
の直接比較を行わず、プラズマ処理の平均化時間内の情
報から得られた所定値を終点の判定に利用することによ
り、2波長を用いた従来の終点検出方法で除去できない
ドリフト変動を充分に除去することができる。したがっ
て、S/N(シグナル・ノイズ)が悪い状態であっても
正確に終点を検出することができる。なお、実際のプラ
ズマ処理の終点は、スロープスタートの位置としても良
く、スロープエンドの位置としても良い。この選定はプ
ラズマ処理の目的や条件等により適宜行う。
As described above, in the determination of the end point, the direct comparison with the threshold value is not performed, and the predetermined value obtained from the information within the averaging time of the plasma processing is used for the determination of the end point. Drift fluctuation which cannot be removed by the conventional end point detection method can be sufficiently removed. Therefore, even if the S / N (signal noise) is bad, the end point can be accurately detected. Note that the actual plasma processing end point may be the slope start position or the slope end position. This selection is appropriately performed depending on the purpose and conditions of the plasma processing.

【0032】本発明の終点検出方法においては、図7の
(A)に示すように、発光強度の比の時間変化の波形が
終点近傍で上昇する形状である場合にも、図7の(B)
に示すように、上記と同様にしてスロープスタートとス
ロープエンドを判定することができる。この場合には、
結果の曲線が座標の第1象限に大きく飛び出してくるこ
とが認識できよう。
In the end point detection method of the present invention, as shown in FIG. 7A, even when the waveform of the temporal change of the ratio of the light emission intensity has a shape rising near the end point, as shown in FIG. )
As shown in the above, the slope start and the slope end can be determined in the same manner as described above. In this case,
It can be seen that the resulting curve greatly jumps out into the first quadrant of the coordinates.

【0033】異なる種類の2つの膜をエッチングしてホ
ールを形成する場合、例えば、図8に示すように、シリ
コン基板4上にSiO2 膜5とSi34 膜6とを順次
形成したものをエッチングする場合には、図9の(A)
に示すように、発光強度の比の時間変化の波形が1回
目、即ち、1段目の終点近傍で上昇し、2回目、即ち、
2段目の終点近傍で下降する形状となる。この場合に
は、図9の(B)に示すように、上記のようにして1回
目の終点を検出した後、求められた比(A/A´)およ
び比の微分値(d(A/A´)/dt)のグラフにおけ
る位置がグラフの横軸と再び交わる点を新たな原点O2
とし、分散傾向の情報から算出された比(A/A´)の
所定値および比の微分値(d(A/A´)/dt)の所
定値から他の所定領域(変動範囲)R2 を設定し、第1
および第2の活性種の発光検出情報を用いて比(A/A
´)および比の微分値(d(A/A´)/dt)を求
め、求められた比(A/A´)および比の微分値(d
(A/A´)/dt)のグラフにおける位置が他の所定
領域R2 から外れたときをプラズマ処理の2回目の終点
(スロープスタート)として判定する。なお、図9の
(B)中、O1 は1回目の終点検出の際の原点であり、
1 は1回目の終点検出の際の変動範囲である。また、
2回目のスロープスタートおよびスロープエンドの判定
方法は上記と同様に行う。
When holes are formed by etching two different types of films, for example, as shown in FIG. 8, a SiO 2 film 5 and a Si 3 N 4 film 6 are sequentially formed on a silicon substrate 4. In the case of etching, FIG.
As shown in the figure, the waveform of the time change of the ratio of the light emission intensity rises in the first time, that is, near the end point of the first stage, and rises in the second time, that is, in the second time,
The shape is lowered near the end point of the second stage. In this case, as shown in FIG. 9B, after the first end point is detected as described above, the obtained ratio (A / A ′) and the derivative of the ratio (d (A / A The point where the position in the graph of A ′) / dt) intersects the horizontal axis of the graph again is defined as a new origin O 2.
From the predetermined value of the ratio (A / A ′) calculated from the information of the dispersion tendency and the predetermined value of the differential value (d (A / A ′) / dt) of the ratio, another predetermined region (variation range) R 2 Set the first
And the ratio (A / A) using the emission detection information of the second active species.
') And the derivative of the ratio (d (A / A') / dt), and the ratio (A / A ') and the derivative of the ratio (d
(A / A') / position in the graph of dt) is determined as the second endpoint of the plasma treatment when deviating from the other predetermined areas R 2 (slope start). In FIG. 9B, O 1 is the origin at the time of the first end point detection,
R 1 is a fluctuation range at the time of the first end point detection. Also,
The determination method of the second slope start and slope end is performed in the same manner as described above.

【0034】この結果、Si34 膜6にホールを形成
するためのエッチングの最終点と、これに続くSiO2
膜5にホールを形成するためのエッチングの最終点とを
夫々認識することができる。このような原点移動を行っ
てスロープスタートおよびスロープエンドの判定を繰り
返す技術は、図10に示すような、段差がある基板7上
に形成された部分的に厚さが異なるSiO2 膜5にアス
ペクト比が異なる穴8a〜8cを形成する場合にも適用
できる。この場合においても、図11の(A)および図
11の(B)に示すように、上記と同様に原点移動を行
うことにより、複数回のスロープスタートおよびスロー
プエンドの判定を行うことができ、正確に各ステップの
エッチング処理の終点検出を行うことができる。なお、
図11の(B)中、O1 は1回目、即ち、1段目の終点
検出の際の原点、O2 は2回目、即ち、段目の終点検出
の際の原点、O3 は3回目、即ち、3段目の終点検出の
際の原点を夫々示し、R1は1回目の終点検出の際の変
動範囲、R2 は2回目の終点検出の際の変動範囲、R3
は3回目の終点検出の際の変動範囲を、夫々示す。
As a result, the final point of etching for forming a hole in the Si 3 N 4 film 6 and the subsequent SiO 2
The end point of the etching for forming a hole in the film 5 can be recognized. Technology, as shown in FIG. 10, the aspect on the SiO 2 film 5 in which the substrate 7 on the portions to thick formed there is a step different repeating determination of such origin movement performed slope start and the slope end The present invention can be applied to the case where holes 8a to 8c having different ratios are formed. Also in this case, as shown in FIGS. 11A and 11B, by performing the origin movement in the same manner as described above, it is possible to determine the slope start and slope end a plurality of times, The end point of the etching process of each step can be accurately detected. In addition,
In FIG. 11B, O 1 is the first time, ie, the origin at the time of detecting the end point of the first stage, O 2 is the second time, ie, the origin at the time of detecting the end point of the stage, and O 3 is the third time. That is, the origin at the time of detecting the end point of the third stage is respectively shown, R 1 is a fluctuation range at the time of the first end point detection, R 2 is a fluctuation range at the time of the second end point detection, R 3
Indicates a fluctuation range at the time of the third end point detection.

【0035】次に、本発明のプラズマ処理の終点検出方
法の効果を明確にするために行った実施例について説明
する。図12は本発明に係る終点検出装置を備えたプラ
ズマ処理装置、例えば、プラズマエッチング装置、の構
成を概略的に示す図である。プラズマ処理装置10は、
例えばアルミニウム等の導電性材料からなる処理室11
と、この処理室11内に配設されかつ被処理体である半
導体ウェハWを載置する載置台を兼ねた下部電極12
と、この下部電極12の上方に下部電極12と離隔して
配設された上部電極13とを備え、これら電極間にプラ
ズマ発生領域が規定されている。
Next, an embodiment performed to clarify the effect of the method for detecting the end point of the plasma processing of the present invention will be described. FIG. 12 is a diagram schematically showing the configuration of a plasma processing apparatus provided with an end point detection apparatus according to the present invention, for example, a plasma etching apparatus. The plasma processing apparatus 10 includes:
Processing chamber 11 made of a conductive material such as aluminum
And a lower electrode 12 disposed in the processing chamber 11 and serving also as a mounting table for mounting the semiconductor wafer W as an object to be processed.
And an upper electrode 13 disposed above the lower electrode 12 so as to be separated from the lower electrode 12, and a plasma generation region is defined between these electrodes.

【0036】処理室11の上部には、処理ガス、例え
ば、CF4 等のフルオロカーボン系のエッチング用ガス
を導入するためのガス導入管14が接続されている。処
理室11の側壁には、生成ガスを排出するための排気管
15が接続されている。下部電極12は接地されており
常時グランド電位に保たれている。また、上部電極13
は高周波電源16に接続されており、高周波電源16か
ら高周波電圧を印加して下部電極12と上部電極13と
の間で放電させることにより、エッチング用ガスを活性
化してラジカル種、イオン種等の活性種からなるプラズ
マPをプラズマ発生領域に発生させる。
A gas introduction pipe 14 for introducing a processing gas, for example, a fluorocarbon-based etching gas such as CF 4 is connected to an upper portion of the processing chamber 11. An exhaust pipe 15 for discharging generated gas is connected to a side wall of the processing chamber 11. The lower electrode 12 is grounded and is always kept at the ground potential. Also, the upper electrode 13
Is connected to a high-frequency power supply 16, and by applying a high-frequency voltage from the high-frequency power supply 16 to discharge between the lower electrode 12 and the upper electrode 13, the etching gas is activated to generate radical species, ionic species, and the like. Plasma P composed of active species is generated in a plasma generation region.

【0037】処理室11の側壁には、石英ガラス等の透
明体からなる監視用窓17が取り付けられており、この
窓17からプラズマPの発光スペクトルを透過させ、こ
の透過光を分析することによりエッチングの進捗状況を
監視する。窓17の外部には、透過光を集光するための
レンズ21が配設され、さらにレンズ21の後段には、
レンズ21によって集光された光を検出して光電変換す
る光検出器22が配設されている。この光検出器22
は、例えば、1対の干渉フィルタまたは分光器と、1対
のフォトマルまたはフォトダイオードとから構成されて
おり、2つの特定波長の光を干渉フィルタまたは分光器
で夫々分光した後、分光した特定波長の光を夫々光電変
換して、時間に対しての発光強度の変化を表す電気信号
として送信する。この光検出器22から送信される発光
強度の時間に対する変化に対応した2つの電気信号に基
づいて後述の演算装置30でエッチングの終点を検出
し、終点を検出した時点で制御信号を制御装置40に送
信し、この制御装置40を介してプラズマ処理装置10
を制御して、即ち、高周波電源16の発信を停止させて
エッチングを終了させる。
A monitoring window 17 made of a transparent material such as quartz glass is attached to the side wall of the processing chamber 11. The emission spectrum of the plasma P is transmitted through the window 17 and the transmitted light is analyzed. Monitor the progress of the etching. A lens 21 for condensing transmitted light is provided outside the window 17, and further behind the lens 21,
A photodetector 22 that detects light collected by the lens 21 and performs photoelectric conversion is provided. This photodetector 22
Is composed of, for example, a pair of interference filters or spectrometers, and a pair of photomultipliers or photodiodes. The light of two specific wavelengths is separated by the interference filter or spectroscope, respectively, and then separated. The light of each wavelength is photoelectrically converted, and transmitted as an electric signal indicating a change in light emission intensity with respect to time. Based on two electric signals corresponding to a change in emission intensity with respect to time transmitted from the photodetector 22, an end point of the etching is detected by the arithmetic unit 30, which will be described later, and a control signal is sent to the control unit 40 when the end point is detected. To the plasma processing apparatus 10 via the control device 40.
, That is, the transmission of the high-frequency power supply 16 is stopped to end the etching.

【0038】ここで、レンズ21の位置は、レンズ移動
手段(図示せず)により適宜垂直方向に移動することが
できる。例えば、半導体基板上に形成された膜をホール
形成のためにプラズマエッチングする場合において、特
定波長を有する発光スペクトルを検出するとき、膜の上
面から反射した光と、膜の下面(半導体基板と膜との界
面)から反射した光とが干渉して光検出器22に入る
と、正確に発光スペクトルの発光強度を検出することが
できなくなる可能性がある。このような干渉光が入射し
ないように、この実施の形態では、レンズ移動手段によ
りレンズの焦点位置をずらせることができる。
Here, the position of the lens 21 can be appropriately moved in the vertical direction by lens moving means (not shown). For example, in a case where a film formed on a semiconductor substrate is subjected to plasma etching for forming holes, when an emission spectrum having a specific wavelength is detected, light reflected from an upper surface of the film and a lower surface of the film (the semiconductor substrate and the film). If the light reflected from the interface (light interface) interferes with the photodetector 22, it may not be possible to accurately detect the emission intensity of the emission spectrum. In this embodiment, the focal position of the lens can be shifted by the lens moving means so that such interference light does not enter.

【0039】次に、本発明に係る終点検出を行う演算装
置30について説明する。演算装置30は、図13に示
すように、光検出器22からの入力信号、すなわち第1
の特定波長の光の発光強度の変化を表す信号と、第2の
特定波長の光の発光強度の変化を表す信号の夫々の情報
を演算して、両発光強度の変化の比およびこの比の微分
値(傾き)を抽出する、即ち、計算する要素抽出器31
と、発光強度の比(A/A´)を横軸にとり、比の微分
値(d(A/A´)/dt)、即ち、傾きを縦軸にと
り、比(A/A´)の平均値と比の微分値(d(A/A
´)/dt)の平均値との交点を原点としたグラフに、
上記比と比の微分値の時間に対する変化をプロットし
て、図5に示すようなグラフを作成するグラフ化器32
と、作成されたグラフからスロープスタートを判定する
スロープスタート判定器33と、作成されたグラフから
スロープエンドを判定するスロープエンド判定器34と
により構成されている。この好ましい実施の形態におい
ては、前述した積層膜や段差を有する基板上の膜の処理
の際に作成されたグラフにおける原点を移動する原点移
動器35が、判定器33,34の出力側に設けられてい
る。これら原点移動器は、上述したような原点を移動さ
せる場合にのみ駆動されるものであり、要素抽出器31
に、同様の操作を繰り返すように指令する。
Next, the arithmetic unit 30 for detecting the end point according to the present invention will be described. As shown in FIG. 13, the arithmetic unit 30 receives the input signal from the photodetector 22, that is, the first signal.
The information representing the change in the light emission intensity of the light having the specific wavelength and the signal representing the change in the light emission intensity of the light having the second specific wavelength are calculated, and the ratio of the change in the two light intensities and the ratio of this ratio are calculated. An element extractor 31 for extracting or calculating a differential value (slope)
And the emission intensity ratio (A / A ') on the horizontal axis, and the derivative of the ratio (d (A / A') / dt), that is, the slope on the vertical axis, and the average of the ratio (A / A '). Value and the derivative of the ratio (d (A / A
′) / Dt) in a graph with the intersection with the average value as the origin,
A graphing unit 32 that plots the change of the ratio and the derivative of the ratio with respect to time to create a graph as shown in FIG.
And a slope start determiner 33 that determines a slope start from the created graph, and a slope end determiner 34 that determines the slope end from the created graph. In this preferred embodiment, an origin mover 35 for moving the origin in a graph created when processing the above-mentioned laminated film or a film on a substrate having a step is provided on the output side of the determiners 33 and 34. Have been. These origin movers are driven only when the origin is moved as described above.
Is instructed to repeat the same operation.

【0040】さらに詳しくは、要素抽出器31において
は、次の演算処理が行われる。 (1)指定期間(平均化時間)内の第1および第2の活
性種の発光検出情報に基づいて、発光強度と時間との関
係において第1の活性種の近似一次関係式Aおよび第2
の活性種の近似一次関係式Bを求める。 (2)第1の活性種の近似一次関係式Aおよび第2の活
性種の近似一次関係式Bを用いて、即ち、第2の活性種
の近似一次関係式Bの時間経過成分を第1の活性種の近
似一次関係式Aの時間経過成分に代入して、第1の活性
種の擬似近似一次関係式A´を求める。 (3)第1の活性種の近似一次関係式Aおよび第1の活
性種の擬似近似一次関係式A´から、両者の比(A/A
´)および比の微分値(d(A/A´)/dt)を求め
る。 (4)平均化時間内の比(A/A´)および比の微分値
(d(A/A´)/dt)のそれぞれの平均値および分
散値を求める。
More specifically, in the element extractor 31, the following arithmetic processing is performed. (1) Based on the light emission detection information of the first and second active species within the designated period (averaging time), the approximate linear relation A and second linear relationship of the first active species in the relationship between the light emission intensity and time
An approximate linear relation B of the active species is obtained. (2) Using the approximate linear relation A of the first active species and the approximate linear relation B of the second active species, that is, the time-lapse component of the approximate linear relation B of the second active species is converted to the first one. Is substituted into the time-lapse component of the approximation linear relational expression A of the active species to obtain a pseudo approximate linear relational expression A 'of the first active species. (3) From the approximate linear relation A of the first active species and the pseudo approximate linear relation A ′ of the first active species, the ratio (A / A
') And the derivative of the ratio (d (A / A') / dt). (4) The average value and variance value of the ratio (A / A ') and the derivative value (d (A / A') / dt) within the averaging time are obtained.

【0041】グラフ化器32、スロープスタート判定器
33、およびスロープエンド判定器34では、それぞれ
上述したような処理を行って、それぞれグラフ作成、ス
ロープスタート判定、およびスロープエンド判定を行
う。
The graphing unit 32, the slope start determining unit 33, and the slope end determining unit 34 perform the above-described processes, respectively, and perform graph creation, slope start determination, and slope end determination, respectively.

【0042】スロープスタート判定およびスロープエン
ド判定の判定結果は、制御装置40へ送信され、その判
定結果の信号に基づいて制御装置40を介して高周波電
源16等を制御することによりエッチング処理を制御す
る。なお、スロープエンド判定の判定結果は、必要に応
じて原点移動器35に送られ、その原点移動がなされた
結果の信号もまた制御装置40に送られる。
The determination results of the slope start determination and the slope end determination are transmitted to the controller 40, and the etching process is controlled by controlling the high frequency power supply 16 and the like via the controller 40 based on the signal of the determination result. . The result of the slope end determination is sent to the origin mover 35 as necessary, and a signal indicating the result of the origin movement is also sent to the control device 40.

【0043】上記構成を有するプラズマ処理装置(プラ
ズマエッチング装置)を用いてシリコン基板上に形成さ
れたSiO2 膜をCF4 ガスを用いて実際にエッチング
する場合について説明する。ここでは、第1の活性種と
してSiO2 のエッチングにより生成するCO分子を用
い、第2の活性種としてイオン化されたエッチャントで
あるCF2 * 分子を用いる。また、CO分子はスペクト
ロスコープで分析し、CF2 * 分子はオプトフィルタで
フィルタリングした。なお、CO分子の使用発光波長は
約219nmであり、CF2 * 分子の使用発光波長は約
260nmである。
The case where the SiO 2 film formed on the silicon substrate is actually etched using the CF 4 gas by using the plasma processing apparatus (plasma etching apparatus) having the above configuration will be described. Here, CO molecules generated by etching SiO 2 are used as the first active species, and CF 2 * molecules, which are ionized etchants, are used as the second active species. CO molecules were analyzed with a spectroscope, and CF 2 * molecules were filtered with an optofilter. The emission wavelength used for CO molecules is about 219 nm, and the emission wavelength used for CF 2 * molecules is about 260 nm.

【0044】まず、光検出器22により検出され、フィ
ルタリングされた光信号を、光電変換器(図示せず)に
より電気信号に変換し、その電気信号はプリアンプ(図
示せず)により増幅する。
First, the optical signal detected and filtered by the photodetector 22 is converted into an electric signal by a photoelectric converter (not shown), and the electric signal is amplified by a preamplifier (not shown).

【0045】次いで、CO分子の電気信号のプリアンプ
の増幅率を調節してCF2 * 分子と同じレベルにCO分
子の電気信号を増幅する。この段階で両電気信号はアナ
ログ信号である。
Next, the amplification factor of the preamplifier for the electric signal of the CO molecule is adjusted to amplify the electric signal of the CO molecule to the same level as that of the CF 2 * molecule. At this stage, both electrical signals are analog signals.

【0046】次いで、サンプリングサイクルの2倍以上
の周波数、この場合20Hz以上を有するノイズ成分を
フィルタでカットする。その後、両電気信号を0.1秒
のサイクルでサンプリングし、A/D変換器によりデジ
タル化する。
Next, a noise component having a frequency more than twice the sampling cycle, in this case, 20 Hz or more, is cut by a filter. Thereafter, both electric signals are sampled at a cycle of 0.1 second and digitized by an A / D converter.

【0047】次いで、デジタル化された両電気信号を動
的な平均化方法により平滑化する。これは、いわゆるロ
ーパスフィルタの効果を有し、高周波数ノイズ(すなわ
ちランダムノイズ)を含まない比較的平滑な信号が得ら
れる。
Next, both digitized electric signals are smoothed by a dynamic averaging method. This has the effect of a so-called low-pass filter, and a relatively smooth signal that does not include high-frequency noise (that is, random noise) is obtained.

【0048】次いで、要素抽出器31において、CO分
子の近似一次関係式AおよびCF2 * 分子の近似一次関
係式Bを求める。これらの発光強度の時間変化及び一次
関係式を示す直線を図14に示す。また、これらを用い
てCF2 * 分子の近似一次関係式BからCO分子の擬似
近似一次関係式A´を求める。このこれら関係式A,
B,A´に対応する発光強度の時間変化を図15に示
す。
Next, in the element extractor 31, an approximate linear relation A of the CO molecule and an approximate linear relation B of the CF 2 * molecule are obtained. FIG. 14 shows straight lines indicating the temporal change of the light emission intensity and the linear relational expression. Using these, a pseudo-approximate linear relationship A ′ of CO molecules is obtained from the approximate linear relationship B of CF 2 * molecules. These relational expressions A,
FIG. 15 shows a time change of the light emission intensity corresponding to B and A ′.

【0049】近似一次関係式Aおよび擬似近似一次関係
式A´は、いずれもCO分子の発光光量(強度)を表す
ものであり、その比(A/A´)および比の微分値(d
(A/A´)/dt)を求める。比(A/A´)の時間
変化を図16に示す。図16には、比較のために、CO
分子の近似一次関係式AおよびCF2 * 分子の近似一次
関係式Bの単なる比(A/B)の時間変化を併記した。
図16から明らかなように、本発明の方法によれば、終
点前後において波形が平坦であるので、終点検出を正確
に行うことができる。一方、単なる比(A/B)の場合
には、波形が安定せず、ドリフト変動により終点を正確
に検出することができない。
The approximate linear relation A and the pseudo-linear relation A 'both represent the amount of light emitted (intensity) of the CO molecule, and the ratio (A / A') and the derivative of the ratio (d
(A / A ′) / dt). FIG. 16 shows the change over time of the ratio (A / A ′). FIG. 16 shows CO 2 for comparison.
The time variation of the mere ratio (A / B) of the approximate linear relation A of the molecule and the approximate linear relation B of the CF 2 * molecule is also shown.
As is clear from FIG. 16, according to the method of the present invention, since the waveform is flat before and after the end point, the end point can be detected accurately. On the other hand, in the case of a simple ratio (A / B), the waveform is not stable, and the end point cannot be accurately detected due to drift fluctuation.

【0050】次いで、比(A/A´)を横軸とし、比の
微分値(d(A/A´)/dt)を縦軸とし、指定期間
(平均化時間)内の情報から算出した比および比の微分
値の平均値を原点としたグラフを作成する。グラフ上に
比および比の微分値をプロットすると、図17に示すよ
うになる。
Next, the ratio (A / A ') is plotted on the horizontal axis, and the differential value of the ratio (d (A / A') / dt) is plotted on the vertical axis, and calculated from information within a designated period (averaging time). Create a graph with the origin as the average of the ratio and the derivative of the ratio. When the ratio and the derivative of the ratio are plotted on the graph, the result is as shown in FIG.

【0051】さらに、グラフ上において、平均化時間内
に求められた分散傾向の情報から算出された比(A/A
´)および比の微分値(d(A/A´)/dt)の所定
値から、グラフにおける初期の変動範囲を求める。
Further, on the graph, the ratio (A / A) calculated from the information of the dispersion tendency obtained within the averaging time.
′) And a predetermined value of the differential value of the ratio (d (A / A ′) / dt), an initial fluctuation range in the graph is obtained.

【0052】次いで、グラフ上の変動範囲外で終点を判
定する位置(値)を設定し、その位置から原点までの距
離と、変動範囲の円の半径とを比較することにより、ス
ロープスタート判定器33においてスロープスタートを
判定する。すなわち、平均化時間以降の処理中における
CO分子およびCF2 * の発光検出情報を用いて比(A
/A´)および比の微分値(d(A/A´)/dt)を
求め、グラフ上の位置から原点までの距離を求め、この
距離と平均化時間内の発光検出情報で求められた変動範
囲の半径とを比較する。
Next, a position (value) for determining the end point outside the fluctuation range on the graph is set, and the distance from the position to the origin is compared with the radius of the circle of the fluctuation range to obtain a slope start determiner. At 33, a slope start is determined. That is, the ratio (A) is determined using the emission detection information of CO molecules and CF 2 * during the processing after the averaging time.
/ A ') and the derivative of the ratio (d (A / A') / dt), the distance from the position on the graph to the origin, and the light emission detection information within the averaging time. Compare with the radius of the fluctuation range.

【0053】具体的には、終点を判定する位置に対応す
る比および比の微分値の値と、それぞれの平均値(原
点)との差の二乗和の平方根(D)を求め、上記円の半
径(C)との比(D/C)があらかじめ設定した閾値よ
り大きくなったところをスロープスタートとして判定す
る。
More specifically, the square root (D) of the sum of squares of the difference between the ratio corresponding to the position for determining the end point and the differential value of the ratio and the respective average values (origin) is obtained. A point where the ratio (D / C) to the radius (C) becomes larger than a preset threshold value is determined as a slope start.

【0054】一方、スロープエンドは、比の微分値、す
なわち傾きが再び横軸に近付くことにより判定する。す
なわち、終点を判定する傾きとその分散傾向に基づく所
定値とを比較して、これから得られた((傾き−傾きの
平均値)/所定値)を求め、この値があらかじめ設定し
た閾値より小さくなったところをスロープエンド判定器
34によりスロープエンドとして判定する。
On the other hand, the slope end is determined by the differential value of the ratio, that is, the slope approaches the horizontal axis again. That is, the slope for determining the end point is compared with a predetermined value based on the dispersion tendency, and the obtained ((slope−average of the slope) / predetermined value) is obtained, and this value is smaller than a preset threshold. When it has become, the slope end determination unit 34 determines the slope end.

【0055】上述した本発明の終点検出方法によれば、
発光光量(開口率)を従来に比べて3倍(1%から3
%)に向上させることができる。上記実施例では、第1
の活性種としてCO分子を用い、第2の活性種としてC
2 * 分子を用いた場合について説明しているが、本発
明は、第1の活性種および第2の活性種として他の活性
種を用いた場合にも適用することができる。
According to the end point detecting method of the present invention described above,
Emission light quantity (aperture ratio) is 3 times (1% to 3)
%). In the above embodiment, the first
Using CO molecules as the active species, and C as the second active species
Although the case where an F 2 * molecule is used has been described, the present invention can be applied to a case where another active species is used as the first active species and the second active species.

【0056】上記実施形態においては、プラズマ処理が
エッチングである場合について説明しているが、本発明
はプラズマ処理がCVD(Chemical Vapor Deposition
)やPVD(Physical Vapor Deposition )等のプラ
ズマを使用した処理の場合についても同様に適用するこ
とができる。
In the above embodiment, the case where the plasma processing is etching is described. However, in the present invention, the plasma processing is performed by CVD (Chemical Vapor Deposition).
) And PVD (Physical Vapor Deposition).

【0057】上記実施の形態では、第1の活性種および
第2の活性種の特定波長での発光スペクトルの発光強度
の時間に対する変化に近似する実験式を近似一次関係式
をしようしたが、実験式は、これに限定されることはな
いことは、当業者にとって自明であろう。例えば、時間
に対する変化が、楕円もしくは双曲線の一部に沿うよう
に変化する場合には、これら二次関係式を使用すること
ができる。即ち、本発明においては、発光強度の変化に
最も近似した実験式を使用することが、より精度の良い
測定をするために好ましい。
In the above embodiment, an empirical equation approximating a change in emission intensity of the first active species and the second active species at a specific wavelength with respect to time is used as an approximate linear relationship. It will be obvious to those skilled in the art that the formula is not limited to this. For example, if the change over time changes along an ellipse or part of a hyperbola, these quadratic relations can be used. That is, in the present invention, it is preferable to use an empirical formula that is the closest to the change in the light emission intensity for more accurate measurement.

【0058】前記第1の活性種と第2の活性種として、
これの発光強度が、指定期間以後のプラズマ処理の終点
において、図4に示すように弱くなる活性種と、図7の
(A)に示すように強くなる活性種とが使用されること
が、感度を高めるために好ましい。
As the first active species and the second active species,
At the end point of the plasma processing after the designated period, the active species whose intensity is weakened as shown in FIG. 4 and the active species whose intensity is increased as shown in FIG. It is preferable to increase the sensitivity.

【0059】以上説明したように本発明によれば、閾値
との直接比較を行わず、プラズマ処理の指定期間内の分
散傾向の情報から得られた所定値を終点の判定に利用し
ているので、2波長を用いた従来の終点検出方法で除去
できないドリフト変動を充分に除去することができる。
したがって、S/Nが悪い状態であっても正確に終点を
検出することができる。このように、正確にプラズマの
終端を検出できるので、発光光量(開口率)を従来に比
べて3倍に向上させることができる。
As described above, according to the present invention, a direct comparison with the threshold value is not performed, and the predetermined value obtained from the information on the dispersion tendency within the designated period of the plasma processing is used for the determination of the end point. 2. It is possible to sufficiently remove drift fluctuation that cannot be removed by the conventional endpoint detection method using two wavelengths.
Therefore, even if the S / N is poor, the end point can be accurately detected. As described above, since the end of the plasma can be detected accurately, the amount of emitted light (aperture ratio) can be improved three times as compared with the related art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】プラズマ発光強度のノイズ変動を説明するため
の図。
FIG. 1 is a diagram for explaining noise fluctuation of plasma emission intensity.

【図2】プラズマ発光強度のドリフト変動を説明するた
めの図。
FIG. 2 is a diagram for explaining drift fluctuation of plasma emission intensity.

【図3】第1および第2の活性種の近似一次関係式並び
に第1の活性種の擬似近似一次関係式を説明するための
図。
FIG. 3 is a diagram for explaining an approximate linear relation between first and second active species and a pseudo approximate linear relation between first active species.

【図4】発光強度(比)と傾き(微分値)との時間変化
を示す特性図。
FIG. 4 is a characteristic diagram showing a temporal change in emission intensity (ratio) and slope (differential value).

【図5】発光強度(比)を横軸とし、傾き(微分値)を
縦軸としたときの、図4に示す値をプロットしたグラ
フ。
5 is a graph in which the values shown in FIG. 4 are plotted when the emission intensity (ratio) is plotted on the horizontal axis and the slope (differential value) is plotted on the vertical axis.

【図6】スロープスタートを説明するための図。FIG. 6 is a diagram for explaining a slope start.

【図7】(A)は発光強度(比)および傾き(微分値)
の時間変化の他の例を示す特性図、そして、(B)は発
光強度(比)を横軸とし、傾き(微分値)を縦軸とし
た、(A)に示す値をプロットしたグラフ。
FIG. 7 (A) is emission intensity (ratio) and slope (differential value).
FIG. 4B is a characteristic diagram showing another example of the time change of FIG. 3, and FIG. 4B is a graph plotting the values shown in FIG.

【図8】被エッチング体の一例を示す図。FIG. 8 illustrates an example of an object to be etched.

【図9】(A)は、発光強度(比)および傾き(微分
値)の時間変化の他の例を示す、図7の(A)と同様の
特性図、そして、(B)は発光強度(比)を横軸とし、
傾き(微分値)を縦軸とした、(A)に示す値をプロッ
トしたグラフ。
9A is a characteristic diagram similar to FIG. 7A, showing another example of a temporal change of the light emission intensity (ratio) and the slope (differential value), and FIG. 9B is a light emission intensity. (Ratio) is the horizontal axis,
The graph which plotted the value shown in (A) which made the inclination (differential value) the vertical axis | shaft.

【図10】被エッチング体の他の例を示す断面図。FIG. 10 is a cross-sectional view illustrating another example of an object to be etched.

【図11】(A)は、は発光強度(比)および傾き(微
分値)の時間変化の他の例を示す特性図、そして、
(B)は発光強度(比)を横軸とし、傾き(微分値)を
縦軸とした、(A)に示す値をプロットしたグラフ。
FIG. 11A is a characteristic diagram showing another example of a temporal change in emission intensity (ratio) and slope (differential value), and
(B) is a graph plotting the values shown in (A), with the emission intensity (ratio) on the horizontal axis and the slope (differential value) on the vertical axis.

【図12】本発明の終点検出装置を有するプラズマエッ
チング装置を概略的に示す図。
FIG. 12 is a view schematically showing a plasma etching apparatus having an end point detection device of the present invention.

【図13】図12に示すプラズマエッチング装置におけ
る終点検出装置を説明するための図。
13 is a view for explaining an end point detection device in the plasma etching apparatus shown in FIG.

【図14】CO分子とCF2 * の発光強度の時間変化を
示す特性図。
FIG. 14 is a characteristic diagram showing a change over time in emission intensity of CO molecules and CF 2 * .

【図15】演算後のCO分子とCF2 * の発光強度の時
間変化を示す特性図。
FIG. 15 is a characteristic diagram showing a temporal change in emission intensity of a CO molecule and CF 2 * after calculation.

【図16】CO分子とCF2 * の発光強度の変化率
(比)の時間変化を示す特性図。
FIG. 16 is a characteristic diagram showing a time change of a change rate (ratio) of emission intensity of a CO molecule and CF 2 * .

【図17】CO分子とCF2 * の発光強度の変化率
(比)を横軸とし、その傾き(微分値)を縦軸としたと
きのグラフ。
FIG. 17 is a graph in which the horizontal axis represents the rate of change (ratio) of the emission intensity of CO molecules and CF 2 * , and the vertical axis represents the slope (differential value).

【符号の説明】[Explanation of symbols]

10…プラズマ処理装置、22…光検出器、30…演算
装置、31…要素抽出器、32…グラフ化器、33…ス
ロープスタート判定器、34…スロープエンド判定器、
35…原点移動器、40…制御装置。
DESCRIPTION OF SYMBOLS 10 ... Plasma processing apparatus, 22 ... Photodetector, 30 ... Calculator, 31 ... Element extractor, 32 ... Graphizer, 33 ... Slope start judging device, 34 ... Slope end judging device,
35: origin mover, 40: controller.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/66 H01L 21/66 P ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/66 H01L 21/66 P

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 被処理体にプラズマを用いた処理を施す
際に、前記プラズマ処理中の指定期間中及びこれ以降
の、第1および第2の活性種の夫々特定波長を有する発
光強度を検出し、この発光検出情報を出力する工程と、 これら発光検出情報に基づいて、発光強度と時間との関
係において第1の活性種の近似関係式Aおよび第2の活
性種の近似関係式Bを求める工程と、 前記第1の活性種の近似関係式Aおよび前記第2の活性
種の近似関係式Bを用いて、第1の活性種の擬似近似関
係式A´を求める工程と、 前記第1の活性種の近似関係式Aおよび前記第1の活性
種の擬似近似関係式A´から、両者の比(A/A´)お
よび前記比の微分値(d(A/A´)/dt)を求める
工程と、 前記指定期間内の前記比(A/A´)および前記比の微
分値(d(A/A´)/dt)のそれぞれの平均値およ
び分散傾向を求める工程と、 前記比(A/A´)を横軸にとり、前記比の微分値(d
(A/A´)/dt)を縦軸にとり、前記指定期間内の
前記比(A/A´)の平均値と前記比の微分値(d(A
/A´)/dt)の平均値との交点を原点としたグラフ
に、前記分散傾向の情報から算出した前記比(A/A
´)の所定値および前記比の微分値(d(A/A´)/
dt)の所定値から所定領域を設定する工程と、 前記指定期間以降の処理中における前記第1および第2
の活性種の発光検出情報を用いて比(A/A´)および
比の微分値(d(A/A´)/dt)を求め、求められ
た比(A/A´)および比の微分値(d(A/A´)/
dt)の前記グラフにおける位置が前記所定領域から外
れたときをプラズマ処理の終点として判定する工程と、
を具備することを特徴とするプラズマ処理の終点検出方
法。
When performing a process using plasma on an object to be processed, an emission intensity of a first active species and a second active species having a specific wavelength is detected during and after a specified period during the plasma process. Outputting the light emission detection information; and, based on the light emission detection information, the approximate relational expression A of the first active species and the approximate relational expression B of the second active species in relation between the light emission intensity and time. Obtaining a pseudo-approximate relational expression A 'of the first active species using the approximate relational expression A of the first active species and the approximate relational expression B of the second active species; From the approximate relational expression A of the first active species and the pseudo approximated relational expression A ′ of the first active species, the ratio (A / A ′) between them and the differential value of the ratio (d (A / A ′) / dt) ), And the ratio (A / A ′) within the designated period and the differential value of the ratio d (A / A') / dt) of the step of obtaining the respective mean value and the variance tendency, the ratio (taken A / A') a horizontal axis, the ratio of the differential value (d
(A / A ') / dt) is plotted on the vertical axis, and the average value of the ratio (A / A') and the differential value of the ratio (d (A
/ A ′) / dt) is plotted on the graph with the intersection point with the average value as the origin, and the ratio (A / A) calculated from the dispersion tendency information is plotted on the graph.
') And the derivative of the ratio (d (A / A') /
setting a predetermined area from a predetermined value of dt); and setting the first and second areas during processing after the specified period.
The ratio (A / A ') and the derivative of the ratio (d (A / A') / dt) are obtained using the emission detection information of the active species of the above, and the obtained ratio (A / A ') and the derivative of the ratio are obtained. Value (d (A / A ') /
dt) determining when the position in the graph deviates from the predetermined area as the end point of the plasma processing;
A method for detecting an end point of a plasma process, comprising:
【請求項2】 前記所定領域は、前記指定期間の前記分
散傾向の情報から算出した前記比(A/A´)の所定値
および前記比の微分値(d(A/A´)/dt)の所定
値の二乗和の平方根r1 により設定されることを特徴と
する請求項1のプラズマ処理の終点検出方法。
2. The predetermined area includes a predetermined value of the ratio (A / A ′) calculated from information on the dispersion tendency in the specified period and a differential value of the ratio (d (A / A ′) / dt). 2. The method according to claim 1, wherein the predetermined value is set by a square root r 1 of a sum of squares of the predetermined value.
【請求項3】 前記分散傾向の情報から算出した前記比
(A/A´)の所定値として前記比と前記比の平均値と
の間の差の最大値を用い、前記比の微分値(d(A/A
´)/dt)の所定値として前記比の微分値と前記比の
微分値の平均値との差の最大値を用いることを特徴とす
る請求項1のプラズマ処理の終点検出方法。
3. A differential value of the ratio (A / A ′) calculated from the dispersion tendency information using a maximum value of a difference between the ratio and an average value of the ratio as a predetermined value of the ratio (A / A ′). d (A / A
2. The method according to claim 1, wherein the maximum value of the difference between the differential value of the ratio and the average value of the differential value of the ratio is used as the predetermined value of ') / dt).
【請求項4】 プラズマ処理の終点を判定する工程は、
前記指定期間の前記分散傾向の情報から算出した前記比
(A/A´)の所定値および前記比の微分値(d(A/
A´)/dt)の所定値の二乗和の平方根r1 と、前記
求められた比(A/A´)および比の微分値(d(A/
A´)/dt)の前記グラフにおける位置と前記原点と
の距離r2 とを比較し、前記距離r2 が前記分散の二乗
和の平方根r1 よりも大きくなったときをプラズマ処理
の終点を判定する工程を含むことを特徴とする請求項1
のプラズマ処理の終点検出方法。
4. The step of determining an end point of the plasma processing includes the following steps:
A predetermined value of the ratio (A / A ′) calculated from the information of the dispersion tendency in the specified period and a differential value of the ratio (d (A /
A ′) / dt), the square root r 1 of the sum of squares of the predetermined value, the calculated ratio (A / A ′) and the differential value of the ratio (d (A /
A') / dt) wherein comparing the distance r 2 between the position and the origin in the graph of, the end point of the plasma processing when the distance r 2 is greater than the square root r 1 of the square sum of the dispersion 2. The method according to claim 1, further comprising the step of determining.
Method for detecting the end point of the plasma treatment of the above.
【請求項5】 プラズマ処理の終点を判定する工程は、
前記指定期間の前記分散傾向の情報から算出した前記比
(A/A´)の所定値および前記比の微分値(d(A/
A´)/dt)の所定値の二乗和の平方根r1 を算出
し、前記グラフにおける座標の横軸成分と縦軸成分の値
がいずれも前記所定値の二乗和の平方根r1 よりも大き
くなったときをプラズマ処理の終点を判定する工程を含
むことを特徴とする請求項1記載のプラズマ処理の終点
検出方法。
5. The step of determining an end point of the plasma processing,
A predetermined value of the ratio (A / A ′) calculated from the information of the dispersion tendency in the specified period and a differential value of the ratio (d (A /
A ′) / dt) calculates the square root r 1 of the sum of squares of the predetermined value, and the values of the horizontal axis component and the vertical axis component of the coordinates in the graph are both greater than the square root r 1 of the square sum of the predetermined value. 2. The method according to claim 1, further comprising the step of determining an end point of the plasma processing when the end point is reached.
【請求項6】 前記求められた比(A/A´)および比
の微分値(d(A/A´)/dt)の前記グラフにおけ
る位置が前記グラフの横軸と再び交わる点を原点とし、
前記比(A/A´)の所定値および比の微分値(d(A
/A´)/dt)の所定値から他の所定領域を設定し、
前記指定期間以降の処理中における前記第1および第2
の活性種の発光検出情報を用いて比(A/A´)および
比の微分値(d(A/A´)/dt)を求め、求められ
た比(A/A´)および比の微分値(d(A/A´)/
dt)の前記グラフにおける位置が前記他の所定領域か
ら外れたときをプラズマ処理の他の終点として判定する
工程をさらに具備することを特徴とする請求項1のプラ
ズマ処理の終点検出方法。
6. A point at which the position of the calculated ratio (A / A ′) and the derivative of the ratio (d (A / A ′) / dt) in the graph again intersects the horizontal axis of the graph is defined as an origin. ,
A predetermined value of the ratio (A / A ') and a derivative of the ratio (d (A
/ A ′) / dt) to set another predetermined area from the predetermined value,
The first and the second during the processing after the designated period
The ratio (A / A ') and the derivative of the ratio (d (A / A') / dt) are obtained using the emission detection information of the active species of the above, and the obtained ratio (A / A ') and the derivative of the ratio are obtained. Value (d (A / A ') /
2. The method according to claim 1, further comprising the step of determining when the position in the graph of (dt) deviates from the other predetermined area as another end point of the plasma processing.
【請求項7】 被処理体にプラズマを用いた処理を施す
際に、前記プラズマ処理中の指定期間、並びにそれ以降
に第1および第2の活性種からの発光の特定波長での発
光強度を光検出手段により逐次検出して発光検出情報を
出力する工程と、 前記指定期間内の発光検出情報に基づいて、発光強度と
時間との関係において第1の活性種の近似関係式Aおよ
び第2の活性種の近似関係式Bを求める工程と、 前記第1の活性種の近似関係式Aおよび前記第2の活性
種の近似関係式Bを用いて、第1の活性種の擬似近似関
係式A´を求める工程と、 前記第1の活性種の近似関係式Aおよび前記第1の活性
種の擬似近似関係式A´から、両者の比(A/A´)お
よび前記比の微分値(d(A/A´)/dt)を求める
工程と、 前記指定期間内の前記比(A/A´)および前記比の微
分値(d(A/A´)/dt)のそれぞれの平均値およ
び分散傾向を求める工程と、 前記比(A/A´)を横軸にとり、前記比の微分値(d
(A/A´)/dt)を縦軸にとり、前記指定期間内の
前記比(A/A´)の平均値と前記比の微分値(d(A
/A´)/dt)の平均値との交点を原点としたグラフ
に、前記指定期間以降の処理中における前記第1および
第2の活性種の発光検出情報を用いて求められた比(A
/A´)および比の微分値(d(A/A´)/dt)の
前記グラフにおける位置が前記原点から外れて再び横軸
に近接するときをプラズマ処理の終点として判定する工
程と、を具備することを特徴とするプラズマ処理の終点
検出方法。
7. When performing a process using plasma on an object to be processed, the emission intensity at a specific wavelength of light emission from the first and second active species during a specified period during the plasma process and thereafter. Outputting the light emission detection information by sequentially detecting the light with the light detection means; and, based on the light emission detection information within the designated period, an approximate relational expression A and a second relational expression of the first active species in the relation between the light emission intensity and time. Calculating the approximation relational expression B of the active species, and the pseudo approximation relational expression of the first active species using the approximation relational expression A of the first active species and the approximation relational expression B of the second active species A step of obtaining A ′, and a ratio (A / A ′) of the two and a differential value of the ratio (A / A ′) from the approximate relational expression A of the first active species and the pseudo approximate relational expression A ′ of the first active species. d (A / A ′) / dt); and the ratio (A) within the designated period. / A ′) and the average value and dispersion tendency of the differential value (d (A / A ′) / dt) of the ratio, and the ratio (A / A ′) on the horizontal axis. Derivative value (d
(A / A ') / dt) is plotted on the vertical axis, and the average value of the ratio (A / A') and the differential value of the ratio (d (A
/ A ′) / dt) is plotted on the graph with the intersection as the origin, and the ratio (A) obtained using the emission detection information of the first and second active species during the processing after the designated period is obtained.
/ A ′) and the time when the position of the differential value of the ratio (d (A / A ′) / dt) in the graph deviates from the origin and approaches the horizontal axis again as the end point of the plasma processing. A method for detecting an end point of a plasma process, comprising:
【請求項8】 被処理体にプラズマを用いた処理中に、
前記プラズマにより発生された第1および第2の活性種
の夫々特定波長での発光強度を、処理中の指定期間中及
びこれ以降検出し、この発光検出情報を出力する工程
と、 これら発光検出情報に基づいて、時間の経過に対する発
光強度の変化に近似し直線もしくは曲線を表す第1の活
性種の近似関係式Aおよび第2の活性種の近似関係式B
を求める工程と、 前記第2の活性種の近似関係式Bの経過時間を第1の活
性種の近似関係式Aの経過時間に代入して、第1の活性
種の擬似近似関係式A´を求める工程と、 前記第1の活性種の近似関係式Aおよび前記第1の活性
種の擬似近似関係式A´から、両者の比(A/A´)お
よび前記比の微分値(d(A/A´)/dt)を求める
工程と、 前記指定期間内の前記比(A/A´)および前記比の微
分値(d(A/A´)/dt)のそれぞれの平均値およ
び分散傾向を求める工程と、 直交座標の一方の軸に前記比(A/A´)をとり、他方
の軸に前記比の微分値(d(A/A´)/dt)をと
り、前記指定期間内の前記比(A/A´)の平均値と前
記比の微分値(d(A/A´)/dt)の平均値との交
点を原点としたグラフを準備し、このグラフに前記分散
傾向の情報から算出した前記比(A/A´)の所定値お
よび前記比の微分値(d(A/A´)/dt)の所定値
から所定領域を設定する工程と、 前記指定期間以降の処理中における前記第1および第2
の活性種の発光検出情報を用いて比(A/A´)および
比の微分値(d(A/A´)/dt)を求め、求められ
た比(A/A´)および比の微分値(d(A/A´)/
dt)の前記グラフにおける位置が前記所定領域から外
れたときをプラズマ処理の終点として判定する工程と、
を具備することを特徴とするプラズマ処理の終点検出方
法。
8. During processing using a plasma for an object to be processed,
Detecting the emission intensities of the first and second active species generated by the plasma at respective specific wavelengths during and after a designated period during processing, and outputting the emission detection information; , An approximate relational expression A of the first active species and an approximate relational expression B of the second active species that represent a straight line or a curve approximating the change in emission intensity over time.
And substituting the elapsed time of the approximation relational expression B of the second active species into the elapsed time of the approximation relational expression A of the first active species to obtain a pseudo approximate relational expression A ′ of the first active species. From the approximation relational expression A of the first active species and the pseudo approximation relational expression A ′ of the first active species, a ratio (A / A ′) of the two and a differential value (d ( A / A ′) / dt), and the average and variance of the ratio (A / A ′) and the derivative of the ratio (d (A / A ′) / dt) within the specified period. Calculating the tendency; taking the ratio (A / A ') on one axis of the rectangular coordinate system; taking the differential value (d (A / A') / dt) of the ratio on the other axis; A graph having an origin at the intersection of the average value of the ratio (A / A ') and the average value of the differential value (d (A / A') / dt) of the ratio is prepared. Setting a predetermined area from a predetermined value of the ratio (A / A ′) and a predetermined value of a differential value of the ratio (d (A / A ′) / dt) roughly calculated from the information on the dispersion tendency; The first and the second during the processing after the designated period
The ratio (A / A ') and the derivative of the ratio (d (A / A') / dt) are obtained using the emission detection information of the active species of the above, and the obtained ratio (A / A ') and the derivative of the ratio are obtained. Value (d (A / A ') /
dt) determining when the position in the graph deviates from the predetermined area as the end point of the plasma processing;
A method for detecting an end point of a plasma process, comprising:
【請求項9】 前記第1の活性種の近似関係式Aおよび
第2の活性種の近似関係式Bを求める工程は、前記第1
の活性種の近似一次関係式Aおよび第2の活性種の近似
一次関係式Bを求める工程であり、 前記第1の活性種の擬似近似関係式A´を求める工程
は、前記第1の活性種の近似一次関係式Aおよび前記第
2の活性種の近似一次関係式Bを用いて、第1の活性種
の擬似近似一次関係式A´を求める工程であり、 前記比(A/A´)および前記比の微分値(d(A/A
´)/dt)を求める工程は、前記第1の活性種の近似
一次関係式Aおよび前記第1の活性種の擬似近似一次関
係式A´から、両者の比(A/A´)および前記比の微
分値(d(A/A´)/dt)を求める工程であること
を特徴とする請求項1ないし8のいずれか1のプラズマ
処理の終点検出方法。
9. The step of obtaining the approximate relational expression A of the first active species and the approximate relational expression B of the second active species,
Calculating the approximate linear relation A of the active species and the approximate linear relation B of the second active species. The step of determining the pseudo approximate relation A ′ of the first active species comprises: A step of obtaining a pseudo-approximate linear relation A ′ of the first active species using the approximate linear relation A of the first kind and the approximate linear relation B of the second active species, wherein the ratio (A / A ′) ) And the derivative of the ratio (d (A / A
') / Dt) is obtained by calculating the ratio (A / A') of the two from the approximate linear relation A of the first active species and the pseudo approximate linear relation A 'of the first active species. 9. The method according to claim 1, further comprising the step of obtaining a differential value (d (A / A ') / dt) of the ratio.
【請求項10】 前記第1の活性種と第2の活性種とし
て、これの発光強度が、指定期間以後のプラズマ処理の
終点において、弱くなる活性種と、強くなる活性種とが
使用されることを特徴とする請求項1ないし9のいずれ
か1のプラズマ処理の終点検出方法。
10. An active species whose emission intensity becomes weaker and an active species whose intensity becomes weaker at the end point of the plasma treatment after a designated period are used as the first active species and the second active species. The method according to any one of claims 1 to 9, wherein the end point of the plasma processing is detected.
【請求項11】 被処理体にプラズマを用いた処理を施
す際にプラズマにより発生した第1および第2の活性種
の特定波長での発光強度の時間に対する変化を検出し
て、発光検出情報する光検出手段と、 指定期間内の発光検出情報に基づいて、発光強度と時間
との関係において第1の活性種の近似関係式Aおよび第
2の活性種の近似関係式Bを求め、前記第1の活性種の
近似関係式Aおよび前記第2の活性種の近似関係式Bを
用いて、第1の活性種の擬似近似関係式A´を求め、前
記第1の活性種の近似関係式Aおよび前記第1の活性種
の擬似近似関係式A´から、両者の比(A/A´)およ
び前記比の微分値(d(A/A´)/dt)を求め、前
記指定期間内の前記比(A/A´)および前記比の微分
値(d(A/A´)/dt)のそれぞれの平均値および
分散傾向を求める演算手段と、 前記比(A/A´)を横軸にとり、前記比の微分値(d
(A/A´)/dt)を縦軸にとり、前記比(A/A
´)の平均値と前記比の微分値(d(A/A´)/d
t)の平均値との交点を原点としたグラフを作成するグ
ラフ化手段と、 前記分散傾向の情報から算出した前記比(A/A´)の
所定値および前記比の微分値(d(A/A´)/dt)
の所定値から所定領域を設定し、前記指定期間以降の処
理中における前記第1および第2の活性種の発光検出情
報を用いて比(A/A´)および比の微分値(d(A/
A´)/dt)を求め、求められた比(A/A´)およ
び比の微分値(d(A/A´)/dt)の前記グラフに
おける位置が前記所定領域から外れたときをプラズマ処
理の終点として判定する判定手段と、を具備することを
特徴とするプラズマ処理の終点検出装置。
11. A method for detecting a change in emission intensity of a first and second active species at a specific wavelength with respect to time, which is generated by plasma when performing a process using plasma on an object to be processed, and performs emission detection information. A light detection unit, and an approximate relational expression A of the first active species and an approximate relational expression B of the second active species are determined in the relationship between the light emission intensity and the time based on the light emission detection information within the designated period; Using the approximate relational expression A of the first active species and the approximate relational expression B of the second active species, a pseudo approximate relational expression A ′ of the first active species is obtained, and the approximate relational expression of the first active species is obtained. From A and the pseudo-approximate relational expression A ′ of the first active species, the ratio (A / A ′) of both of them and the differential value (d (A / A ′) / dt) of the ratio are obtained, and within the specified period Of the ratio (A / A ′) and the derivative of the ratio (d (A / A ′) / dt) A calculating means for calculating the average value and dispersion tendency, the horizontal axis the ratio (A / A'), the ratio of the differential value (d
(A / A ′) / dt) is plotted on the vertical axis, and the ratio (A / A ′)
') And the differential value of the ratio (d (A / A') / d
graphing means for creating a graph with the origin at the intersection with the average value of t); a predetermined value of the ratio (A / A ') calculated from the information of the dispersion tendency and a differential value of the ratio (d (A / A ') / dt)
A predetermined area is set from a predetermined value of the ratio (A / A ′) and a differential value of the ratio (d (A)) using the emission detection information of the first and second active species during the processing after the specified period. /
A ′) / dt) is determined, and when the determined ratio (A / A ′) and the derivative of the ratio (d (A / A ′) / dt) in the graph deviate from the predetermined region, the plasma is determined. An end point detection apparatus for plasma processing, comprising: determination means for determining an end point of processing.
JP30444297A 1996-11-11 1997-11-06 End point detection method and apparatus for plasma processing Expired - Fee Related JP3872879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30444297A JP3872879B2 (en) 1996-11-11 1997-11-06 End point detection method and apparatus for plasma processing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-298697 1996-11-11
JP29869796 1996-11-11
JP30444297A JP3872879B2 (en) 1996-11-11 1997-11-06 End point detection method and apparatus for plasma processing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004111117A Division JP2004253813A (en) 1996-11-11 2004-04-05 Detection method of end point of plasma processing and its apparatus

Publications (2)

Publication Number Publication Date
JPH10189552A true JPH10189552A (en) 1998-07-21
JP3872879B2 JP3872879B2 (en) 2007-01-24

Family

ID=26561623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30444297A Expired - Fee Related JP3872879B2 (en) 1996-11-11 1997-11-06 End point detection method and apparatus for plasma processing

Country Status (1)

Country Link
JP (1) JP3872879B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218557A (en) * 2007-03-01 2008-09-18 Elpida Memory Inc Method and apparatus for manufacturing semiconductor device
JP2008294078A (en) * 2007-05-22 2008-12-04 Hitachi High-Technologies Corp Plasma processor
JP2009231718A (en) * 2008-03-25 2009-10-08 Renesas Technology Corp Method for detecting dry etching endpoint
JP2011249841A (en) * 2002-10-31 2011-12-08 Tokyo Electron Ltd Method and device for detecting end point
JP2015023104A (en) * 2013-07-18 2015-02-02 株式会社日立ハイテクノロジーズ Plasma processing apparatus and operating method for plasma processing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249841A (en) * 2002-10-31 2011-12-08 Tokyo Electron Ltd Method and device for detecting end point
JP2008218557A (en) * 2007-03-01 2008-09-18 Elpida Memory Inc Method and apparatus for manufacturing semiconductor device
JP2008294078A (en) * 2007-05-22 2008-12-04 Hitachi High-Technologies Corp Plasma processor
JP2009231718A (en) * 2008-03-25 2009-10-08 Renesas Technology Corp Method for detecting dry etching endpoint
JP2015023104A (en) * 2013-07-18 2015-02-02 株式会社日立ハイテクノロジーズ Plasma processing apparatus and operating method for plasma processing apparatus

Also Published As

Publication number Publication date
JP3872879B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
KR100365841B1 (en) Method of detecting end point of plasma processing and apparatus for the same
US5739051A (en) Method and device for detecting the end point of plasma process
US10453695B2 (en) Plasma processing apparatus and plasma processing method
JP4227301B2 (en) End point detection method in semiconductor plasma processing
KR100515548B1 (en) Etching end-point detecting method
JPH0546095B2 (en)
JPS61114531A (en) Plasma treatment by microwave
US5958258A (en) Plasma processing method in semiconductor processing system
JP2009506544A (en) Wavelength selection for endpoint in time division multiplexing process
JP2001210625A (en) Method of detecting etching depth
JPH10189552A (en) Terminal detecting method and device of plasma processing
JP2004253813A (en) Detection method of end point of plasma processing and its apparatus
JP3117355B2 (en) End point detection method for plasma processing
JP2906752B2 (en) Dry etching method
JPH05206076A (en) Plasma processing device
JP2000012527A (en) Method and apparatus for determining etching end point
JP2936501B2 (en) Plasma processing apparatus and cleaning method therefor
JP2002170812A (en) Method and device for detecting endpoint of plasma etching, and plasma etching apparatus
JPH05175165A (en) Plasma device
JPH09139377A (en) Terminal detection of dry etching and its method
JPH11214363A (en) Semiconductor manufacture and its device, and semiconductor element
JP7201828B2 (en) Plasma processing apparatus and plasma processing method
JPH05102087A (en) Method for monitoring plasma etching end point
JPH07161697A (en) Plasma process equipment
JPH1154486A (en) Plasma processing device and plasma processing method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040412

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151027

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees