JPH10185981A - Rotary cylinder tem cell - Google Patents

Rotary cylinder tem cell

Info

Publication number
JPH10185981A
JPH10185981A JP9235377A JP23537797A JPH10185981A JP H10185981 A JPH10185981 A JP H10185981A JP 9235377 A JP9235377 A JP 9235377A JP 23537797 A JP23537797 A JP 23537797A JP H10185981 A JPH10185981 A JP H10185981A
Authority
JP
Japan
Prior art keywords
outer conductor
conductor
tem cell
inner conductor
coaxial connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9235377A
Other languages
Japanese (ja)
Other versions
JP3418750B2 (en
Inventor
Ze Fun Yun
ゼ フン ユン
Jin Soku Kim
ジン ソク キム
Kuan Yun Zo
クァン ユン ゾ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute ETRI
Original Assignee
Electronics and Telecommunications Research Institute ETRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics and Telecommunications Research Institute ETRI filed Critical Electronics and Telecommunications Research Institute ETRI
Publication of JPH10185981A publication Critical patent/JPH10185981A/en
Application granted granted Critical
Publication of JP3418750B2 publication Critical patent/JP3418750B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0807Measuring electromagnetic field characteristics characterised by the application
    • G01R29/0814Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning
    • G01R29/0821Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning rooms and test sites therefor, e.g. anechoic chambers, open field sites or TEM cells
    • G01R29/0828TEM-cells

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Waveguide Connection Structure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotary cylinder TEM cell generating standard electromagnetic wave (plane wave) necessary for measuring antenna pattern and the like. SOLUTION: Constituted are of a test region 1 wherein a cylindrical first external conductor 5 and the first internal conductor 4 of which both ends are connected to the second internal conductor 21 and are rotatable are included and a body to be irradiated is put, and a coaxial connector connection region 2 which has functions of connecting a coaxial cable to the main body and rotating for separating the first internal conductor 4 from the first external conductor 5 and a taper region 3 connecting with the coaxial connector connection region. The internal conductor is placed high from the center of the external conductor so as to ensure wider uniform field region and polarity is made arbitrarily controllable in the range of -100 degree to 100 degree. Also the rotation of the internal conductor is made variable by providing a drive shaft outside so that control of polarization and incidence direction of electromagnetic wave are made possible without the motion of the irradiated body itself.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は回転形円筒TEM
セル(TEM cell)に関し、特に、電磁波耐性(EMS)
および不要電磁波(EMI )測定、アンテナ矯正、アンテ
ナパターン測定等に必要な標準電磁波(平面波)を発生
させる装置である回転形円筒TEMセルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary cylindrical TEM.
Cell (TEM cell), especially electromagnetic wave immunity (EMS)
The present invention also relates to a rotating cylindrical TEM cell which is a device for generating a standard electromagnetic wave (plane wave) required for unnecessary electromagnetic wave (EMI) measurement, antenna correction, antenna pattern measurement, and the like.

【0002】[0002]

【従来の技術】従来技術によるTEMセルに、クローフ
ォドTEMセル(Crawford TEM cell)、GTEMセル
(Giga-Herz TEM cell )、TTEMセル(Triple TEM ce
ll )、WTEMセル(wire TEM cell )、改良型GTEM
セル、自動測定用TEMセル等種類が多様であるが、こ
れらは大きく2種類、即ちGTEMセル、WTEMセ
ル、TTEMセル、改良型GTEMセル等のように一側
面に入出力端子が存在する「一端TEMセル」と、クロ
ーフォドTEMセル、非対称型TEMセル、自動測定用
TEMセル、6端子TEMセル等のように両側面に入/
出力端子が存在する「両端TEMセル」とで区分するこ
とができるが、これらは全部不要電磁波測定、電磁波耐
性測定、アンテナ矯正、アンテナパターン測定等に活用
が可能である。
2. Description of the Related Art Conventional TEM cells include crawford TEM cells (Crawford TEM cells), GTEM cells (Giga-Herz TEM cells), and TTEM cells (Triple TEM cells).
ll), WTEM cell (wire TEM cell), improved GTEM
There are various types such as a cell and a TEM cell for automatic measurement, and these are roughly two types, that is, one end having an input / output terminal on one side like a GTEM cell, a WTEM cell, a TTEM cell, and an improved GTEM cell. TEM cell "and insert on both sides like claw-fed TEM cell, asymmetric TEM cell, TEM cell for automatic measurement, 6-terminal TEM cell, etc.
The output terminals can be classified into “end-end TEM cells”, and all of them can be used for unnecessary electromagnetic wave measurement, electromagnetic wave resistance measurement, antenna correction, antenna pattern measurement, and the like.

【0003】しかし、前者は遠域場に関する試験だけが
可能であることに反して、後者は遠域場は勿論、近域場
試験に関しても適用することができ、特に、電磁波障害
測定時、各直交成分のダイポール(dipole )項を前者は
測定が不可能であるに反して、後者は可能であるため、
これらは異なるものとして考えられる。特に、両端TE
Mセルのうち、分極調節が可能な既存施設としては組立
式円筒TEMセル、自動測定用TEMセル、6端子TE
Mセル、8端子可変インピーダンス電磁波発生装置とが
あるが、この中で、組立式円筒TEMセルを除外した全
ての施設は調節可能な分極が45度、90度および13
5度のように固定されて、その他の分極に対する調整が
不可能だという短所を有している。
[0003] However, the former can be applied to not only the far-field but also the near-field test, while the former can be applied not only to the far-field test but also to the near-field test. Since the former cannot measure the dipole term of the quadrature component, the latter is possible,
These are considered different. In particular, both ends TE
Among the M cells, the existing facilities that can adjust the polarization include a prefabricated cylindrical TEM cell, a TEM cell for automatic measurement, and a 6-terminal TE.
There is an M cell, an eight-terminal variable impedance electromagnetic wave generator, in which all facilities except the assembled cylindrical TEM cell have adjustable polarizations of 45 °, 90 ° and 13 °.
It has the disadvantage that it is fixed at 5 degrees and cannot be adjusted for other polarizations.

【0004】これに反して組立式円筒TEMセルは、円
筒形状の外部導体内部に内部導体が外部導体の中心に位
置するので、分極を任意に調節することができる。しか
しながら、これは分極の狭い、つまり、およそ−45度
〜45度の範囲内で調節が可能であるだけでなく、内部
導体が中心に位置するため、被写体が置かれる均一場領
域(uniform area )が狭くなるのは勿論、構造上内部導
体の回転を線を設けて回転させることによって、正確な
角度調節が難しいという問題点を有していた。
On the other hand, in the assembled cylindrical TEM cell, since the inner conductor is located at the center of the outer conductor inside the cylindrical outer conductor, the polarization can be arbitrarily adjusted. However, this is not only a narrow polarization, that is, adjustable within a range of about -45 degrees to 45 degrees, but also because the inner conductor is located at the center, a uniform area where the subject is placed Of course, there is a problem that it is difficult to accurately adjust the angle by providing a line to rotate the inner conductor and rotating the inner conductor structurally.

【0005】[0005]

【発明が解決しようとする課題】この発明は前記従来技
術の問題点を解決するものであって、この発明の目的
は、被照射体が置かれる均一場領域がより広く、分極の
調節範囲がより拡張されて任意に分極調節が可能であ
り、内部導体を回転した際、より正確な角度調節の可能
な、回転形円筒TEMセルを提供することにある。この
発明の他の目的は、被照射体自体の動きなしに全ての分
極、電磁波の入射方向の調節が可能なため、電磁波耐性
等の測定時、測定時間を短縮できるだけでなく、測定の
正確度および再現性を高めることができる回転形円筒T
EMセルを提供することにある。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and an object of the present invention is to provide a wider uniform field region in which an object to be irradiated is placed and a wider polarization control range. It is an object of the present invention to provide a rotating cylindrical TEM cell which can be more extended and arbitrarily adjusted in polarization, and can adjust the angle more accurately when the inner conductor is rotated. Another object of the present invention is to make it possible to adjust all polarizations and incident directions of electromagnetic waves without movement of the irradiation target itself, so that not only can the measurement time be shortened when measuring electromagnetic wave immunity and the like, but also the accuracy of measurement can be reduced. And cylindrical cylinder T that can improve reproducibility
It is to provide an EM cell.

【0006】[0006]

【課題を解決するための手段】前記目的を達するこの発
明による回転形円筒TEMセルは、円筒型の第1外部導
体と、外部導体の内部中心から上方に設けられ、その両
端が同軸コネクター接続領域部の第2内部導体に固定さ
れ、回転可能な第1内部導体を含み、被照射体が置かれ
る試験領域と、
A rotary cylindrical TEM cell according to the present invention which achieves the above object is provided with a cylindrical first outer conductor and an upper portion from an inner center of the outer conductor, and both ends of which are coaxial connector connection regions. A test area fixed to the second inner conductor of the portion and including a rotatable first inner conductor, where the object to be irradiated is placed;

【0007】同軸ケーブルを本体と連結させ、前記試験
領域の第1内部導体を外部導体と分離回転させる機能を
する、同軸コネクター接続領域部と、前記試験領域と同
軸コネクター接続領域部とを繋ぐテーパー領域部とで構
成される。
[0007] A coaxial connector connection area portion for connecting the coaxial cable to the main body and separating and rotating the first inner conductor in the test area from the outer conductor, and a taper connecting the test area and the coaxial connector connection area section. And an area part.

【0008】この際、前記試験領域の下部には、被試験
体が設けられて固定される被照射体設置板と被照射体設
置板を支持する第1支持棒と、第1支持棒をフィルター
箱に固定支持する第2支持棒とで構成された回転卓子を
追加に敷設し、この下部には、電源フィルターおよび被
照射体入/出力信号フィルターが内装されるフィルター
箱と、前記フィルター箱と繋がれて本体を支持する第1
受けと、前記構成部品と分離されて回転可能な本体と繋
がれた第2受けと、前記第1受けと第2受けとの間に設
けられた第1ベアリングをさらに形成することが好まし
い。
At this time, an irradiation object installation plate on which the test object is provided and fixed, a first support rod for supporting the irradiation object installation plate, and a first support rod are provided below the test area. A rotary table constituted by a second support rod fixedly supported on the box is additionally laid, and a filter box in which a power supply filter and an illuminated object input / output signal filter are provided below the rotary table, First connected and supporting the body
It is preferable to further form a receiver, a second receiver separated from the component parts and connected to a rotatable main body, and a first bearing provided between the first receiver and the second receiver.

【0009】この場合、前記第2支持棒の回転時、破損
を減らすとか電磁波の漏れを減少させるために、第2支
持棒と本体との間には本体に固定される繋ぎ手を装着
し、本体の回転時、繋ぎ手と第2受けが分離されて回転
が容易になされるように、第2持棒と繋ぎ手の連結部に
は、第2ベアリングをさらに設けることが好ましく、本
体の回転時外部から供給される信号線、あるいは、電源
線の撚りを防ぐために、前記第1支持棒と第2支持棒の
中心には、貫通孔を形成することが好ましい。
In this case, when the second support rod rotates, a joint fixed to the main body is attached between the second support rod and the main body in order to reduce breakage or reduce electromagnetic wave leakage, It is preferable that a second bearing is further provided at a connecting portion of the second holding rod and the joint so that the joint and the second receiver are separated during rotation of the body to facilitate rotation. It is preferable to form a through hole at the center of the first support rod and the second support rod in order to prevent twisting of a signal line or a power supply line supplied from the outside.

【0010】且つ、前記同軸コネクター接続領域部は、
同軸コネクターと繋がれ、内部導体を駆動させる外部駆
動軸としての役割を果たす第2外部導体と、テーパー領
域部の第4外部導体を通じて試験領域の第1外部導体と
繋がれ、前記第2外部導体と結合する第3外部導体と、
前記第2外部導体を本体に支持するため、第2外部導体
と第3外部導体とを連結する繋ぎ手と、第1誘電体、第
3誘電体の内部孔を通じて第2外部導体内に挿入され、
第1内部導体の一端と繋がれて、第2外部導体の駆動に
より第1内部導体を回転させるための第2内部導体、お
よび第2内部導体の一端に結合される同軸コネクターピ
ンと、前記第1内部導体と第2外部導体、第3外部導体
および第4外部導体との間に位置する第1誘電体、第2
誘電体及び第3誘電体とで構成することが好ましい。
[0010] The coaxial connector connection area portion includes:
A second outer conductor connected to the coaxial connector and serving as an external drive shaft for driving the inner conductor; and a second outer conductor connected to the first outer conductor in the test area through a fourth outer conductor in the tapered area. A third outer conductor coupled to
In order to support the second outer conductor on the main body, the second outer conductor is inserted into the second outer conductor through the inner holes of the first and third dielectrics, and a connecting joint connecting the second outer conductor and the third outer conductor. ,
A second inner conductor connected to one end of the first inner conductor for rotating the first inner conductor by driving the second outer conductor, and a coaxial connector pin coupled to one end of the second inner conductor; A first dielectric located between the inner conductor and the second outer conductor, the third outer conductor, and the fourth outer conductor;
It is preferable that the dielectric material is composed of a dielectric and a third dielectric.

【0011】この際、前記第2外部導体の円滑な回転と
電磁波の漏れ防止のために、第2外部導体と第3外部導
体の結合部には、二重に第3ベアリングおよび第4ベア
リングを直列に連続して設け、かつ、より確実に電磁波
漏れを防止するために、その接続部位にリングを設ける
のが好ましい。併せて、前記同軸コネクター接続領域部
には、第1内部導体が一定の範囲の回転を外れないよう
に防止するための安全装置を第3外部導体にさらに装着
するのが好ましい。
At this time, in order to smoothly rotate the second outer conductor and prevent leakage of electromagnetic waves, a third bearing and a fourth bearing are doublely provided at a joint between the second outer conductor and the third outer conductor. It is preferable to provide a ring at the connection site in order to provide the connection in series and to more reliably prevent leakage of electromagnetic waves. In addition, it is preferable that a safety device for preventing the first inner conductor from rotating within a certain range is further mounted on the third outer conductor in the coaxial connector connection area.

【0012】[0012]

【発明の実施の形態】以下、この発明に係わる回転形円
筒TEMセルに関する好ましい実施の形態を添付図面を
参照してより詳しく説明する。図1は、この発明の好ま
しい実施例による回転形円筒TEMセルの概略的な斜視
図であり、図2は、図1に示した回転形円筒TEMセル
の横断面図である。図3は、図1に示した回転形円筒T
EMセルの縦断面図であり、図4は、図1に示した回転
形円筒TEMセルの側断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a rotary cylindrical TEM cell according to the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a schematic perspective view of a rotary cylindrical TEM cell according to a preferred embodiment of the present invention, and FIG. 2 is a cross-sectional view of the rotary cylindrical TEM cell shown in FIG. FIG. 3 shows the rotary cylinder T shown in FIG.
FIG. 4 is a longitudinal sectional view of the EM cell, and FIG. 4 is a side sectional view of the rotary cylindrical TEM cell shown in FIG.

【0013】図1〜図4に示したように、この発明によ
る回転形円筒TEMセルは、円筒型の第1外部導体5
と、外部導体の内部中心から上方に設けられ、その両端
が同軸コネクター接続領域部2の第2内部導体21に固
定されて回転可能な第1内部導体4を含み、被照射体が
置かれる試験領域1と、同軸ケーブルを本体と連結さ
せ、前記試験領域1の内部導体4を第1外部導体5と分
離回転させる機能をする、同軸コネクター接続領域部2
と、前記試験領域1と同軸コネクター接続領域部2を繋
ぐテーパー領域部3とで構成される。
As shown in FIGS. 1 to 4, the rotary cylindrical TEM cell according to the present invention has a cylindrical first outer conductor 5.
A test in which the object to be irradiated is placed, including a first inner conductor 4 which is provided above the inner center of the outer conductor and whose both ends are fixed to the second inner conductor 21 of the coaxial connector connection area 2 and which can rotate. A coaxial connector connection area portion 2 for connecting the area 1 and the coaxial cable to the main body, and for separating and rotating the inner conductor 4 of the test area 1 from the first outer conductor 5
And a tapered region 3 connecting the test region 1 and the coaxial connector connection region 2.

【0014】前記試験領域1は、図1〜図4に示したよ
うに、第1内部導体4と、第1外部導体5、門6、被照
射体の状態を観察するための遮蔽窓7が設けられ、被照
射体が固定配置される回転卓子8が第1外部導体5の下
部にさらに構成される。図4に示したように、第1内部
導体4が第1外部導体5の内部中心から上方に設けられ
ることによって、均一場領域(参照:IEC1000-4-3 :内
部導体と外部導体間の1/3中心領域)がより広くな
る。この領域においては、その領域の大きさと可用周波
数との間には反比例的な関係がある。即ち、大きさが大
きければ、遮断周波数が低くなって、それだけ可溶周波
数は低くなる問題点を有している。
As shown in FIGS. 1 to 4, the test area 1 includes a first inner conductor 4, a first outer conductor 5, a gate 6, and a shielding window 7 for observing the state of an irradiation target. A rotary table 8 provided and on which the irradiation target is fixedly arranged is further formed below the first outer conductor 5. As shown in FIG. 4, by providing the first inner conductor 4 above the inner center of the first outer conductor 5, a uniform field region (see: IEC1000-4-3: 1 between the inner conductor and the outer conductor) / 3 center area). In this region, there is an inversely proportional relationship between the size of the region and the available frequencies. That is, if the size is large, there is a problem that the cutoff frequency becomes low and the soluble frequency becomes low accordingly.

【0015】遮断周波数以上においては、TEMモード
の電磁波(平面波)が乱れるため、IEC、CISP
R、EN等のような各種の電磁波耐性測定関連国際規格
では使わないことを勧めている。従って、外部導体の大
きさが固定された場合において、均一場領域の最大確保
は非常に重要な事項である。なお、全ての構造は、一般
同軸ケーブルの特性インピーダンス(50Ω)に整合さ
せるべきであるため、第1内部導体が内部中心点の上方
に位置が固定されれば、内部導体の幅が決まる。内部導
体の位置により50Ωの特性インピーダンスを有するた
めの内部導体の幅(但し、内部導体の厚さを非常に小さ
いと仮定した)に関する数値解釈の結果値を下記の表1
及び表2に示した。この時、下記の数値解釈結果は、回
転形円筒TEMセルにおいて、外部導体の半径が1mで
あり、中心点において、内部導体間の最小距離が0.8
である時の結果値である。このようなデータの中でボン
ジアンニ(Bongianni )が提示した特定の構造である
「内部導体が中心に位置した同軸ケーブル」に関する数
式結果と非常に一致した結果を見せている。
Above the cutoff frequency, the electromagnetic waves (plane waves) in the TEM mode are disturbed.
It is recommended not to use it in various international standards related to electromagnetic wave immunity measurement such as R and EN. Therefore, when the size of the outer conductor is fixed, it is very important to ensure the maximum uniform field area. In addition, since all the structures should be matched to the characteristic impedance (50Ω) of the general coaxial cable, if the position of the first inner conductor is fixed above the inner center point, the width of the inner conductor is determined. Table 1 below shows the result of numerical interpretation on the width of the inner conductor (provided that the thickness of the inner conductor is assumed to be very small) to have a characteristic impedance of 50Ω depending on the position of the inner conductor.
And Table 2. At this time, the following numerical interpretation results show that in the rotary cylindrical TEM cell, the radius of the outer conductor is 1 m, and the minimum distance between the inner conductors is 0.8 at the center point.
Is the result value when Among such data, the results show a very good agreement with the formula results for the specific structure "coaxial cable with the inner conductor located at the center" presented by Bongianni.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】また、前記領域から均一場領域の電磁波均
一度は、内部導体がどの支点に位置するかによって非常
に相違な値を有する。即ち、内部導体が中心から遠くな
るほど、前記表1および表2に見られるように、内部導
体幅が小さくなって均一度が落ちる問題点を有する。こ
の発明による回転形円筒TEMセルにおいて、外部導体
5の中心点から内部導体4間の最小距離が0.8mであ
る50Ω特性インピーダンスを有する構造に対し、内部
からの中心点の電界値に対して正規化した相対電界値偏
差分布図および傾きの分布図に関する計算の結果、図7
(a)および図7(b)に見られるように、均一場領域
(点線で示した四角形部分)において、6dB占有域比
が75%、分極分布図は±30度以内にあることを確認
することができた。従って、前記構造に対しては、IEC1
000-4-3 の代用試験施設として活用の可能な構造である
ことがわかる。もし、ENまたはCISPRから要求す
る構造(6db占有領域比が100%)を備えるために
は、中心点から内部導体の間の最小距離を縮小させれば
よい。
Further, the uniformity of the electromagnetic wave from the region to the uniform field region has a very different value depending on at which fulcrum the internal conductor is located. That is, as the inner conductor is farther from the center, as shown in Tables 1 and 2, there is a problem that the inner conductor width is reduced and uniformity is reduced. In the rotary cylindrical TEM cell according to the present invention, a structure having a 50Ω characteristic impedance in which the minimum distance between the center point of the outer conductor 5 and the inner conductor 4 is 0.8 m, and an electric field value of the center point from the inside. As a result of calculation regarding the normalized relative electric field value deviation distribution map and the gradient distribution map, FIG.
As shown in (a) and FIG. 7 (b), it is confirmed that the 6 dB occupied area ratio is 75% and the polarization distribution map is within ± 30 degrees in the uniform field region (square portion shown by the dotted line). I was able to. Therefore, IEC1
It is clear that the structure can be used as a substitute test facility for 000-4-3. In order to provide the structure required by the EN or CISPR (the 6 db occupied area ratio is 100%), the minimum distance between the center point and the internal conductor may be reduced.

【0019】一方、この発明の回転形円筒TEMセルに
おいて、試験領域1に設けられた回転卓子8を調べてみ
れば、図3でさらにくわしくわかるように、被試験体が
設けられる被照射体設置板9が分極および入射方向を任
意に調節するように固定し、本体だけが第1ベアリング
10の軸を中心として回転するように構成し、結局、被
照射体は前記被照射体設置板9上に常に固定するように
製作した。このように、被照射体が固定されるというこ
とは、測定の再現性、正確性、測定時間と非常に緊密な
関係を有する。この発明においては、電磁波障害および
電磁波耐性、アンテナ矯正、アンテナパターン等を測定
する時被照射体が固定されるので、正確な測定が可能と
なる。その原理および構成物をより詳しく記述すれば次
のようである。
On the other hand, when the rotary table 8 provided in the test area 1 in the rotary cylindrical TEM cell of the present invention is examined, as shown in FIG. The plate 9 is fixed so as to arbitrarily adjust the polarization and the incident direction, and only the main body is configured to rotate about the axis of the first bearing 10. It was manufactured so that it was always fixed. Thus, the fact that the irradiation target is fixed has a very close relationship with the reproducibility, accuracy, and measurement time of the measurement. In the present invention, the object to be irradiated is fixed when measuring the electromagnetic wave disturbance and electromagnetic wave resistance, the antenna correction, the antenna pattern, and the like, so that accurate measurement can be performed. The principle and components are described in more detail as follows.

【0020】回転卓子8は前述のように、電磁波の影響
が少ないようにテフロン等の非導電体を用いて製作され
た被照射体設置板9と、これを支持する第1支持棒1
1、第1支持棒11をまた固定する第2支持棒12とを
含む。この際、前記第1支持棒11は電磁波の影響が少
ないように非導電体として製作され、第2支持棒12
は、電磁波の漏れを減らすために、内部導体4および外
部導体5のようにニッケル、鉄、銅、黄銅、アルミニウ
ム等の金属で製作される。かつ、前記第2支持棒12
は、電源フィルターおよび被照射体入/出力信号フィル
ターが内装され、金属で製造されたフィルター箱13に
固定するように構成されている。
As described above, the rotary table 8 is provided with the illuminated object installation plate 9 made of a non-conductive material such as Teflon so as to be less affected by electromagnetic waves, and the first support rod 1 for supporting the illuminated object installation plate 9.
1, a second support rod 12 for fixing the first support rod 11 again. At this time, the first support rod 11 is manufactured as a non-conductive material so that the influence of electromagnetic waves is small, and the second support rod 12
Is made of a metal such as nickel, iron, copper, brass, aluminum or the like like the inner conductor 4 and the outer conductor 5 in order to reduce leakage of electromagnetic waves. And the second support rod 12
Is equipped with a power supply filter and an object input / output signal filter, and is configured to be fixed to a filter box 13 made of metal.

【0021】また、前記フィルター箱13は、地面にお
いて回転形円筒TEMセル本体を支持する第1受け14
と連結固定するように製作される。結局、第1受け14
と被照射体が設けられる被照射体設置板9が互いに連結
固定されるように形成したものである。それから、前記
部品と分離されて回転可能な本体と繋がれた第2受け1
5は、第1受け14と互いに分離されて回転が円滑にな
るように、第1受け14と第2受け15との間には第1
ベアリング10が設けられ、本体と分離される第2支持
棒12の回転時、破損を減らしたり電磁波の漏れを減少
させるために、パイプ形態の繋ぎ手17が本体に固定す
るように設けられる。
The filter box 13 is provided with a first receiver 14 for supporting a rotary cylindrical TEM cell body on the ground.
It is manufactured so as to be connected and fixed. After all, the first receiver 14
The irradiation object installation plate 9 on which the irradiation object is provided is formed so as to be connected and fixed to each other. Then, a second receiver 1 separated from the component and connected to a rotatable body.
5 is provided between the first receiver 14 and the second receiver 15 so that the first receiver 14 and the first receiver 14 are separated from each other so that rotation is smooth.
A bearing 10 is provided, and a connecting member 17 in the form of a pipe is provided to be fixed to the main body in order to reduce breakage and leakage of electromagnetic waves when the second support rod 12 separated from the main body rotates.

【0022】併せて、本体の回転時、繋ぎ手17と第2
受け12が分離され、回転が容易になされるように第2
ベアリング18が設けられる。また、本体の回転時、外
部から供給される信号線、あるいは電源線の撚りが発生
されないように、第1支持棒11と第2支持棒12との
中心には貫通孔が形成される。前記同軸コネクター接続
領域部2は、同軸ケーブルとTEMセル本体を連結させ
る機能以外にも、第1内部導体4を第1外部導体5と分
離回転させることができるようにする機能を行う。即
ち、回転卓子8は、電磁波の入射方向を調節する機能を
行うことと逆に、電磁波の分極を調整するため、内部導
体4の位置を変化させる機能を行う。これは、図4に示
したように、外部導体5の中心を軸にして内部導体4を
回転させる場合、全体的な構造を変更させなくても特性
インピーダンスが一定に維持され、任意の角度に分極を
変更させることができるという点に着目したものであ
る。
At the same time, the joint 17 and the second
The receiver 12 is separated so that the second rotation is easy.
A bearing 18 is provided. In addition, a through hole is formed at the center between the first support rod 11 and the second support rod 12 so that twisting of a signal line or a power supply line supplied from the outside is not generated when the main body rotates. The coaxial connector connection area 2 has a function of separating and rotating the first inner conductor 4 from the first outer conductor 5 in addition to a function of connecting the coaxial cable and the TEM cell body. That is, the rotating table 8 performs a function of changing the position of the internal conductor 4 in order to adjust the polarization of the electromagnetic wave, as opposed to performing a function of adjusting the incident direction of the electromagnetic wave. This is because, as shown in FIG. 4, when the inner conductor 4 is rotated around the center of the outer conductor 5, the characteristic impedance is maintained constant without changing the overall structure, and the angle can be changed to any angle. It focuses on the fact that the polarization can be changed.

【0023】図5は、図1に図示された回転形円筒TE
Mセルに関する同軸コネクター接続領域部2の外部導体
分解斜視図であり、図6は、図1に示した回転形円筒T
EMセルに対する同軸コネクター接続領域部2の内部導
体及び誘電体の分解斜視図であって、前記のように、内
部導体4を回転させるための構成を図5及び図6を参照
して説明すると、まず、同軸コネクター33と繋がれ
る。第2外部導体31は、内部導体4を駆動させること
ができるようにその一部19が外部に露出されている。
FIG. 5 shows the rotary cylinder TE shown in FIG.
FIG. 6 is an exploded perspective view of the outer conductor of the coaxial connector connection area 2 relating to the M cell, and FIG.
FIG. 6 is an exploded perspective view of the inner conductor and the dielectric of the coaxial connector connection region 2 with respect to the EM cell, and the structure for rotating the inner conductor 4 as described above will be described with reference to FIGS. First, it is connected to the coaxial connector 33. A part 19 of the second outer conductor 31 is exposed to the outside so that the inner conductor 4 can be driven.

【0024】前記第2外部導体31には、同軸コネクタ
ーピン22aと第2内部導体21が第1内部誘電体22
及び内部誘電体23内に挿入装着して固定され、第2内
部導体21は、第1内部導体4とさらにネジによって固
定される。結局、第2外部導体31と第1内部導体4は
互いに繋がれ、第2外部導体31を回転させれば、同時
に第1内部導体4が回転するように構成している。な
お、第3誘電体23が第2誘電体32を支持及び回転が
可能なように内部に挿入装着し、第3外部導体24は、
テーパー領域部3の第4外部導体25を通じて試験領域
1の第1が5と繋がる。この時、第2外部導体31をこ
のような本体(即ち、第1,3,4外部導体)に支えな
がら回転させることができるように、繋ぎ手26を第2
外部導体31と第3外部導体24とに固定させる。
The second outer conductor 31 has a coaxial connector pin 22a and a second inner conductor 21 on the first inner dielectric 22.
The second inner conductor 21 is fixed to the first inner conductor 4 by screws. As a result, the second outer conductor 31 and the first inner conductor 4 are connected to each other, and when the second outer conductor 31 is rotated, the first inner conductor 4 is simultaneously rotated. The third dielectric 23 is inserted and mounted inside the second dielectric 32 so that the second dielectric 32 can be supported and rotated.
The first of the test areas 1 is connected to 5 through the fourth outer conductor 25 of the tapered area 3. At this time, the joint 26 is moved to the second position so that the second outer conductor 31 can be rotated while being supported by such a main body (that is, the first, third, and fourth outer conductors).
It is fixed to the external conductor 31 and the third external conductor 24.

【0025】また、第2外部導体31の円滑な回転と電
磁波の漏れ防止のために、二重に第3ベアリング27及
び第4ベアリング28を第2外部導体31と第3外部導
体24の接触部に内設し、より確実に電磁波の漏れを防
止するために、接続部位でキャパシダンス結合量を増加
させて電磁波の漏れを防止するリング29が設けられ
る。併せて、第1内部導体4が一定範囲の回転を外れな
いようにするため、安全装置30が第3外部導体24に
敷設されるが、これは、第1内部導体4の過回転によっ
て、回転卓子8にぶつかる現象を防止するためのことで
ある。
Further, in order to smoothly rotate the second outer conductor 31 and prevent leakage of electromagnetic waves, the third bearing 27 and the fourth bearing 28 are doublely provided with a contact portion between the second outer conductor 31 and the third outer conductor 24. In order to more securely prevent leakage of electromagnetic waves, a ring 29 is provided at the connection portion to increase the amount of capacitive coupling to prevent leakage of electromagnetic waves. At the same time, a safety device 30 is laid on the third outer conductor 24 in order to prevent the first inner conductor 4 from deviating within a certain range of rotation. This is for preventing the phenomenon of hitting the table 8.

【0026】一方、テーパー領域3は、第4外部導体2
5とその内部の第1内部導体4で構成され、被試験体領
域の大きさを維持させるためにテーパされた領域であ
る。このため、できるだけ電磁波の歪曲のない範疇内で
その長さを短く維持しなければならないし、長さが長け
れば有効長さが増加するようになって、共振周波数が低
くなるためである。前記この発明において、被照射体自
体の動きなく本体を回転させることによって、入射波の
進行方向を調節可能にするこの発明による回転卓子8の
構成は、前記この発明の回転形円筒TEMセル以外に
も、GTEMセル、TTEMセル等のような余他のTE
Mセルにも適用が可能である。
On the other hand, the tapered region 3 is
5 is a region tapered in order to maintain the size of the DUT region. For this reason, the length of the electromagnetic wave must be kept as short as possible without causing distortion of the electromagnetic wave. If the length is long, the effective length increases and the resonance frequency decreases. In the present invention, the configuration of the rotary table 8 according to the present invention, in which the traveling direction of the incident wave can be adjusted by rotating the main body without the movement of the irradiated object itself, is different from the rotary cylindrical TEM cell of the present invention. And other TEs such as GTEM cells, TTEM cells, etc.
It is also applicable to M cells.

【0027】[0027]

【発明の効果】前記この発明の回転形円筒TEMセルに
おいて、内部導体を外部導体の中心から高く設け、より
広い均一場領域を確保することができ、約−100度〜
100度以上の範囲で分極を任意で調節可能であり、内
部導体の回転を外部に駆動軸を設けて可変できるように
構成し、より正確な角度調節が可能であるだけでなく、
内部から固定される回転卓子を設けて被照射体が設けら
れれば被照射体自体の動きなしに全ての分極、電磁波の
入射方向の調節が可能となるようにすることによって、
電磁波耐性、不要電磁波測定、アンテナ矯正、アンテナ
パターン等の特定時間を短縮することは勿論、測定の正
確度および再現性を大幅に高めることができる。
According to the rotary cylindrical TEM cell of the present invention, the inner conductor is provided higher than the center of the outer conductor, and a wider uniform field area can be secured.
The polarization can be arbitrarily adjusted in the range of 100 degrees or more, and the rotation of the inner conductor is configured to be variable by providing a drive shaft outside, so that not only the more accurate angle adjustment is possible,
By providing a rotating table fixed from the inside and providing the irradiation object, if the irradiation object itself is provided, it is possible to adjust all polarization, the incident direction of the electromagnetic wave without movement of the irradiation object itself,
The accuracy and reproducibility of the measurement can be greatly improved as well as the specific time for the electromagnetic wave resistance, the unnecessary electromagnetic wave measurement, the antenna correction, the antenna pattern, etc. can be shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の好ましい実施例による回転形円筒T
EMセルの概略的な斜視図である。
FIG. 1 shows a rotary cylinder T according to a preferred embodiment of the present invention.
It is a schematic perspective view of an EM cell.

【図2】図1に示した回転形円筒TEMセルの横断面図
である。
FIG. 2 is a cross-sectional view of the rotary cylindrical TEM cell shown in FIG.

【図3】図1に示した回転形円筒TEMセルの縦断面図
である。
FIG. 3 is a longitudinal sectional view of the rotary cylindrical TEM cell shown in FIG.

【図4】図1に示した回転形円筒TEMセルの側断面図
である。
FIG. 4 is a side sectional view of the rotary cylindrical TEM cell shown in FIG. 1;

【図5】図1に示した回転形円筒TEMセルに対する同
軸コネクター接続領域部の外部導体分解斜視図である。
FIG. 5 is an exploded perspective view of an outer conductor of a coaxial connector connection region for the rotary cylindrical TEM cell shown in FIG. 1;

【図6】図1に示した回転形円筒TEMセルに対する同
軸コネクター接続領域部の内部導体及び誘電体の分解斜
視図である。
FIG. 6 is an exploded perspective view of an inner conductor and a dielectric in a coaxial connector connection area for the rotary cylindrical TEM cell shown in FIG. 1;

【図7】(a)はこの発明による回転形円筒TEMセル
内における中心点電界に対する正規化した相対電界値偏
差分布図、(b)は、この発明による回転形円筒TEM
セル内における電界分極の傾斜分布図である。
7A is a distribution diagram of a relative electric field value deviation normalized with respect to the electric field at the center point in the rotary cylindrical TEM cell according to the present invention, and FIG. 7B is a rotary cylindrical TEM according to the present invention;
FIG. 4 is a gradient distribution diagram of electric field polarization in a cell.

【符号の説明】[Explanation of symbols]

1 試験領域 2 同軸コネクター接続領域部 3 テーパー領域部 4 第1内部導体 5 第1外部導体 6 門 7 遮蔽窓 8 回転卓子 9 被照射体設置板 10 第1ベアリング 11 第1支持棒 12 第2支持棒 13 フィルター箱 14 第1受け 15 第2受け 17 繋ぎ手 18 第2ベアリング 21 第2内部導体 22 第1誘電体 22a 同軸コネクターピン 23 第3誘電体 24 第3外部導体 25 第4外部導体 26 繋ぎ手 27 第3ベアリング 28 第4ベアリング 29 リン 30 安全装置 31 第2外部導体 32 第2誘電体 33 同軸コネクター DESCRIPTION OF SYMBOLS 1 Test area 2 Coaxial connector connection area part 3 Tapered area part 4 1st inner conductor 5 1st outer conductor 6 gates 7 Shielding window 8 Rotary table 9 Irradiation object installation board 10 1st bearing 11 1st support rod 12 2nd support Rod 13 Filter box 14 First receiver 15 Second receiver 17 Joint 18 Second bearing 21 Second inner conductor 22 First dielectric 22a Coaxial connector pin 23 Third dielectric 24 Third outer conductor 25 Fourth outer conductor 26 Hand 27 Third bearing 28 Fourth bearing 29 Phosphorus 30 Safety device 31 Second outer conductor 32 Second dielectric 33 Coaxial connector

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 円筒形の第1外部導体と、外部導体の内
部中心から上方に設けられ、その両端が同軸コネクター
接続領域部の第2内部導体に固定されて回転可能な第1
内部導体を含み、 被照射体が置かれる試験領域と、 同軸ケーブルを本体と連結させ、前記試験領域の第1内
部導体を第1外部導体と分離回転させる機能をする同軸
コネクター接続領域部と、 前記試験領域と同軸コネクター接続領域部を連結するテ
ーパー領域部とで構成された、回転形円筒TEMセル。
1. A first cylindrical outer conductor, and a first rotatable first member provided above the inner center of the outer conductor and fixed at both ends to a second inner conductor of a coaxial connector connection area.
A test area including an inner conductor, on which an object to be irradiated is placed; and a coaxial connector connection area portion for connecting a coaxial cable to the main body and functioning to separate and rotate the first inner conductor of the test area from the first outer conductor; A rotary cylindrical TEM cell comprising the test area and a tapered area connecting the coaxial connector connection area.
【請求項2】 前記試験領域の下部には、被試験体が設
けられて固定される被照射体設置板と、被照射体設置板
を支持する第1支持棒と、第1支持棒をフィルター箱に
固定支持する第2支持棒で構成された回転卓子をさらに
敷設し、その下部には電源フィルターおよび被照射体入
/出力信号フィルターが内装されるフィルター箱と、 フィルター箱と繋がれて本体を支持する第1受けと、前
記構成部品と分離されて回転可能な本体と繋がれた第2
受けと、前記第1受けと第2受けの間に設けられた第1
ベアリングをさらに形成することを特徴とする請求項1
記載の回転形円筒TEMセル。
2. An irradiation object installation plate on which a test object is provided and fixed, a first support rod for supporting the irradiation object installation plate, and a first support rod provided below the test area. A rotary table composed of a second support bar fixedly supported on the box is further laid, and a filter box in which a power supply filter and an illuminated object input / output signal filter are provided below the rotary table, and a main body connected to the filter box. And a second receiver connected to a rotatable body separated from the component parts.
Receiver, a first receiver provided between the first receiver and the second receiver.
The bearing of claim 1, further comprising a bearing.
A rotary cylindrical TEM cell as described.
【請求項3】 前記第2支持棒と本体の間には、本体に
固定される繋ぎ手を設け、第2支持棒と繋ぎ手の連結部
には第2ベアリングをさらに設けること、を特徴とする
請求項2記載の回転形円筒TEMセル。
3. A connecting part fixed to the main body is provided between the second supporting rod and the main body, and a second bearing is further provided at a connecting portion of the second supporting rod and the connecting part. The rotary cylindrical TEM cell according to claim 2.
【請求項4】 前記第1支持棒と第2支持棒の中心には
貫通孔が形成すること、を特徴とする請求項2記載の回
転形円筒TEMセル。
4. The rotary cylindrical TEM cell according to claim 2, wherein a through hole is formed at the center of the first support rod and the second support rod.
【請求項5】 前記同軸コネクター接続領域部は、同軸
コネクターと繋がれて内部導体を駆動させる外部駆動軸
としての役割を果たす第2外部導体と、テーパー領域部
の第4外部導体を通じて試験領域の第1外部導体と繋が
れて前記第2外部導体と結合される第3外部導体と、前
記第2外部導体を本体に支持するために第2外部導体と
第3外部導体とを連結する繋ぎ手と、 第1誘電体、第3誘電体の内部孔を通じて第2外部導体
内に挿入され、第1内部導体の一端と繋がれて第2外部
導体の駆動により第1内部導体を回転させるための第2
内部導体および第2内部導体の一端に結合される同軸コ
ネクターピンと、前記第1内部導体と外部導体、第3外
部導体、および第4外部導体の間に位置する第1誘電
体、第2誘電体、および第3誘電体とで構成したこと、
を特徴とする請求項1記載の回転形円筒TEMセル。
5. The test area through a second external conductor connected to the coaxial connector and acting as an external drive shaft for driving an internal conductor, and a fourth external conductor in a tapered area portion. A third outer conductor connected to the first outer conductor and coupled to the second outer conductor, and a connector connecting the second outer conductor and the third outer conductor to support the second outer conductor on the main body. And inserted into the second outer conductor through the inner holes of the first and third dielectrics, and connected to one end of the first inner conductor to rotate the first inner conductor by driving the second outer conductor. Second
A coaxial connector pin coupled to one end of the inner conductor and the second inner conductor; a first dielectric and a second dielectric located between the first inner conductor and the outer conductor, a third outer conductor, and a fourth outer conductor , And a third dielectric,
The rotary cylindrical TEM cell according to claim 1, wherein:
【請求項6】 前記第2外部導体と第3外部導体の結合
部には、二重に第3ベアリングおよび第4ベアリングを
直列に連続して設け、その接続部位にはリングを設ける
ことを特徴とする請求項5記載の回転形円筒TEMセ
ル。
6. The connecting portion between the second outer conductor and the third outer conductor, a third bearing and a fourth bearing are doubly provided continuously in series, and a ring is provided at a connecting portion thereof. The rotary cylindrical TEM cell according to claim 5, wherein
【請求項7】 前記第3外部導体には、前記第1外部導
体が一定範囲の回転を外れないように防止するための安
全装置がさらに装着することを特徴とする請求項5記載
の回転形円筒TEMセル。
7. The rotary type according to claim 5, wherein a safety device for preventing the first outer conductor from deviating from a predetermined range is further attached to the third outer conductor. Cylindrical TEM cell.
JP23537797A 1996-11-26 1997-08-15 Rotary cylindrical TEM cell Expired - Fee Related JP3418750B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1996P57363 1996-11-26
KR1019960057363A KR100216546B1 (en) 1996-11-26 1996-11-26 A revolution type circular tem cell

Publications (2)

Publication Number Publication Date
JPH10185981A true JPH10185981A (en) 1998-07-14
JP3418750B2 JP3418750B2 (en) 2003-06-23

Family

ID=19483559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23537797A Expired - Fee Related JP3418750B2 (en) 1996-11-26 1997-08-15 Rotary cylindrical TEM cell

Country Status (2)

Country Link
JP (1) JP3418750B2 (en)
KR (1) KR100216546B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100412554C (en) * 2005-07-11 2008-08-20 智捷科技股份有限公司 Antenna coupling tester
CN104569889A (en) * 2014-12-24 2015-04-29 北京无线电计量测试研究所 Concentric and taper TEM (transverse electromagnetic mode) cell and method for designing interior conductor semi-included angle and exterior conductor semi-included angle of transmission section of concentric and taper TEM cell
CN109917197A (en) * 2019-04-02 2019-06-21 山东省波尔辐射环境技术中心 A kind of electromagnet radiation detection instrument verifying device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100412554C (en) * 2005-07-11 2008-08-20 智捷科技股份有限公司 Antenna coupling tester
CN104569889A (en) * 2014-12-24 2015-04-29 北京无线电计量测试研究所 Concentric and taper TEM (transverse electromagnetic mode) cell and method for designing interior conductor semi-included angle and exterior conductor semi-included angle of transmission section of concentric and taper TEM cell
CN109917197A (en) * 2019-04-02 2019-06-21 山东省波尔辐射环境技术中心 A kind of electromagnet radiation detection instrument verifying device

Also Published As

Publication number Publication date
KR100216546B1 (en) 1999-08-16
KR19980038459A (en) 1998-08-05
JP3418750B2 (en) 2003-06-23

Similar Documents

Publication Publication Date Title
DE112008001091B4 (en) Radiation efficiency measuring device and radiation efficiency measuring method
US5633648A (en) RF current-sensing coupled antenna device
JP3315028B2 (en) Broadband electromagnetic wave generator for automatic measurement
EP1190239A2 (en) Stray field probe
US6114860A (en) Rotary coupled transmission line cell
KR0137576B1 (en) Variable impedance emi generator
JP3418750B2 (en) Rotary cylindrical TEM cell
KR100243090B1 (en) Y-transverse electromagnetic cell
De Groote et al. An improved coupling method for time domain load-pull measurements
JP5576483B2 (en) Gas-insulated high-voltage electrical switch monitoring device by measuring partial discharge, and gas-insulated high-voltage electrical switch using the monitoring device
US4060781A (en) Waveguide switch
JP3187790B2 (en) Linear coupled transmission line cell
US5793215A (en) 6 port TEM cell and radiation field immunity measuring system using the same
KR950012280B1 (en) Gtem cell having spin septum
KR950011835B1 (en) Cylinder type tem cell
KR100579126B1 (en) Broad band magnetic field generator
CN104698231B (en) Breast tissue characteristic probe based on microwave dielectric resonator
KR970005391B1 (en) Automatic transverse electro magnetic cell
KR970008142B1 (en) Broadband transverse electromagnetic cell and automatic broadband transverse electromagnetic cell
KR970008087B1 (en) Automatic transverse electromagnetic cell
KR0139728B1 (en) 8 port variable wave impedance generator and tolerance measurement system of radiation electromagnetic field
KR100335610B1 (en) Open-type birdcage radio frequency coil for magnetic resonance imaging apparatus
KR950014755B1 (en) Tapered strip line cell
KR950014756B1 (en) Improved giga tem cell
DE10119323A1 (en) Nuclear magnetic resonance and electron spin resonance imaging for medical purposes uses conductor arrangements that allow the resonance frequency to be adjusted without the use of discrete soldered capacitors

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030304

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees