JPH10185942A - Collision judging method for vehicle and device therefor - Google Patents

Collision judging method for vehicle and device therefor

Info

Publication number
JPH10185942A
JPH10185942A JP9291434A JP29143497A JPH10185942A JP H10185942 A JPH10185942 A JP H10185942A JP 9291434 A JP9291434 A JP 9291434A JP 29143497 A JP29143497 A JP 29143497A JP H10185942 A JPH10185942 A JP H10185942A
Authority
JP
Japan
Prior art keywords
change amount
section
speed change
vehicle
collision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9291434A
Other languages
Japanese (ja)
Other versions
JP3204180B2 (en
Inventor
Junji Kanemoto
淳司 金本
Hiroaki Kimura
裕昭 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP29143497A priority Critical patent/JP3204180B2/en
Publication of JPH10185942A publication Critical patent/JPH10185942A/en
Application granted granted Critical
Publication of JP3204180B2 publication Critical patent/JP3204180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Bags (AREA)

Abstract

PROBLEM TO BE SOLVED: To comprehensively judge a collision by threshold judgement of resultant velocity change obtained from resultant acceleration of shock causing side surface deformation and side movement and moving velocity change obtained from moving acceleration of the side movement component. SOLUTION: With an acceleration sensor 2 on the side unit 1s of a vehicle, resultant acceleration signal of shock causing side surface deformation and side movement is detected, which is supplied to short section integrator 5 and 7, intermediate section integrator 6 and 8 and a log section integrator 9, and a resultant velocity change is calculated. With an acceleration sensor 22 of a middle unit 1c of the vehicle, moving acceleration due to the component causing the side movement of the vehicle is detected, which is supplied to a short section integrator 25, middle term integrator 26 and a long section integrator 27, and a resultant velocity change for a specific time scale are calculated. Comparators 10 to 14 judge the synthetic velocity change of section integrators 5 to 9 with each threshold and comparators 28 to 30 judge the moving velocity change of section integrators 25 to 27 in term integrators 5 to 9 with each threshold. By integrating the results of each threshold judgement, judgement of collision becomes possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、車両の側面衝突時
及び車両の横方向移動を伴う前方又は後方衝突時に、乗
員側方保護システムを的確に作動させるようにした車両
衝突判定方法及び衝突判定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle collision judging method and a collision judging method for properly operating an occupant side protection system at the time of a side collision of a vehicle and at the time of a frontal or rearward collision involving lateral movement of the vehicle. Related to the device.

【0002】[0002]

【従来の技術】近年、車両の衝突時の安全性が特に重要
視され、衝突時に乗員を保護するエアバッグなどの乗員
保護システムは、様々な衝突局面に対応するため乗員保
護エリアの拡大が検討されている。従来のエアバッグ・
システムには、車両前方衝突時に乗員が慣性でステアリ
ングやダッシュボードなどの車室内前方部位又はフロン
トガラスに頭や顔面や胸などを打ち付けるのを未然に保
護する前方エアバッグを、運転席と助手席の両方に備え
たものがあるが、車両側面衝突時における乗員保護の役
割までは担うことはできないものであった。このため、
車両側面衝突時に乗員が車室内側方部位により危害を受
けるのを防止する側方エアバッグが、乗員側方の保護エ
リアとして重視されるようになった。
2. Description of the Related Art In recent years, safety in the event of a vehicle collision has been given particular importance, and occupant protection systems such as airbags for protecting occupants in the event of a collision have been studied to expand the occupant protection area in order to cope with various collision situations. Have been. Conventional airbags
The system includes front airbags that protect the occupant from hitting the head, face, chest, etc. on the front part of the vehicle interior such as steering or dashboard or the windshield due to inertia in the event of a frontal collision, the driver's seat and the passenger's seat. However, it cannot protect the occupant in the event of a vehicle side collision. For this reason,
Lateral airbags, which prevent occupants from being harmed by the side portions of the passenger compartment in the event of a vehicle side collision, have come to be regarded as important protection areas for the occupants.

【0003】側方エアバッグは、従来からの前方エアバ
ッグと同じように乗員が車室内部位に打ち当たる前にバ
ッグを膨らませ、未然に緩衝させる効果を得ることには
変わりないが、乗員の前方車室内空間よりも乗員の側方
車室内空間の方が狭いため、車両側方部側のシート内や
ドアインナーパネル内などの部位にバッグを埋め込み、
前方エアバッグよりも比較的小容量のバッグで乗員の傷
害を受け易い部位を保護する構想のもとに開発されてき
た。また、側方エアバッグが必要とされる衝突形態は、
自車両以外の車両といった重量物が高速に乗員に近い車
両側面に衝突するような時に、乗員が慣性によりドアイ
ンナ側に移動する前に強烈なドアインナーパネルなどの
侵入によって乗員に傷害が及ぼされる事象と、速度が比
較的緩慢な時や乗員室内と離れた車両側面に衝突する
時、或は衝突物の剛性が比較的低い構造物が衝突する時
等に、乗員自身の慣性による移動により側方車室内部位
にぶつかり傷害を受ける事象とに大別される。
[0003] Like the conventional front airbag, the side airbag inflates the bag before the occupant hits the inside of the passenger compartment, and still has the effect of damping the bag. Since the space inside the passenger compartment is smaller than the space inside the vehicle, the bag is buried in the seat on the side of the vehicle or inside the door inner panel,
It has been developed under the concept of protecting a part that is susceptible to occupant injury with a bag having a relatively smaller capacity than a front airbag. In addition, the type of collision that requires a side airbag is
When a heavy object such as a vehicle other than the host vehicle collides with the vehicle side near the occupant at high speed, the occupant may be injured by the intrusion of a strong door inner panel etc. before moving to the door inner side due to inertia. When the vehicle travels due to the inertia of the occupant when the speed is relatively slow, when the vehicle collides with the side of the vehicle away from the passenger compartment, or when a structure with relatively low rigidity of the collision object collides, It is roughly divided into the event of hitting the vehicle interior and causing injury.

【0004】側方エアバッグを作動させる装置について
も、前方エアバッグの衝突判定時間よりもさらに速い時
間の衝突判定が要求され、特に激しい侵入を伴う高速側
面衝突時には、エアバッグが展開する時間と乗員を保護
する効果を考慮すると、数ms程の短時間での衝突判定
が要求される場合がある。このため、例えば機械的に接
点を閉じる圧縮スイッチや圧力センサをドア内に設置
し、ドアの圧縮と変形を感知することで高速に側面衝突
を判定する試みがなされてきた。
A device for operating the side airbag is also required to make a collision determination time shorter than the collision determination time of the front airbag. Particularly, in a high-speed side collision involving a severe intrusion, the time required for the airbag to deploy is reduced. Considering the effect of protecting the occupant, a collision determination in a short time of about several ms may be required. For this reason, for example, an attempt has been made to determine a side collision at a high speed by installing a compression switch or a pressure sensor, which mechanically closes a contact point, in a door and detecting compression and deformation of the door.

【0005】[0005]

【発明が解決しようとする課題】上記従来の機械的に接
点を閉じる圧縮スイッチや圧力センサをドア内に設置す
る試みは、激しいドアの変形による侵入を伴うような側
面衝突には有効であるが、例えば車両のBピラーに電柱
等の細長い物体が衝突する場合や、車両前部又は後部の
側面に衝突を受ける場合には、ドアの圧縮や変形からで
は有効な衝突判定を下せないことが多かった。また、ド
アの変形は伴うが車両乗員には影響のないような、自転
車などの軽量物のドアへの衝突や或いはドアの蹴飛ばし
などに伴う衝撃によって、本来であれば側方エアバッグ
を展開させたくないにも拘わらず衝突判定を下しやすい
といった課題を抱えるものであった。
The above-mentioned conventional attempt to install a compression switch or a pressure sensor in a door for mechanically closing contacts is effective for a side collision involving intrusion due to severe door deformation. For example, when an elongated object such as a utility pole collides with the B pillar of a vehicle, or when a collision occurs on the side of the front or rear of the vehicle, effective compression judgment cannot be made based on the compression or deformation of the door. There were many. In addition, the side airbag should be deployed by the impact of a light object such as a bicycle hitting the door or the kicking of the door, etc., which would deform the door but not affect the vehicle occupants. Despite not wanting to do so, there was a problem that it was easy to make a collision determination.

【0006】このため、車両側面衝突にも車両前方衝突
の判定方法と同様、高周波の振動に応答しないダンピン
グ特性を有する機械式接点方式の加速度センサ検知手法
や、アナログ加速度信号を出力する加速度センサにより
速度変化量等の演算結果をしきい値判別して衝突判定を
下す手法が提案されるようになった。しかしながら、車
両前方衝突判定の一手法のように加速度センサを車室内
中央部に設置した場合、ドアなどの強烈な変形を伴う侵
入を引き起こすような衝突を、短時間で判定するのは困
難であった。また、加速度センサを車室内中央部ではな
く、応答の速いBピラー中央等の車両側面部に設置した
場合、判定すべき時間内にダイナミックな加速度信号は
得られるものの、加速度センサを設置した車両側面部へ
の蹴飛ばしやドアを強打して閉扉したときの加速度信号
もダイナミックな加速度信号として検出されてしまい、
短区間の速度変化量の差がなくなってしまうために、側
方エアバッグの展開を必要とする多様な衝突形態に対
し、識別のための設定が困難であった。
[0006] For this reason, in the same manner as in the method of judging a frontal collision in a vehicle side collision, a mechanical contact type acceleration sensor detecting method having a damping characteristic that does not respond to high frequency vibration or an acceleration sensor that outputs an analog acceleration signal is used. A method has been proposed in which a collision determination is made by discriminating a calculation result of a speed change amount or the like as a threshold value. However, when an acceleration sensor is installed in the center of the vehicle compartment as in a method for determining a collision in front of a vehicle, it is difficult to determine in a short time a collision that may cause an intrusion involving strong deformation of a door or the like. Was. In addition, if the acceleration sensor is installed not in the center of the vehicle compartment but in the side of the vehicle such as the center of the B-pillar, which has a fast response, a dynamic acceleration signal can be obtained within the time to be determined, but the side of the vehicle on which the acceleration sensor is installed The acceleration signal when kicking off the door or closing the door by hitting the door is also detected as a dynamic acceleration signal,
Since there is no difference in the amount of change in speed in a short section, it is difficult to make settings for identification in various types of collisions that require deployment of a side airbag.

【0007】また、前記圧縮スイッチや圧力センサ同
様、ドア内に加速度センサを設置する手法も提案されて
いる。例えば、特開平7−2049号「対物車両側面衝
突時の乗員拘束装置及び乗員拘束方法」の実施例には、
フロントドアの乗員着座付近に値するドアの内側パネル
の下側最後端四分割体の凹みポケットに設置した加速度
計から、側方衝突によって潰れた外側ドアパネルによっ
て通打される時の120Gのダイナミックな加速度信号
をトリガとして一定時間の加速度積分値にて衝突判定す
る装置が開示されている。しかしながら、この衝突判定
装置は、ドアへの強烈な衝突に対しては有効であるが、
ドア以外に衝突するようなBピラーへの電柱衝突や前方
又は後方の側面への衝突、或いは前方衝突でも車両横方
向移動を伴うようなオフセット衝突や斜めの衝突に対し
ては有効ではなく、側方エアバッグ展開を必要とする多
様な衝突形態に対し判定性能を維持するのが容易でない
等の課題があった。
[0007] As with the compression switch and the pressure sensor, a method of installing an acceleration sensor in a door has been proposed. For example, Japanese Patent Application Laid-Open No. 7-2049 entitled "An occupant restraint device and occupant restraint method in the event of a side collision of an objective vehicle"
Dynamic acceleration of 120G when struck by an outer door panel collapsed by a side impact from an accelerometer installed in a recessed pocket in the lowermost quadrant of the lower side of the inner panel of the door, worthy of near the occupant seating of the front door An apparatus is disclosed in which a signal is used as a trigger to determine a collision based on an integral value of acceleration for a predetermined time. However, this collision determination device is effective for a strong collision with a door,
It is not effective for electric pole collision with the B pillar, collision with the front or rear side, or offset collision or diagonal collision that involves lateral movement of the vehicle in front collision. On the other hand, there is a problem that it is not easy to maintain the judgment performance with respect to various types of collisions that require airbag deployment.

【0008】本発明は、衝突時に車両に発生する特定の
場所の各速度変化量を統合して判断することにより、車
両が広範囲に受ける側面衝突は勿論、横方向移動を伴う
ような前方又は後方衝突に対してもその衝突判定能力を
備えることを目的とするものである。
The present invention integrates and determines the amount of change in speed of a specific place that occurs in a vehicle at the time of a collision, so that the vehicle is not only subjected to a lateral collision but also to a forward or rearward movement that involves lateral movement. An object of the present invention is to provide a collision determination ability for a collision.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明の車両の衝突判定装置は、車両の側面変形と
側方移動の少なくとも一方をもたらす衝撃に起因する合
成加速度を検出する加速度センサと、前記合成加速度を
現在値まで所定区間に亙って積分して合成速度変化量を
算出する合成速度変化量算出手段と、前記衝撃のうち車
両の側方移動をもたらす成分に起因する移動加速度を検
出する加速度センサと、前記移動加速度を現在値まで所
定区間に亙って積分して移動速度変化量を算出する移動
速度変化量算出手段と、前記合成速度変化量及び移動速
度変化量をそれぞれ所定のしきい値を基準にしきい値判
別し、該各しきい値判別結果を総合して衝突判定を下す
判定手段とを具備することを特徴とするものである。
In order to achieve the above-mentioned object, a vehicle collision judging device according to the present invention comprises an acceleration sensor for detecting a combined acceleration caused by an impact that causes at least one of side deformation and lateral movement of the vehicle. Means for calculating a combined speed change amount by integrating the combined acceleration up to a current value over a predetermined section; and a movement acceleration caused by a component of the impact that causes the vehicle to move laterally. An acceleration sensor for detecting the moving speed, a moving speed change amount calculating means for calculating the moving speed change amount by integrating the moving acceleration to a current value over a predetermined section, and calculating the combined speed change amount and the moving speed change amount respectively. And a judgment means for judging a threshold value on the basis of a predetermined threshold value, and making a collision judgment by summing up the results of the threshold value judgments.

【0010】また、前記合成速度変化量算出手段は、前
記合成加速度を短区間と中区間と長区間の3区間に亙っ
てそれぞれ区間積分して各合成速度変化量を算出し、前
記移動速度変化量算出手段は、前記移動加速度を短区間
と中区間と長区間の3区間に亙ってそれぞれ区間積分し
て各移動速度変化量を算出し、前記判定手段は、短区間
合成速度変化量又は中区間合成速度変化量がしきい値を
越え、かつ前記移動加速度が所定のしきい値を越えた
か、或いは短区間合成速度変化量又は中区間合成速度変
化量がしきい値を越え、かつ長区間移動速度変化量が所
定のしきい値を越えたか、或いは長区間合成速度変化量
が所定のしきい値を越え、かつ短区間移動速度変化量か
又は中区間移動速度変化量が所定のしきい値を越えたと
きに、衝突判定を下すことを特徴とするものである。
The synthetic speed change amount calculating means calculates each synthetic speed change amount by section integrating the synthetic acceleration over three sections, namely, a short section, a middle section and a long section. The change amount calculating means calculates each moving speed change amount by section integrating the moving acceleration over three sections of a short section, a middle section and a long section, and the determining means calculates the short section combined speed change amount. Or, the intermediate section combined speed change amount exceeds a threshold value, and the moving acceleration exceeds a predetermined threshold value, or the short section combined speed change amount or the middle section combined speed change amount exceeds the threshold value, and The long section movement speed change amount exceeds a predetermined threshold value, or the long section synthetic speed change amount exceeds a predetermined threshold value, and the short section movement speed change amount or the middle section movement speed change amount is a predetermined value. When the threshold is exceeded, the collision judgment is It is characterized in.

【0011】或いはまた、前記合成速度変化量算出手段
は、前記合成加速度を短区間と中区間と長区間の3区間
に亙ってそれぞれ区間積分して各合成速度変化量を算出
し、前記移動速度変化量算出手段は、前記移動加速度を
短区間と中区間と長区間の3区間に亙ってそれぞれ区間
積分して各移動速度変化量を算出し、前記判定手段は、
短区間合成速度変化量又は中区間合成速度変化量がしき
い値を越え、かつ前記移動加速度が所定のしきい値を越
えたか、或いは短区間合成速度変化量がしきい値を越
え、かつ中区間合成速度変化量又は長区間合成速度変化
量がしきい値を越え、なおかつ短区間移動速度変化量又
は中区間移動速度変化量又は長区間移動速度変化量が所
定のしきい値を越えたときに、衝突判定を下すことを特
徴とするものである。
Alternatively, the combined speed change amount calculating means calculates each combined speed change amount by integrating the combined acceleration in three sections of a short section, a middle section and a long section. The speed change calculating means calculates each moving speed change by section integrating the moving acceleration over three sections of a short section, a middle section, and a long section.
Either the short section synthetic speed change amount or the middle section synthetic speed change amount exceeds a threshold value, and the moving acceleration exceeds a predetermined threshold value, or the short section synthetic speed change amount exceeds the threshold value, and When the section synthetic speed change amount or the long section synthetic speed change amount exceeds the threshold, and the short section moving speed change amount, the middle section moving speed change amount, or the long section moving speed change amount exceeds a predetermined threshold value. In addition, a collision is determined.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態につい
て、図1ないし図14を参照して説明する。図1は、本
発明の車両の衝突判定装置を片側の車両側面ユニットと
車両中央ユニットで構成した場合の一実施形態を示す回
路構成図、図2は、図1に示した車両の衝突判定装置に
よる衝突判定領域を示す図、図3は、車両の側面衝突を
受ける側と中央部及び側面衝突を受ける側と反対側の位
置で側面衝突時に検出される加速度成分を示す波形図、
図4は、車両の側面部と中央部における側面衝突と強ド
ア閉めや乱用事象との加速度の比較を示す波形図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a circuit diagram showing an embodiment in which the vehicle collision judging device of the present invention comprises one vehicle side unit and a vehicle central unit. FIG. 2 is a vehicle collision judging device shown in FIG. FIG. 3 is a waveform diagram showing an acceleration component detected at the time of a side collision at a position opposite to the side receiving the side collision of the vehicle, at the center portion and at a position opposite to the side receiving the side collision,
FIG. 4 is a waveform diagram showing a comparison of acceleration between a side collision and a strong door closing or an abuse event in a side portion and a center portion of a vehicle.

【0013】図1に示す車両の衝突判定装置1は、側面
衝突を受ける側の車両の側面変形量と移動量の少なくと
も一方をもたらす加速度が検出できる位置、例えばBピ
ラーの下側やサイドシル(別名サイドメンバ)又はクロ
スメンバの外側等の車両両側に配置した車両側面ユニッ
ト1sと、側面衝突を受ける側の何れかに係わらず車両
の移動量のみに起因する加速度を検出できる位置、例え
ばセンタートンネルに配置した車両中央ユニット1cと
から構成される。車両中央ユニット1cは、車両の横方
向軸(Y軸)以外に車両の縦方向軸(X軸)の加速度も
別途検出し、車両前方衝突の衝突判定を併せ行うように
なっている。
The vehicle collision judging device 1 shown in FIG. 1 is capable of detecting an acceleration which causes at least one of a side deformation amount and a movement amount of a vehicle receiving a side collision, for example, a position below a B pillar or a side sill (also known as a side sill). A side member) or a vehicle side unit 1s disposed on both sides of the vehicle, such as outside the cross member, and a position at which acceleration due to only the movement amount of the vehicle can be detected regardless of which side receives the side collision, for example, in a center tunnel. And a central vehicle unit 1c. The vehicle central unit 1c separately detects acceleration not only in the horizontal direction (Y axis) of the vehicle but also in the vertical direction (X axis) of the vehicle, and performs collision determination of a vehicle forward collision.

【0014】また、Bピラー下側やサイドシル或いはク
ロスメンバの外側等の車両の側面部の位置で検出される
加速度は、側面衝突を受ける側では車両の側面変形量と
移動量が合成された合成加速度として検出され、衝突初
期にはほぼ側面変形量に起因する成分の比重が高く、車
両の変形が収まってからは車両の移動量に起因する成分
となることが、衝突実験結果から分かっている。具体的
には、例えば図3に示す速度(加速度積分値)波形で見
たときに、点線と時間軸とに挟まれた梨地模様を付して
示した領域が、車両の移動量であり、実線と点線の間に
挟まれた斜線を施した領域が、車両の側面変形量を示
す。また、側面衝突を受ける側と反対側では車両センタ
ーユニット21で検出できる加速度と同様、車両の移動
量のみに起因する成分が逆極性で検出されるため、加速
度センサの軸方向を側面衝突を受ける側に合わせた場
合、すなわち極性を反転して示した波形が、一点鎖線で
示した波形となる。
The acceleration detected at the side of the vehicle, such as below the B pillar, outside the side sill, or outside the cross member, is the combined acceleration obtained by combining the amount of side deformation and the amount of movement of the vehicle on the side receiving the side collision. It is known from the collision test results that the acceleration is detected, and the specific gravity of the component due to the lateral deformation is high in the early stage of the collision, and becomes the component due to the moving amount of the vehicle after the deformation of the vehicle stops. . Specifically, for example, when viewed with a velocity (acceleration integrated value) waveform shown in FIG. 3, a region indicated by a satin pattern sandwiched between a dotted line and a time axis is a movement amount of the vehicle, The shaded area sandwiched between the solid line and the dotted line indicates the amount of side deformation of the vehicle. In addition, on the side opposite to the side that receives the side collision, since the component due to only the moving amount of the vehicle is detected with the opposite polarity, similarly to the acceleration that can be detected by the vehicle center unit 21, the axial direction of the acceleration sensor receives the side collision. In this case, the waveform shown with the polarity reversed is the waveform shown by the one-dot chain line.

【0015】また、側面衝突と強ドア閉めや乱用事象等
において観測される加速度を比較すると、両者の差異は
例えば図4(A),(B)にそれぞれ点線と実線で示す
波形に典型的に表れる。図3で説明したように、時速5
0Km/hで90°の衝突角度で側面衝突した場合は、
サイドシル等の車両側面部では、側面変形量と移動量が
合成された合成加速度が観測され、センタートンネル等
の車両の中央部では、車両の移動量に起因する加速度が
観測される。これに対し、強ドア閉めや乱用事象等の場
合は、車両の移動を伴わないため、サイドシル等の車両
側面部においては、短時間の振幅の大きな振動波形とし
て観測され、センタートンネル等の車両中央部では振動
が減衰された振動波形として観測される。
When the accelerations observed in a side collision and a strong door closing or an abuse event are compared, the difference between the two is typically represented by waveforms shown by dotted lines and solid lines in FIGS. 4A and 4B, respectively. appear. As described with reference to FIG.
In the case of a side impact at a collision angle of 90 ° at 0 km / h,
At the side surface of the vehicle such as a side sill, a combined acceleration obtained by combining the amount of side deformation and the amount of movement is observed, and at the center of the vehicle such as a center tunnel, acceleration due to the amount of movement of the vehicle is observed. On the other hand, in the case of a strong door closing or an abuse event, etc., since the vehicle does not move, it is observed as a short-time large vibration waveform on the side surface of the vehicle such as a side sill, and the center of the vehicle such as a center tunnel is not observed. In the part, the vibration is observed as an attenuated vibration waveform.

【0016】図1に示す車両側面ユニット1sの加速度
センサ2により検出される車両の横方向軸(Y軸)の加
速度信号、すなわち車両の側面変形と側方移動をもたら
す衝撃に起因する合成加速度信号から、折り返し歪み除
去用のローパスフィルタ3とAD変換器4を介して離散
値加速度データGsy(k)が得られる。加速度センサ
2と後述の加速度センサ22は、例えばピエゾ抵抗変化
を利用する応力歪みゲージを半導体基板上に組み込んだ
ものが用いられる。ただし、ピエゾ抵抗変化を検出する
半導体加速度センサに限らず、静電容量型半導体加速度
センサや圧電素子を用いた加速度センサを用いてもよ
く、1つのセンサで2軸及び3軸の加速度を検出できる
ものを用いることもできる。なお、本実施形態の場合、
折り返し歪みの影響を排除するローパスフィルタ3及び
後述するローパスフィルタ23は、およそ100Hzか
ら500Hz程を越える高周波成分を除去するよう設定
される。
An acceleration signal on the lateral axis (Y axis) of the vehicle detected by the acceleration sensor 2 of the vehicle side unit 1s shown in FIG. 1, that is, a composite acceleration signal resulting from an impact that causes side deformation and lateral movement of the vehicle. Thus, discrete-valued acceleration data Gsy (k) is obtained through the low-pass filter 3 for removing aliasing distortion and the AD converter 4. As the acceleration sensor 2 and an acceleration sensor 22 to be described later, for example, a sensor in which a stress-strain gauge utilizing piezoresistance change is incorporated on a semiconductor substrate is used. However, the present invention is not limited to a semiconductor acceleration sensor that detects a change in piezoresistance, and may use a capacitance-type semiconductor acceleration sensor or an acceleration sensor that uses a piezoelectric element. One sensor can detect two-axis and three-axis acceleration. Those can also be used. In the case of the present embodiment,
The low-pass filter 3 for eliminating the effects of aliasing and a low-pass filter 23 described later are set to remove high-frequency components exceeding about 100 Hz to about 500 Hz.

【0017】離散値加速度データGsy(k)は、続く
短区間積分器5,7と中区間積分器6,8と長区間積分
器9に供給され、それぞれ所定の時間尺度の速度変化量
の算出に供される。短区間積分器5,7にて算出される
値は、比較的短い一定時間区間、例えば2msから4m
s程の区間で合成加速度データGsy(k)を現在値ま
で逐次加算したものであり、比較器10,12に送られ
る。中区間積分器6,8にて算出される値は、比較的中
間の一定時間区間、例えば4msから12ms程の区間
で合成加速度データGsy(k)を現在値まで逐次加算
したものであり、比較器11,13に送られる。長区間
積分器9にて算出される値は、比較的長い一定時間区
間、例えば12msから30ms程の区間で合成加速度
データGsy(k)を現在値まで逐次加算したものであ
り、比較器14に送られる。
The discrete value acceleration data Gsy (k) is supplied to the following short section integrators 5 and 7, middle section integrators 6 and 8, and long section integrator 9 to calculate the speed change amount on a predetermined time scale. To be served. The value calculated by the short interval integrators 5 and 7 is a relatively short fixed time interval, for example, 2 ms to 4 m
This is a result obtained by sequentially adding the synthetic acceleration data Gsy (k) to the current value in a section of about s, and is sent to the comparators 10 and 12. The values calculated by the middle section integrators 6 and 8 are obtained by sequentially adding the synthetic acceleration data Gsy (k) to the current value in a relatively intermediate fixed time section, for example, a section from 4 ms to 12 ms. Are sent to the containers 11 and 13. The value calculated by the long section integrator 9 is obtained by sequentially adding the synthetic acceleration data Gsy (k) to the current value in a relatively long fixed time section, for example, a section of about 12 ms to 30 ms. Sent.

【0018】比較器10〜14は、各区間積分器5〜9
が合成加速度データを区間積分して得た合成速度変化量
をしきい値判別するものであり、それぞれのしきい値は
判別目的に合わせて設定される。すなわち、比較器1
0,11のしきい値ss1,sm1は、車両側方構造物
の変形により激しい侵入を伴うような高速側面衝突など
を判定できる急峻な合成速度変化量に値する量に設定し
てあり、短区間と中区間の両方の区間尺度を有する。比
較器10,11の出力は、次段の論理和ゲート15に送
られる。比較器12,13のしきい値ss2,sm2
は、乗員自身の慣性による移動により側方車室内部位に
ぶつかり傷害を受ける側面衝突形態に対して、ある程度
発生する車両側面変形の合成速度変化量又は車両移動の
合成速度変化量を判定し、例えば衝突速度が比較的緩慢
な時や斜めからの衝突、或は衝突物剛性が比較的低い構
造物と衝突する時等に、乗員側方保護システムの展開が
必要な衝突レベルで衝突判定が下されるよう設定され、
短区間と中区間の両方の時間尺度を有する。比較器1
2,13の出力は、次段の論理和ゲート16に送られ
る。長区間積分器9には、強いドア閉めや蹴飛ばしなど
の乱用或いは軽量物衝突のような単発的に大きい加速度
が発生する事象と、比較的長い時間に亙って速度変化が
発生する衝突事象とが区別できるよう長めの区間が設定
してあり、このためこれらの事象が区別できるようなし
きい値slが比較器14に設定される。比較器14の出
力は、論理和ゲート15,16の出力とともに通信手段
51を介して車両中央ユニット1cに送り込まれるが、
それぞれa種,b種,c種信号と呼ばれ、異なる判定情
報として扱われる。
Each of the comparators 10 to 14 has a corresponding one of the interval integrators 5 to 9.
Is for threshold value discrimination of a combined speed change amount obtained by section integration of the combined acceleration data, and each threshold value is set according to a discrimination purpose. That is, the comparator 1
The threshold values ss1 and sm1 of 0 and 11 are set to values corresponding to a steep combined speed change amount that can determine a high-speed side collision or the like that involves a severe intrusion due to deformation of a vehicle side structure. It has a section scale of both the and the middle section. The outputs of the comparators 10 and 11 are sent to the OR gate 15 at the next stage. Threshold values ss2 and sm2 of comparators 12 and 13
For the side collision mode in which the occupant moves by the inertia of the occupant and hits the side cabin, the combined speed change amount of the vehicle side deformation or the combined speed change amount of the vehicle movement that occurs to some extent is determined, for example, When the collision speed is relatively slow, when obliquely impacting, or when colliding with a structure with relatively low impact object rigidity, a collision is judged at a collision level that requires deployment of the occupant side protection system. Is set to
It has both short and medium time scales. Comparator 1
The outputs of 2 and 13 are sent to the OR gate 16 at the next stage. The long interval integrator 9 includes an event in which a single large acceleration occurs such as an abuse such as strong door closing or kicking or a light object collision, and a collision event in which a speed change occurs over a relatively long time. Is set longer so that these events can be distinguished from each other. Therefore, a threshold value sl is set in the comparator 14 so that these events can be distinguished. The output of the comparator 14 is sent to the vehicle central unit 1c via the communication means 51 together with the outputs of the OR gates 15 and 16,
These signals are referred to as type a, type b, and type c signals, respectively, and are handled as different determination information.

【0019】通信手段51は、例えば高速伝送用の専用
通信プロトコルで結ばれた一対の専用ICを車両側面ユ
ニット1sと車両中央ユニット1cに搭載することで構
成することができる。また、これ以外にも、例えばイン
ターフェース回路とマイクロプロセッサにより独自の通
信プロトコルに基づいて通信を行う構成とすることもで
きる。また、通信手段51は、衝突判定情報信号である
a種,b種,c種信号の他に、動作が正常に行われてい
ることを示す信号や、或いは故障診断により確定した故
障個所を示す信号等を、適時伝送させることも可能であ
る。
The communication means 51 can be constituted by mounting a pair of dedicated ICs connected by, for example, a dedicated communication protocol for high-speed transmission in the vehicle side unit 1s and the vehicle central unit 1c. In addition to this, for example, a configuration in which communication is performed based on a unique communication protocol by an interface circuit and a microprocessor can also be adopted. In addition, the communication unit 51 indicates a signal indicating that the operation is normally performed, or a fault location determined by the fault diagnosis, in addition to the type a, type b, and type c signals that are the collision determination information signals. It is also possible to transmit a signal or the like in a timely manner.

【0020】車両中央ユニット1cの加速度センサ22
により検出される車両の横方向軸(Y軸)の加速度信
号、すなわち車両の側面変形と側方移動をもたらす衝撃
のうち車両の側方移動をもたらす成分に起因する移動加
速度信号は、ローパスフィルタ23とAD変換器24を
介して離散値加速度データGcy(k)に変換される。
この移動加速度データGcy(k)は、続く短区間積分
器25と中区間積分器26及び長区間積分器27に供給
され、それぞれ所定の時間尺度の移動速度変化量の算出
に供される一方、直接比較器31にも供給される。比較
器31のしきい値は、例えば3Gから5G相当の加速度
値cssに設定される。比較器31の出力は、次段の波
形整形器38に供給され、一定時間の持続波形として出
力される。波形整形器38による遅延時間は、例えば1
0msないし30ms程度が適当であり、後述するその
他全ての波形整形器も同様の遅延時間に設定される。
The acceleration sensor 22 of the vehicle central unit 1c
The acceleration signal on the lateral axis (Y-axis) of the vehicle, which is detected by the above, is a low-pass filter 23 Is converted into discrete value acceleration data Gcy (k) via the AD converter 24.
The moving acceleration data Gcy (k) is supplied to the following short section integrator 25, middle section integrator 26, and long section integrator 27, and is used for calculating a moving speed change amount on a predetermined time scale, respectively. It is also supplied to the direct comparator 31. The threshold value of the comparator 31 is set to, for example, an acceleration value css corresponding to 3G to 5G. The output of the comparator 31 is supplied to the next-stage waveform shaper 38, and is output as a continuous waveform for a fixed time. The delay time of the waveform shaper 38 is, for example, 1
An appropriate time is about 0 ms to 30 ms, and all other waveform shapers described later are set to the same delay time.

【0021】ところで、長区間積分器27にて算出され
る値は、比較的長い一定時間区間、例えば12msから
30ms程の区間で移動加速度データGcy(k)を現
在値まで逐次加算したものであり、比較器30へと供給
される。比較器30のしきい値は、強いドア閉めや蹴飛
ばし等の乱用及び軽量物衝突のような単発的に大きい加
速度が発生する事象と、比較的長い区間に亙って速度変
化が発生する衝突事象を区別する程度の値clに設定し
てある。このしきい値clは、図2(A)に示したよう
に、移動加速度の長区間積分値と合成加速度の中区間積
分値を二軸とする平面において、車両側面ユニット1s
内の比較器11,13のしきい値sm1,sm2ととも
に斜線を付した領域を衝突判定領域に規定する値として
重要である。比較器30の出力は、次段の波形整形器3
6に供給され、前記一定時間の持続波形として出力され
る。中区間積分器26にて算出される値は、例えば4m
sから12ms程の区間で移動加速度データGcy
(k)を現在値まで逐次加算したものであり、比較器2
9に供給される。短区間積分器25にて算出される値
は、例えば2msから4ms程の区間で移動加速度デー
タGcy(k)を現在値まで逐次加算したものであり、
比較器28に供給される。比較器28,29のしきい値
cs,cmとしては、例えば乗員室より前又は後の側面
部に衝突する事象やトラックなどの高い車両等が衝突す
る事象、或いは車両前方衝突でも車両の横移動を伴う高
速オフセット衝突や高速斜め衝突のような事象等のよう
にサイドシル付近の車両変形が比較的発生しない事象が
素早く判定できるような値が用いられる。従って、しき
い値cs,cmは、短区間と中区間の両方の区間でもっ
て車両移動量が顕著に発生するような衝突事象を判定す
るための基準となる。例えば、図2(B)に示したよう
に、移動加速度の中区間積分値と合成加速度の長区間積
分値を二軸とする平面において、比較器29のしきい値
cmは、車両側面ユニット1s内の比較器14のしきい
値slとともに、斜線を付した領域を衝突判定領域とし
て規定する値となる。比較器28,29の出力は、続く
論理和ゲート32を経由して波形整形器34に供給さ
れ、一定の持続波形として出力される。
The value calculated by the long section integrator 27 is obtained by sequentially adding the moving acceleration data Gcy (k) to the current value in a relatively long fixed time section, for example, a section from 12 ms to 30 ms. , Comparator 30. The threshold value of the comparator 30 is defined as an abuse such as strong closing or kicking of the door and a collision event in which a single large acceleration occurs such as a light object collision, and a collision event in which a speed change occurs over a relatively long section. Is set to a value cl enough to distinguish. This threshold value cl is, as shown in FIG. 2A, a vehicle side surface unit 1s on a plane having two axes of a long section integral value of the moving acceleration and a middle section integral value of the synthetic acceleration.
The hatched area together with the threshold values sm1 and sm2 of the comparators 11 and 13 are important as values defining the collision determination area. The output of the comparator 30 is the waveform shaper 3 of the next stage.
6 and output as a continuous waveform for the predetermined time. The value calculated by the middle section integrator 26 is, for example, 4 m
moving acceleration data Gcy in a section of about 12 ms from s
(K) is sequentially added up to the current value.
9. The value calculated by the short section integrator 25 is obtained by sequentially adding the moving acceleration data Gcy (k) to the current value in a section of about 2 ms to 4 ms, for example.
The signal is supplied to the comparator 28. As the threshold values cs, cm of the comparators 28, 29, for example, an event of colliding with a side portion in front of or behind the passenger compartment, an event of colliding with a high vehicle such as a truck, or a lateral movement of a vehicle even in a frontal collision. A value that can quickly determine an event in which vehicle deformation is relatively unlikely to occur near the side sill, such as an event such as a high-speed offset collision or a high-speed oblique collision accompanied by the following. Therefore, the threshold values cs, cm serve as a reference for determining a collision event in which the vehicle movement amount significantly occurs in both the short section and the middle section. For example, as shown in FIG. 2B, on a plane having two axes of the intermediate section integral value of the moving acceleration and the long section integral value of the synthetic acceleration, the threshold value cm of the comparator 29 is equal to the vehicle side unit 1s Together with the threshold value sl of the comparator 14 in the above, the value is a value that defines the hatched area as the collision determination area. The outputs of the comparators 28 and 29 are supplied to the waveform shaper 34 via the subsequent OR gate 32, and are output as a constant continuous waveform.

【0022】なお、図2(A)には、車両の進行方向に
対して90度で交差する側面衝突について、時速50k
m/hと時速20km/hと時速15km/hについて
の実測値が曲線で描かれており、また強ドア閉めや乱用
事象等が衝突判定領域外にあることを、点線で囲って図
示してある。また、図2(B)には、高速斜め前方衝突
と時速15km/hの上記90°側面衝突についての実
測値が曲線で描かれており、また強ドア閉めや乱用事象
等が衝突判定領域外にあることを、点線で囲って図示し
てある。
FIG. 2A shows a side collision at 90 degrees with respect to the traveling direction of the vehicle, at 50 kph / h.
Actual measured values for m / h, 20 km / h and 15 km / h are drawn by curves, and the fact that a strong door closing or an abuse event is outside the collision determination area is indicated by a dotted line. is there. In FIG. 2B, measured values of a high-speed diagonal forward collision and the above-mentioned 90 ° side collision at a speed of 15 km / h are drawn by curves, and a strong door closing, an abuse event, etc. are outside the collision determination area. Is surrounded by a dotted line and shown in FIG.

【0023】波形整形器38の出力は、車両側面ユニッ
ト1sから通信手段51を介して車両中央ユニット1c
に送られてきた判定情報のうちのa種信号と対にして論
理積ゲート41に送られる。a種信号も、車両中央ユニ
ット1cで受信後、波形整形器37にて一定時間の持続
波形として論理積ゲート41へと送られる。論理積ゲー
ト41の出力は、続く論理和ゲート42に送られて最終
の衝突判定信号とされる。このため、例えば図5,6に
示すように、車両側面ユニット1sにより、車両側方構
造物の変形により激しい侵入を伴うような高速側面衝突
等を判定した場合は、ある一定時間区間内に車両中央ユ
ニット1cが3Gないし5G程度の加速度を検出した場
合に、衝突判定が下されることになる。なお、図5,6
に示した演算値波形は、衝突する車両のフロント剛性の
高低差を反映したものであるが、どちらも車両中央ユニ
ット1c側での衝突判定と車両側面ユニット1s側の衝
突判定が両立した時点で最終的な衝突判定が下される点
で共通するものである。車両の側面ユニット1s側にお
いて、フロント剛性の比較的高い車両との側面衝突には
短区間積分による方が速い判定が得られ、フロント剛性
の比較的低い車両との側面衝突には中区間積分による方
が速い判定が得られる。また、側方エアバッグの展開が
必要でない事象として、実線で示した強ドア閉めや乱用
事象等、或いは一点鎖線で示した電柱等の剛性の高い物
体への低速側面衝突、或いは点線で示した時速15Km
/hで衝突角度90°の側面衝突などが併せ例示してあ
るが、これらの事象に関しては、車両中央ユニット1c
側では衝突判定がなされるものの、車両側面ユニット1
s側では衝突判定に至らないために、最終的な衝突判定
が下されることはない。さらにまた、車両中央ユニット
1cに3Gから5G程度の加速度を検出させるようにし
たのは、例えば車両側面ユニット1sの加速度センサ2
でダイナミックに加速度が出力されるような故障が発生
した場合等に、誤って通信手段51からa種信号が送信
されたり、或いは外来ノイズ等で車両中央ユニット1c
が誤ってa種信号を受信してしまうといった不都合を回
避し、車両の衝突判定装置1の安全性を確保する目的
と、実際に車両側方構造物の変形により激しい侵入を伴
うような高速側面衝突等の場合に要求される数ms程の
高速判定に応える目的からである。特に、後者の目的は
重要であり、車両側面ユニット1sでは数ms程の高速
判定は可能であるが、衝突発生から車両中央ユニット1
cが車両の移動開始を検出するまでに数ms程の遅れが
不可避的に発生するため、速度変化量が十分発生する前
に衝突判定を下さねばならないからである。
The output of the waveform shaper 38 is sent from the vehicle side unit 1s via the communication means 51 to the vehicle center unit 1c.
Are sent to the AND gate 41 in pairs with the a-type signal of the judgment information sent to the AND gate 41. The a-type signal is also received by the vehicle central unit 1c, and then sent to the AND gate 41 as a continuous waveform for a predetermined time by the waveform shaper 37. The output of the AND gate 41 is sent to the subsequent OR gate 42 to be a final collision determination signal. For this reason, for example, as shown in FIGS. 5 and 6, when the vehicle side unit 1s determines a high-speed side collision or the like that involves a severe intrusion due to deformation of the vehicle side structure, the vehicle is not moved within a certain time period. When the central unit 1c detects an acceleration of about 3G to 5G, a collision is determined. 5 and 6
The waveforms of the calculated values shown in (1) and (2) reflect the difference in the level of the front stiffness of the vehicle colliding with each other. However, when both the collision determination on the vehicle central unit 1c side and the collision determination on the vehicle side unit 1s are compatible, This is common in that a final collision determination is made. On the side unit 1s side of the vehicle, a short determination is obtained by a short interval integration for a side collision with a vehicle having relatively high front rigidity, and a middle interval integration is performed for a side collision with a vehicle having relatively low front rigidity. The faster judgment is obtained. In addition, events that do not require the deployment of the side airbags include strong door closing and abuse events indicated by solid lines, low-speed side impacts on rigid objects such as electric poles indicated by dashed lines, or dotted lines. 15km / h
/ H indicates a side impact at a collision angle of 90 °, etc.
Although the collision is determined on the side, the vehicle side unit 1
On the s side, since no collision determination is made, no final collision determination is made. Furthermore, the vehicle central unit 1c is made to detect acceleration of about 3G to 5G because, for example, the acceleration sensor 2 of the vehicle side unit 1s is used.
In the case where a failure occurs such that the acceleration is dynamically output in the vehicle, the a-type signal is erroneously transmitted from the communication means 51 or the vehicle central unit 1c
To avoid the inconvenience of receiving the a-type signal by mistake and to ensure the safety of the vehicle collision determination device 1 This is for the purpose of responding to a high-speed determination of several ms required in the case of a collision or the like. In particular, the latter purpose is important, and a high-speed determination of about several ms is possible in the vehicle side unit 1s.
This is because a delay of about several milliseconds occurs inevitably until c detects the start of the movement of the vehicle, and therefore a collision determination must be made before a sufficient speed change occurs.

【0024】なお、本実施形態とは異なる他の手法とし
て、例えば2ms前後の短区間積分により前記3Gない
し5G程度の加速度値以上に相当する速度変化量をもっ
て判定することも可能である。ただし、衝突判定の適正
時間と車両の構造差による衝突開始時間から車両移動が
始まるまでの時間遅れ、或いは車両移動初期の速度変化
量の大小等に配慮し、実験結果等を踏まえた適宜値に決
定するとよい。
As another method different from the present embodiment, for example, it is also possible to determine the speed change amount corresponding to the acceleration value of about 3G to 5G or more by a short section integration of about 2 ms. However, in consideration of the delay time from the collision start time due to the structural difference between the vehicle and the appropriate time for the collision judgment and the difference in vehicle structure, or the magnitude of the speed change at the beginning of vehicle movement, etc. It is good to decide.

【0025】波形整形器36の出力は、車両側面ユニッ
ト1sから通信手段51を介して車両中央ユニット1c
に送られてきた判定情報のうちのb種信号と対にして論
理積ゲート40に供給される。このb種信号もまた、車
両中央ユニット1cで受信後、波形整形器35にて一定
時間の持続波形に変えて論理積ゲート40に供給され
る。論理積ゲート40の出力は、続く論理和ゲート42
において最終の衝突判定信号とされる。このため、図
7,8に示すように、車両側面ユニット1sがある程度
発生する車両側面変形又は車両移動の速度変化量を判定
し、ある一定時間区間内に車両中央ユニット1cで車両
移動の長区間速度変化量を検出したときに、衝突判定が
下されることになる。なお、図7,8に示した演算値波
形は、高速側面斜め衝突と中速90°側面衝突との違い
を反映してはいるが、どちらも車両中央ユニット1c側
での衝突判定と車両側面ユニット1s側の衝突判定が両
立した時点で最終的な衝突判定が下される点は同じであ
る。ここで、衝突判定する構成においても、車両側面ユ
ニット1s側における短区間積分と中区間積分の2つの
積分値に基づき、衝突形態に合わせた速い判定が得られ
る。また、側方エアバッグの展開が必要でない事象とし
て、強ドア閉めや乱用事象等又は電柱等の剛性の高い物
体への低速側面衝突或いは時速15Km/hで衝突角度
90°の側面衝突などを、それぞれ実線と一点鎖鎖線と
点線とで例示してあるが、強ドア閉めや乱用事象等の場
合では、車両側面ユニット1s側で衝突判定がなされた
としても、車両中央ユニット1c側では車両判定に至ら
ないために、最終的な衝突判定が下されることはなく、
電柱等の剛性の高い物体への低速側面衝突或いは時速1
5Km/hで衝突角度90°の側面衝突の場合では、車
両中央ユニット1c側では衝突判定がなされるものの、
車両側面ユニット1s側では衝突判定に至らないため
に、最終的な衝突判定が下されることはない。
The output of the waveform shaper 36 is transmitted from the vehicle side unit 1s via the communication means 51 to the vehicle central unit 1c.
Are supplied to the AND gate 40 in pairs with the b-type signal of the judgment information sent to the AND gate. After being received by the vehicle central unit 1c, the b-type signal is also supplied to the AND gate 40 after being converted into a continuous waveform for a predetermined time by the waveform shaper 35. The output of the AND gate 40 is output to the subsequent OR gate 42
Is the final collision determination signal. For this reason, as shown in FIGS. 7 and 8, the vehicle side unit 1s determines the vehicle side deformation or the speed change amount of the vehicle movement that occurs to some extent, and the vehicle central unit 1c within a certain time period uses the vehicle central unit 1c for a long section. When the speed change amount is detected, the collision is determined. Although the calculated value waveforms shown in FIGS. 7 and 8 reflect the difference between the high-speed side oblique collision and the medium-speed 90 ° side collision, both of the collision determination on the vehicle central unit 1c side and the vehicle side The point that the final collision determination is made when the collision determination on the unit 1s side is compatible is the same. Here, also in the configuration of the collision determination, a quick determination according to the collision mode can be obtained based on the two integral values of the short section integration and the middle section integration on the vehicle side unit 1s side. Examples of events that do not require the deployment of the side airbag include a strong door closing or an abuse event, or a low-speed side collision with a rigid object such as a utility pole or a side collision with a collision angle of 90 ° at 15 km / h / h, Although the solid line, the chain line, and the dotted line respectively illustrate the case, in the case of a strong door closing, an abuse event, or the like, even if a collision is determined on the vehicle side unit 1s side, the vehicle central unit 1c side determines the vehicle. Because it does not reach, the final collision decision is not made,
Low-speed side impact on a rigid object such as a telephone pole or speed 1
In the case of a side collision at a collision angle of 90 ° at 5 km / h, although the collision is determined on the vehicle central unit 1c side,
The collision determination is not made on the side of the vehicle side unit 1s, so that the final collision determination is not made.

【0026】波形整形器34の出力は、車両側面ユニッ
ト1sから通信手段51を介して車両中央ユニット1c
に送られてきた判定情報のうちのc種信号と対にして論
理積ゲート39に供給される。このc種信号もまた、車
両中央ユニット1cで受信後、波形整形器33にて一定
時間の持続波形に変えて論理積ゲート39に供給され
る。論理積ゲート39の出力は、続く論理和ゲート42
において最終の衝突判定信号とされる。このため、例え
ば図9,10に示したように、車両側面ユニット1sに
より車両側面変形又は車両移動の長区間速度変化量を判
定した時、ある一定時間区間内に車両中央ユニット1c
で車両移動の短区間又は中区間の速度変化量がしきい値
を越えた場合に、衝突判定が下されることになる。な
お、図9,10に示した演算値波形は、乗員室よりも後
方の側面部への高速衝突と高速前方斜め衝突との違いを
反映してはいるが、どちらも車両中央ユニット1c側で
の衝突判定と車両側面ユニット1s側の衝突判定が両立
した時点で最終的な衝突判定が下される点は同じであ
る。ここでの構成においても、車両中央ユニット1c側
における短区間と中区間の2つの積分値に基づき、衝突
形態に合わせた速い判定が得られる。また、強ドア閉め
や乱用事象等の場合では、車両中央ユニット1c側と車
両側面ユニット1s側の両方で衝突基準を満たさないた
めに最終的な衝突判定が下されることはなく、電柱等の
剛性の高い物体への低速側面衝突或いは時速15Km/
hで衝突角度90°の側面衝突などの事象の場合では、
車両側面ユニット1s側では衝突判定がなされるもの
の、車両中央ユニット1c側では衝突判定に至らないた
め、最終的な衝突判定が下されることはない。ここで扱
った衝突判定は、例えば車両乗員室を形成する各ピラー
やサイドシルといった剛体物から離れた部位に衝突する
場合の衝突に有効であり、車両変形量が比較的発生しな
い場合でも、車両移動量が顕著に発生する場合に、エア
バッグを素早く展開させることができる。
The output of the waveform shaper 34 is transmitted from the vehicle side unit 1s via the communication means 51 to the vehicle central unit 1c.
Is supplied to the AND gate 39 in pairs with the c-type signal of the determination information sent to the AND gate 39. After being received by the vehicle central unit 1c, the c-type signal is also supplied to the AND gate 39 after being converted into a continuous waveform for a predetermined time by the waveform shaper 33. The output of the AND gate 39 is output to the subsequent OR gate 42
Is the final collision determination signal. Therefore, for example, as shown in FIGS. 9 and 10, when the vehicle side surface unit 1s determines the vehicle side deformation or the amount of change in the vehicle's long section speed, the vehicle central unit 1c within a certain time period.
When the speed change amount in the short section or the middle section of the vehicle movement exceeds the threshold value, the collision is determined. The calculated value waveforms shown in FIGS. 9 and 10 reflect the difference between the high-speed collision on the side portion behind the passenger compartment and the high-speed diagonal front collision, but both of them are on the vehicle central unit 1c side. The point that the final collision determination is made when the collision determination of the vehicle side unit 1s and the collision determination of the vehicle side unit 1s are compatible is the same. Also in this configuration, a quick determination according to the collision mode can be obtained based on the two integral values of the short section and the middle section on the vehicle central unit 1c side. In the case of a strong door closing or an abuse event, etc., the collision criterion is not satisfied on both the vehicle central unit 1c side and the vehicle side unit 1s side, so that a final collision determination is not made. Low-speed side impact on a rigid object or 15 km / h
h, in the event of a side impact at a collision angle of 90 °,
Although a collision determination is made on the vehicle side unit 1s side, a collision determination is not made on the vehicle central unit 1c side, so that a final collision determination is not made. The collision determination dealt with here is effective for a collision when colliding with a part distant from a rigid object such as a pillar or a side sill forming a vehicle occupant compartment, and even when a relatively small amount of vehicle deformation does not occur, the vehicle moves. The airbag can be deployed quickly when the volume occurs significantly.

【0027】なお、通信手段51の判定情報a種,b
種,c種信号は、例えば車両側面ユニット1sによりc
種信号を送信中にb種信号を送信する状態となった場合
は、b種信号に切り替えて送信し、またb種信号を送信
中にa種信号を送信する状態となった場合は、a種信号
に切り替えて送信するというように、a種,b種,c種
の順に優先順位をもつよう設定することもできるし、各
種の判定条件を総合して同時に各情報を送信することも
できる。ただし、優先順位はこれ以外の設定も可能であ
り、車両中央ユニット1cは、設定された優先順位を念
頭に受信することになる。また、車両側面ユニット1s
と車両中央ユニット1cが判定する各積分区間は、例え
ば短区間積分器5,7,25の積分区間を、それぞれ2
msから4ms程のうちの適正な区間か又は同じ区間に
設定したり、或いは中区間積分器6,8,26の積分区
間や長区間積分器9,27の積分区間に関しても、同じ
ように設定することができる。また、本実施形態では、
短区間と中区間及び長区間の各区間積分に対して、それ
ぞれ1区間を設定する場合を例にとったが、例えば中区
間積分に6msと8msの2区間の積分区間を設け、各
区間積分値をそれぞれしきい値判別するようにしてもよ
い。
The determination information a type, b
The seed and c-type signals are, for example, c by the vehicle side unit 1s.
When a state of transmitting the b-type signal during transmission of the seed signal is set, the transmission is switched to the b-type signal, and when a state of transmitting the a-type signal during transmission of the b-type signal is set, a It is possible to set the priority in the order of a type, b type, and c type, such as switching to the seed signal for transmission, and it is also possible to transmit various information simultaneously by integrating various determination conditions. . However, other priorities can be set, and the vehicle central unit 1c receives the set priorities in mind. In addition, vehicle side unit 1s
Each of the integration sections determined by the vehicle central unit 1c is, for example, an integration section of the short section integrators 5, 7, and 25, respectively.
It is set to an appropriate interval or the same interval from about ms to 4 ms, or the same is set for the integration interval of the middle interval integrators 6, 8, 26 and the integration interval of the long interval integrators 9, 27. can do. In the present embodiment,
The case where one section is set for each of the short section, the middle section, and the long section is taken as an example. For example, two integration sections of 6 ms and 8 ms are provided in the middle section integration, and each section integration is performed. Each value may be determined as a threshold value.

【0028】また、上記説明では、車両側面ユニット1
sを左側面又は右側面の片方の側面についてだけ取り出
して例示したが、図11には、左右の乗員側方保護シス
テムに対応する左側面と右側面の各車両側面ユニット1
a,1bを、それぞれ通信手段51a,51bを介して
車両中央ユニット1cに接続して構成した車両の衝突判
定装置101が図示してある。この車両の衝突判定装置
101では、車両中央ユニット1c内に、車両側面ユニ
ット1a用の比較器28a〜31aと車両側面ユニット
1b用の比較器28b〜31bが配設されており、前述
の波形整形器33〜38や論理ゲート39〜42につい
ても、車両側面ユニット1a,1b用に対応させて添え
字a,bを付したものが一対ずつ配設されている。な
お、比較器31aのしきい値cssaと比較器31bの
しきい値cssbは、互いに逆極性の加速度値であり、
同様にまた他の比較器28a〜30aと比較器28b〜
30bのしきい値も極性が互いに逆となる。
In the above description, the vehicle side unit 1
s is taken out and illustrated only on one of the left and right sides, but FIG. 11 shows left and right vehicle side units 1 corresponding to the left and right occupant side protection systems.
A vehicle collision determination apparatus 101 is shown, which is constructed by connecting a and 1b to a vehicle central unit 1c via communication means 51a and 51b, respectively. In the vehicle collision determination device 101, the comparators 28a to 31a for the vehicle side unit 1a and the comparators 28b to 31b for the vehicle side unit 1b are disposed in the vehicle central unit 1c. The devices 33 to 38 and the logic gates 39 to 42 are also provided with a pair of suffixes a and b corresponding to the vehicle side units 1a and 1b. The threshold value cssa of the comparator 31a and the threshold value cssb of the comparator 31b are acceleration values of opposite polarities.
Similarly, the other comparators 28a to 30a and 28b to
The polarity of the threshold of 30b is also opposite to that of the threshold.

【0029】図12に示す車両の衝突判定装置201
は、車両側面ユニット1s内で、ある程度発生する車両
側面変形の速度変化量又は車両移動の速度変化量を判定
するため、短区間積分器7のしきい値判別出力と、中区
間積分器8と長区間積分器9の各出力のしきい値判別出
力を論理和ゲート16を介して論理積ゲート19に送
り、論理積ゲート19の出力をb種信号として通信手段
51を介して車両中央ユニット1cに送信するようにし
たものである。従って、合成加速度の短区間積分値と中
区間積分値又は長区間積分値の各しきい値判別出力は、
論理和としてではなく論理積として扱うことになる。す
なわち、本実施形態にあっては、3種の区間判定尺度を
論理積で判定するようにしており、このことは乗員側方
保護システムの展開が必要な側面衝突では短区間と中区
間又は長区間の両方の速度変化量がある程度発生するこ
とを捕らえることを意味する。従って、図1,11に示
した実施形態とは判定性能が若干異なる衝突判定が可能
となり、本実施形態によれば高速判定が困難な高速側面
斜め衝突の判定時間性能を向上させることができる。な
お、論理和ゲート15から出力されるa種信号は、図1
に示した衝突判定装置1と同様の判定を行うのに使用さ
れる信号であり、ここではその詳細な説明は省略する。
A vehicle collision judging device 201 shown in FIG.
In order to determine the speed change amount of the vehicle side deformation or the vehicle movement speed occurring to some extent in the vehicle side unit 1s, the threshold value judgment output of the short section integrator 7 and the middle section integrator 8 The threshold discrimination output of each output of the long interval integrator 9 is sent to the AND gate 19 via the OR gate 16, and the output of the AND gate 19 is used as a b-type signal via the communication means 51 for the vehicle central unit 1 c To be sent to. Therefore, each threshold value discrimination output of the short section integral value and the middle section integral value or the long section integral value of the synthetic acceleration is
It will be treated as logical product instead of logical sum. That is, in the present embodiment, three types of section determination scales are determined by logical AND, which means that in a side collision requiring deployment of the occupant side protection system, a short section and a middle section or a long section are used. This means that both speed changes in the section are captured to some extent. Therefore, it is possible to make a collision determination slightly different in determination performance from the embodiment shown in FIGS. 1 and 11, and according to this embodiment, it is possible to improve the determination time performance of a high-speed side-surface oblique collision in which high-speed determination is difficult. The a-type signal output from the OR gate 15 is shown in FIG.
Are used to make the same determination as in the collision determination device 1 shown in FIG. 1, and a detailed description thereof will be omitted here.

【0030】この場合、比較器12,13に設定するし
きい値ss2’,sm2’は、前記実施態様に用いた値
ss2,sm2よりも小さな値に設定することができ、
これにより論理和判定から論理積判定へ変更したことを
受け、図13に示したように、高速側面斜め衝突につい
て必要時間内に衝突判定できることが分かる。図13に
示した二軸平面は、合成加速度の中区間積分値と合成加
速度の短区間積分値を二軸とするものであり、衝突判定
領域は梨地模様を付して図示してある。また、判定すべ
き衝突系については、必要な衝突判定時間に至るまでの
最大値にて二次元分布を図示してある。
In this case, the threshold values ss2 'and sm2' set in the comparators 12 and 13 can be set to values smaller than the values ss2 and sm2 used in the embodiment.
Accordingly, in response to the change from the logical sum determination to the logical product determination, as shown in FIG. 13, it can be seen that a collision determination can be made within a required time for a high-speed side-surface oblique collision. The two-axis plane shown in FIG. 13 has two axes of the intermediate section integrated value of the synthetic acceleration and the short section integrated value of the synthetic acceleration, and the collision determination area is illustrated with a satin pattern. For the collision system to be determined, the two-dimensional distribution is shown with the maximum value up to the required collision determination time.

【0031】なお、通信手段51を介して車両中央ユニ
ット1cに供給されたb種信号は、波形整形器44にて
波形整形された後、論理積ゲート46に供給される。ま
た、車両中央ユニット1c内の短区間積分器25と中区
間積分器26及び長区間積分器27の3種のしきい値判
別出力は、論理和ゲート43を介して波形整形器45に
供給され、ここで波形整形された後、論理積ゲート46
に供給される。論理積ゲート46の出力は、論理積ゲー
ト41の出力とともに論理和ゲート42に供給され、こ
こで最終の衝突判定信号すなわち展開トリガ信号とされ
る。このため、例えば高速側面斜め衝突にあっては、図
14に示したように、車両中央ユニット1c内の長区間
積分器27の出力がしきい値clを越えた時点で衝突判
定が下されることになる。この場合も、強ドア閉めや乱
用事象等については、たとえ車両側面ユニット1s側で
衝突判定が下されたとしても、車両中央ユニット1c側
では衝突基準を満たさないために、最終的な衝突判定が
下されることはなく、電柱等の剛性の高い物体への低速
側面衝突或いは時速15Km/hで衝突角度90°の側
面衝突などの事象については、車両中央ユニット1c側
で衝突判定が下されたとしても、車両側面ユニット1s
側の短区間積分値或いは中区間又は長区間のいずれかの
積分値が衝突基準を満たさないために、最終的な衝突判
定が下されることはない。なお、短区間積分器25の出
力を判定する比較器28のしきい値csや、中区間積分
器26の出力を判定する比較器29のしきい値cm、或
いは長区間積分器27からの出力を判定する比較器30
のしきい値clについても、前記実施態様と同様、各種
要素を加味した修正等が可能である。
The b-type signal supplied to the vehicle central unit 1c via the communication means 51 is waveform-shaped by the waveform shaper 44 and then supplied to the AND gate 46. Further, the three types of threshold value discrimination outputs of the short section integrator 25, the middle section integrator 26, and the long section integrator 27 in the vehicle central unit 1c are supplied to the waveform shaper 45 via the OR gate 43. After the waveform is shaped here, the AND gate 46
Supplied to The output of the AND gate 46 is supplied to the OR gate 42 together with the output of the AND gate 41, where it is used as a final collision determination signal, that is, a deployment trigger signal. Therefore, for example, in the case of a high-speed side oblique collision, as shown in FIG. 14, the collision is determined when the output of the long section integrator 27 in the vehicle central unit 1c exceeds the threshold value cl. Will be. In this case as well, regarding a strong door closing or an abuse event, etc., even if a collision determination is made on the vehicle side unit 1s side, since the vehicle central unit 1c side does not satisfy the collision criterion, a final collision determination is made. In the event of a low-speed side collision with a rigid object such as a telephone pole or a side collision with a collision angle of 90 ° at a speed of 15 km / h, a collision determination was made on the vehicle central unit 1c side. The vehicle side unit 1s
Since the integral value of the short section or the integral value of any of the middle section and the long section does not satisfy the collision criterion, no final collision judgment is made. The threshold cs of the comparator 28 for determining the output of the short interval integrator 25, the threshold cm of the comparator 29 for determining the output of the middle interval integrator 26, or the output of the long interval integrator 27 Comparator 30 for determining
As for the threshold value cl, a correction or the like can be made in consideration of various elements as in the above-described embodiment.

【0032】なお、上記の実施形態において、例えば車
両側面ユニットにおいて合成加速度の短区間積分値と中
区間積分値の各しきい値判別出力の論理和をとり、車両
中央ユニットにおいて移動加速度の短区間積分値と中区
間積分値の各しきい値判別出力の論理和をとり、両ユニ
ットにおける論理和出力の論理積をもって衝突判定する
構成とすることもできる。この場合、前方斜め衝突など
の前後方衝突系や側面ユニットから離れた場所に当たる
側面衝突等の判定時間性能を向上させることができる。
また、逆に、前方斜め衝突などの前後方衝突系や側面ユ
ニットから離れた場所に衝突する側面衝突等については
側方エアバッグの展開が不要であり、乗員室の側面変形
が著しい側面衝突についてのみ側方エアバッグを展開さ
せるといった場合は、しきい値を上位設定したり或いは
展開不要衝突事象を有利に判定する回路構成部を切り離
すことで対応することもできる。また、操舵中の車輪ス
リップ等が原因で車両側面を電柱等の物体に衝突させて
しまうことがあるが、侵入を伴うような中速から高速で
の場合、例えばBピラーのような剛性の高い箇所の衝突
であれば、図5に示したフロント剛性の高い車両による
側面衝突時と同様の判断経過に沿って衝突判定がなさ
れ、またピラー間のドア部分のように剛性の低い箇所の
衝突であれば、図6に示したフロント剛性の低い車両に
よる側面衝突時と同様の判断経過に沿って衝突判定がな
される。
In the above-described embodiment, for example, in the vehicle side unit, the logical sum of each threshold value discrimination output of the short-range integral value of the synthetic acceleration and the middle-range integral value is calculated, and the short-term integral of the moving acceleration is calculated in the vehicle central unit. It is also possible to adopt a configuration in which the logical sum of the threshold value discrimination outputs of the integral value and the intermediate section integral value is calculated, and the logical product of the logical sum outputs of both units determines collision. In this case, it is possible to improve the performance of determination time for a front-rear collision system such as a diagonal front collision and a side collision that hits a place distant from a side unit.
Conversely, for side-to-back collision systems such as oblique frontal collisions and side collisions colliding with places distant from side units, deployment of side airbags is unnecessary, and side collisions in which occupant compartment side deformation is remarkable. In the case where only the side airbag is deployed, it is possible to cope with this by setting the threshold value higher or by disconnecting a circuit component that advantageously determines a deployment unnecessary collision event. In addition, the side of the vehicle may collide with an object such as a utility pole due to wheel slip or the like during steering. In the case of a collision at a location, the collision is determined along the same determination process as in a side collision with a vehicle with high front rigidity shown in FIG. 5, and a collision at a location with low rigidity such as a door portion between pillars is performed. If so, the collision is determined along the same course of determination as in the case of a side collision with a vehicle having low front rigidity shown in FIG.

【0033】また、上記各実施形態では、ハードウェア
で構成される回路に基づいて衝突判定装置の構成と動作
について説明したが、図1,11,12におけるAD変
換器以降のディジタル信号処理部について、マイクロプ
ロセッサによるソフトウェア・ディジタル信号処理に置
き換えることも可能である。また、上記各実施形態で
は、車両側面ユニット1s或いは1a,1b内で演算し
た各種速度変化量のしきい値判別結果を、通信手段51
或いは51a,51bを介して車両中央ユニット1c内
に送信して論理処理する構成としたが、車両側面ユニッ
ト1s或いは1a,1bの主要な演算・判断部を、車両
中央ユニット1c内に移設して統合一体化することもで
きる。この場合、車両側面ユニット1s或いは1a,1
bは、加速度センサ2と車両中央ユニット1cへの加速
度信号送信手段だけを有する単純な構成とすることがで
きる。さらに、車両中央部と衝突を受ける側と反対側の
側面がほぼ同ような加速度成分を示すことから、車両側
面ユニット1s或いは1a,1bの両方に、車両中央ユ
ニット1cの主要な演算・判定部をそれぞれ対となる方
の部分と逆に移設して、両側面ユニットのみで判定でき
る構成としたり、3つのユニットすべてに演算・判定部
を設け、車両中央ユニットと衝突を受けない側の側面ユ
ニットの判定結果を論理和もしくは論理積とし、判定信
頼性を向上させることもできる。
In each of the above embodiments, the configuration and operation of the collision judging device have been described based on a circuit constituted by hardware. However, the digital signal processing unit after the AD converter in FIGS. , Can be replaced by software digital signal processing by a microprocessor. Further, in each of the above embodiments, the determination results of the threshold values of the various speed change amounts calculated in the vehicle side unit 1s or 1a, 1b are transmitted to the communication unit 51.
Alternatively, transmission and logic processing are performed in the vehicle central unit 1c via 51a and 51b, but the main calculation / judgment unit of the vehicle side unit 1s or 1a or 1b is moved to the vehicle central unit 1c. It can also be integrated. In this case, the vehicle side unit 1s or 1a, 1
b can be a simple configuration having only the acceleration sensor 2 and a means for transmitting an acceleration signal to the vehicle central unit 1c. Furthermore, since the side surface opposite to the side receiving the collision with the vehicle center portion shows substantially the same acceleration component, the main calculation / determination unit of the vehicle center unit 1c is provided in both the vehicle side unit 1s or 1a, 1b. Are moved in the opposite direction to the paired part, so that the judgment can be made only by the two side units, or the calculation and judgment unit is provided in all three units, and the side unit on the side not subject to collision with the vehicle central unit Can be determined as a logical sum or a logical product to improve the determination reliability.

【0034】さらにまた、上記各実施形態において、車
両側面ユニット1sや1a,1bは、Bピラーの下側や
サイドシル或いはクロスメンバの外側等に限らず、例え
ば中央部や上部を含めたBピラーの任意の位置や、Aピ
ラー又はCピラーの任意の位置に配設してもよく、また
ドアやフロア側方或いはルーフ側方等に配設してもよ
い。また、車両側面ユニット1sや1a,1bは、車両
の左右両側にそれぞれ複数個ずつ配設するようにしても
よい。
Further, in each of the above embodiments, the vehicle side units 1s, 1a, and 1b are not limited to the lower side of the B pillar, the outer side of the side sill or the cross member, and the like. It may be arranged at an arbitrary position, at an arbitrary position of the A pillar or the C pillar, or may be arranged at a door, a floor side, a roof side, or the like. Further, a plurality of vehicle side units 1s, 1a, and 1b may be provided on each of the left and right sides of the vehicle.

【0035】[0035]

【発明の効果】以上説明したように、車両の側面変形と
側方移動の少なくとも一方をもたらす衝撃に起因する合
成加速度を検出し、該合成加速度を現在値まで所定区間
に亙って積分して合成速度変化量を算出し、かつ前記衝
撃のうち車両の側方移動をもたらす成分に起因する移動
加速度を検出し、該移動加速度を現在値まで所定区間に
亙って積分して移動速度変化量を算出し、前記合成速度
変化量及び移動速度変化量をそれぞれ所定のしきい値を
基準にしきい値判別し、該各しきい値判別結果を総合し
て衝突判定を下す構成としたから、衝突時にBピラー下
側やサイドシル或いはクロスメンバ等の車両の側面部の
位置で検出される加速度は、側面衝突を受ける側では車
両の側面変形と移動とが合成された合成加速度であり、
側面衝突の場合衝突初期にはほぼ側面変形に起因する成
分の比重が高く、車両の変形が収まってからは車両の移
動に起因する成分となるが、車両中央位置で検出される
加速度は車両の移動に伴う移動加速度だけであるから、
衝突時に車両に発生する特定の場所の各速度変化量を統
合して判断することで、車両が広範囲に受ける側面衝突
はもちろん横方向移動を伴うような前方又は後方衝突に
対しても衝突判定能力を備えることができ、また区間積
分の時間範囲の選定により、車両側方構造物の変形によ
り激しい侵入を伴うような高速側面衝突事象は勿論、衝
突速度が比較的緩慢な衝突事象や斜めからの衝突事象或
いは衝突物剛性が比較的低い構造物との衝突事象、さら
に乗員室より前又は後の側面部に衝突する事象、トラッ
クなどの背の高い車両等が衝突する事象、車両前方衝突
ではあるが車両の横移動を伴う高速オフセット衝突や高
速斜め衝突のような事象のごとく、サイドシル付近の車
両変形が比較的発生しない事象等を、素早く判定するこ
とができ、これにより車両側面のみの加速度から速度変
化量を評価する装置等と異なり、高速判定性能と識別性
能を兼ね備えた優れた衝突判定が可能であり、また車両
側面側と車両中央側とで相互に故障監視し、かつ判定を
下す時には必ず2つの位置の判断系が判定条件を満たす
ことを前提にするため、片方の誤判定でシステムが誤動
作することなく、高い信頼性と安全性を獲得することが
できる等の優れた効果を奏する。
As described above, a composite acceleration caused by an impact that causes at least one of side deformation and lateral movement of a vehicle is detected, and the composite acceleration is integrated up to a current value over a predetermined section. Calculating a synthetic speed change amount, detecting a moving acceleration resulting from a component of the impact that causes the vehicle to move laterally, integrating the moving acceleration to a current value over a predetermined section, and calculating a moving speed change amount. Is calculated, and the composite speed change amount and the moving speed change amount are each determined as a threshold based on a predetermined threshold value, and a collision determination is made by integrating the respective threshold value determination results. Sometimes, the acceleration detected at the position of the side of the vehicle such as the lower side of the B pillar or the side sill or the cross member is a combined acceleration obtained by combining the side deformation and movement of the vehicle on the side receiving the side collision,
In the case of a side collision, the specific gravity of the component due to the lateral deformation is high in the early stage of the collision, and becomes the component due to the movement of the vehicle after the deformation of the vehicle has subsided. Because it is only the movement acceleration accompanying the movement,
By judging the amount of each speed change in the specific place that occurs in the vehicle at the time of the collision, it is possible to determine the collision in the case of a frontal collision or a rearward collision that involves lateral movement as well as a lateral collision that the vehicle receives over a wide area By selecting the time range of the interval integration, not only a high-speed side impact event involving severe intrusion due to deformation of the vehicle side structure, but also a collision event with a relatively slow collision speed or an oblique A collision event or a collision event with a structure having a relatively low impact object rigidity, a collision event with a side portion in front of or behind the passenger compartment, a collision event with a tall vehicle such as a truck, and a vehicle forward collision. Can quickly determine events such as high-speed offset collision or high-speed diagonal collision accompanied by lateral movement of the vehicle, where relatively little deformation of the vehicle near the side sill occurs. Unlike devices that evaluate the amount of speed change from the acceleration of only the side of the vehicle, it is possible to perform excellent collision judgment that combines high-speed judgment performance and discrimination performance. In addition, when making a determination, it is assumed that the determination system of the two positions satisfies the determination condition, so that high reliability and safety can be obtained without the system malfunctioning due to one erroneous determination. And so on.

【0036】また、本発明は、合成加速度を短区間と中
区間と長区間の3区間に亙ってそれぞれ区間積分して各
合成速度変化量を算出し、かつ移動加速度を短区間と中
区間と長区間の3区間に亙ってそれぞれ区間積分して各
移動速度変化量を算出し、短区間合成速度変化量又は中
区間合成速度変化量がしきい値を越え、かつ前記移動加
速度が所定のしきい値を越えたか、或いは短区間合成速
度変化量又は中区間合成速度変化量がしきい値を越え、
かつ長区間移動速度変化量が所定のしきい値を越えた
か、或いは長区間合成速度変化量が所定のしきい値を越
え、かつ短区間移動速度変化量か又は中区間移動速度変
化量が所定のしきい値を越えたときに、衝突判定を下す
ようにしたから、車両の側方構造物の変形により激しい
侵入を伴うような高速側面衝突等の判定だけでなく、衝
突速度が比較的緩慢な衝突や斜めからの衝突、或いは衝
突物剛性が比較的低い構造物との衝突等の判定が可能で
あり、また乗員室よりも前又は後の側面部への衝突やト
ラックなどの背の高い車両の衝突、車両前方衝突でも車
両の横移動を伴う高速オフセット衝突や高速斜め衝突の
ような事象等のように、合成加速度検出用の加速度セン
サを配置した付近の車両変形が比較的発生しない事象に
ついても素早く判定することができ、しかも強いドア閉
めや蹴飛ばし等の乱用及び軽量物衝突で誤判定すること
なく高速判定ができる等の効果を奏する。
Further, according to the present invention, the synthetic acceleration is integrated over three sections of a short section, a middle section, and a long section to calculate each synthetic speed change amount. And the moving speed change amount is calculated by integrating each of the three sections of the long section and the moving speed change amount of the short section or the middle section exceeds the threshold value. Or the short-section synthetic speed change amount or middle-section synthetic speed change amount exceeds the threshold value,
And the long section moving speed change amount exceeds a predetermined threshold value, or the long section synthetic speed change amount exceeds a predetermined threshold value, and the short section moving speed change amount or the middle section moving speed change amount is predetermined. When the threshold value is exceeded, the collision judgment is made, so not only the judgment of a high-speed side collision or the like that involves a severe intrusion due to deformation of the side structure of the vehicle, but also the collision speed is relatively slow Collision, oblique collision, collision with a structure with relatively low impact object rigidity, and collision with the front or rear side of the passenger compartment or a tall object such as a truck. Events such as events such as high-speed offset collisions and high-speed oblique collisions that involve lateral movement of the vehicle even in vehicle collisions and vehicle forward collisions, where vehicle deformation near the location where the acceleration sensor for detecting the composite acceleration is arranged does not occur relatively. Quickly determine Rukoto can, an effect such as can fast determination without addition of misjudgment in abuse strong door closing Ya kicking etc. and weight thereof collision.

【0037】また、本発明は、合成加速度を短区間と中
区間と長区間の3区間に亙ってそれぞれ区間積分して各
合成速度変化量を算出し、かつ移動加速度を短区間と中
区間と長区間の3区間に亙ってそれぞれ区間積分して各
移動速度変化量を算出し、短区間合成速度変化量又は中
区間合成速度変化量がしきい値を越え、かつ前記移動加
速度が所定のしきい値を越えたか、或いは短区間合成速
度変化量がしきい値を越え、かつ中区間合成速度変化量
又は長区間合成速度変化量がしきい値を越え、なおかつ
短区間移動速度変化量又は中区間移動速度変化量又は長
区間移動速度変化量が所定のしきい値を越えたときに、
衝突判定を下すようにしたから、3種の合成速度変化量
のしきい判別出力を論理判定することで、乗員側方保護
システムの展開が必要な側面衝突では短区間と中区間又
は長区間の両方の速度変化量がある程度発生することを
捕らえることができ、高速判定が困難な高速側面斜め衝
突の判定時間性能を向上させることができる等の優れた
効果を奏する。
Further, according to the present invention, the synthesized acceleration is integrated over three sections, namely, a short section, a middle section, and a long section, to calculate each synthesized speed change amount. And the moving speed change amount is calculated by integrating each of the three sections of the long section and the moving speed change amount of the short section or the middle section exceeds the threshold value. Or the short section synthetic speed change amount exceeds the threshold value, and the middle section synthetic speed change amount or the long section synthetic speed change amount exceeds the threshold value, and the short section moving speed change amount Or, when the middle section moving speed change amount or the long section moving speed change amount exceeds a predetermined threshold,
Since the collision determination is made, the threshold determination output of the three kinds of combined speed change amounts is logically determined, so that in the case of a side collision requiring deployment of the occupant side protection system, the short section and the middle section or the long section are determined. It is possible to detect that both speed change amounts occur to some extent, and it is possible to obtain excellent effects such as improvement in performance of determination time of a high-speed side-surface oblique collision in which high-speed determination is difficult.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の車両の衝突判定装置を片側の車両側面
ユニットと車両中央ユニットで構成した場合の一実施形
態を示す回路構成図である。
FIG. 1 is a circuit diagram showing an embodiment in which a vehicle collision determination device of the present invention is configured by a vehicle side unit on one side and a vehicle central unit.

【図2】図1に示した車両の衝突判定装置による衝突判
定領域を示す図である。
FIG. 2 is a diagram showing a collision determination area by the vehicle collision determination device shown in FIG. 1;

【図3】車両の側面衝突を受ける側と中央部及び側面衝
突を受ける側と反対側の位置で側面衝突時に検出される
加速度成分を示す波形図である。
FIG. 3 is a waveform diagram showing acceleration components detected at the time of a side collision at the side of the vehicle that receives a side collision, at the center, and at a position opposite to the side that receives the side collision.

【図4】車両の側面部と中央部における側面衝突と強ド
ア閉めや乱用事象等との加速度の比較を示す波形図であ
る。
FIG. 4 is a waveform diagram showing a comparison of acceleration between a side collision and a strong door closing, an abuse event, and the like at a side portion and a center portion of a vehicle.

【図5】フロント剛性の高い車両による側面衝突時の図
1に示した車両の衝突判定装置による衝突判定例を示す
ユニット各部の信号波形図である。
5 is a signal waveform diagram of each part of the unit showing an example of collision determination by the vehicle collision determination device shown in FIG. 1 at the time of a side collision with a vehicle having a high front rigidity.

【図6】フロント剛性の低い車両による側面衝突時の図
1に示した車両の衝突判定装置による衝突判定例を示す
ユニット各部の信号波形図である。
6 is a signal waveform diagram of each unit of the unit showing an example of collision determination by the vehicle collision determination device shown in FIG. 1 at the time of a side collision with a vehicle having low front rigidity.

【図7】高速側面斜め衝突時の図1に示した車両の衝突
判定装置による衝突判定例を示すユニット各部の信号波
形図である。
FIG. 7 is a signal waveform diagram of each unit of the unit showing an example of collision determination by the vehicle collision determination device shown in FIG.

【図8】中速側面衝突時の図1に示した車両の衝突判定
装置による衝突判定例を示すユニット各部の信号波形図
である。
8 is a signal waveform diagram of each unit of the unit showing an example of collision determination by the vehicle collision determination device shown in FIG. 1 at the time of a middle-speed side collision.

【図9】高速前方斜め衝突時の図1に示した車両の衝突
判定装置による衝突判定例を示すユニット各部の信号波
形図である。
9 is a signal waveform diagram of each part of the unit showing an example of collision determination by the vehicle collision determination device shown in FIG. 1 at the time of a high-speed diagonal forward collision.

【図10】乗員室よりも後方の側面部への高速衝突時の
図1に示した車両の衝突判定装置による衝突判定例を示
すユニット各部の信号波形図である。
10 is a signal waveform diagram of each unit showing an example of a collision determination by the vehicle collision determination device shown in FIG. 1 at the time of a high-speed collision with a side portion behind a passenger compartment.

【図11】本発明の車両の衝突判定装置を両側の車両側
面ユニットと車両中央ユニットで構成した場合の一実施
形態を示す回路構成図である。
FIG. 11 is a circuit diagram showing an embodiment in which the vehicle collision determination device of the present invention is configured by vehicle side units on both sides and a vehicle central unit.

【図12】本発明の車両の衝突判定装置の他の実施形態
を示す回路構成図である。
FIG. 12 is a circuit diagram showing another embodiment of the vehicle collision determination device of the present invention.

【図13】図12に示した車両の衝突判定装置による衝
突判定領域を示す図である。
13 is a diagram showing a collision determination area by the vehicle collision determination device shown in FIG.

【図14】高速側面斜め衝突時の図12に示した車両の
衝突判定装置による衝突判定例を示すユニット各部の信
号波形図である。
14 is a signal waveform diagram of each unit of the unit showing an example of a collision determination by the vehicle collision determination device shown in FIG. 12 at the time of a high-speed side oblique collision.

【符号の説明】[Explanation of symbols]

1,101,201 車両の衝突判定装置 1s,1a,1b 車両側面ユニット 1c 車両中央ユニット 2,22 加速度センサ 3,23 ローパスフィルタ 4,24 AD変換器 5,7,25 短区間積分器 6,8,26 中区間積分器 9,27 長区間積分器 10〜14,28〜31,28a〜31a,28b〜3
1b 比較器 15,16,32,42,32a,32b,42a,4
2b 論理和ゲート 17,18,33〜38,33a〜38a,33b〜3
8b 波形整形器 19,39〜41,46,39a〜41a,39b〜4
1b 論理積ゲート 44,45 波形整形器
1,101,201 Vehicle collision determination device 1s, 1a, 1b Vehicle side unit 1c Vehicle center unit 2,22 Acceleration sensor 3,23 Low pass filter 4,24 AD converter 5,7,25 Short section integrator 6,8 , 26 Medium interval integrator 9, 27 Long interval integrator 10-14, 28-31, 28a-31a, 28b-3
1b Comparator 15, 16, 32, 42, 32a, 32b, 42a, 4
2b OR gate 17, 18, 33-38, 33a-38a, 33b-3
8b Waveform shaper 19, 39-41, 46, 39a-41a, 39b-4
1b AND gate 44, 45 Waveform shaper

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 車両の側面変形か側方移動の少なくとも
一方をもたらす衝撃に起因する合成加速度を検出し、該
合成加速度を現在値まで所定区間に亙って積分して合成
速度変化量を算出し、かつ前記衝撃のうち車両の側方移
動をもたらす成分に起因する移動加速度を検出し、該移
動加速度を現在値まで所定区間に亙って積分して移動速
度変化量を算出し、前記合成速度変化量及び移動速度変
化量をそれぞれ所定のしきい値を基準にしきい値判別
し、該各しきい値判別結果を総合して衝突判定を下すこ
とを特徴とする車両の衝突判定方法。
1. A synthetic acceleration caused by an impact that causes at least one of lateral deformation and lateral movement of a vehicle is detected, and the synthetic acceleration is integrated up to a current value over a predetermined section to calculate a synthetic speed change amount. And detecting a moving acceleration resulting from a component of the impact that causes the vehicle to move laterally, calculating the moving speed change amount by integrating the moving acceleration to a current value over a predetermined section, and A method of determining a collision of a vehicle, comprising determining a threshold value of a change amount of a speed and a change amount of a moving speed based on a predetermined threshold value, and determining a collision based on the results of the determination of the threshold values.
【請求項2】 前記合成加速度を短区間と中区間と長区
間の3区間に亙ってそれぞれ区間積分して各合成速度変
化量を算出し、かつ前記移動加速度を短区間と中区間と
長区間の3区間に亙ってそれぞれ区間積分して各移動速
度変化量を算出し、短区間合成速度変化量又は中区間合
成速度変化量がしきい値を越え、かつ前記移動加速度が
所定のしきい値を越えたか、或いは短区間合成速度変化
量又は中区間合成速度変化量がしきい値を越え、かつ長
区間移動速度変化量が所定のしきい値を越えたか、或い
は長区間合成速度変化量が所定のしきい値を越え、かつ
短区間移動速度変化量か又は中区間移動速度変化量が所
定のしきい値を越えたときに、衝突判定を下すことを特
徴とする請求項1記載の車両の衝突判定方法。
2. A synthetic speed change amount is calculated by integrating each of the synthetic accelerations into three sections of a short section, a middle section, and a long section, and the moving acceleration is calculated in a short section, a middle section, and a long section. Each moving speed change amount is calculated by performing section integration over the three sections, and the short section combined speed change amount or the middle section combined speed change amount exceeds a threshold value and the moving acceleration is a predetermined value. The threshold value has been exceeded, the short section synthetic speed change amount or the middle section synthetic speed change amount has exceeded a threshold value, and the long section movement speed change amount has exceeded a predetermined threshold value, or the long section synthetic speed change. 2. A collision judgment is made when the amount exceeds a predetermined threshold value and when the change amount of the short section moving speed or the change amount of the middle section moving speed exceeds the predetermined threshold value. Vehicle collision determination method.
【請求項3】 前記合成加速度を短区間と中区間と長区
間の3区間に亙ってそれぞれ区間積分して各合成速度変
化量を算出し、かつ前記移動加速度を短区間と中区間と
長区間の3区間に亙ってそれぞれ区間積分して各移動速
度変化量を算出し、短区間合成速度変化量又は中区間合
成速度変化量がしきい値を越え、かつ前記移動加速度が
所定のしきい値を越えたか、或いは短区間合成速度変化
量がしきい値を越え、かつ中区間合成速度変化量又は長
区間合成速度変化量がしきい値を越え、なおかつ短区間
移動速度変化量又は中区間移動速度変化量又は長区間移
動速度変化量が所定のしきい値を越えたときに、衝突判
定を下すことを特徴とする請求項1記載の車両の衝突判
定方法。
3. A synthetic speed change amount is calculated by integrating each of the synthetic accelerations into three sections of a short section, a middle section, and a long section, and the moving acceleration is calculated by a short section, a middle section, and a long section. Each moving speed change amount is calculated by performing section integration over the three sections, and the short section combined speed change amount or the middle section combined speed change amount exceeds a threshold value and the moving acceleration is a predetermined value. The threshold value has been exceeded, or the short section synthetic speed change amount exceeds the threshold value, and the middle section synthetic speed change amount or the long section synthetic speed change amount exceeds the threshold value, and the short section moving speed change amount or medium 2. The vehicle collision determination method according to claim 1, wherein a collision determination is made when the section travel speed change amount or the long section travel speed change amount exceeds a predetermined threshold value.
【請求項4】 車両の側面変形と側方移動の少なくとも
一方をもたらす衝撃に起因する合成加速度を検出する加
速度センサと、前記合成加速度を現在値まで所定区間に
亙って積分して合成速度変化量を算出する合成速度変化
量算出手段と、前記衝撃のうち車両の側方移動をもたら
す成分に起因する移動加速度を検出する加速度センサ
と、前記移動加速度を現在値まで所定区間に亙って積分
して移動速度変化量を算出する移動速度変化量算出手段
と、前記合成速度変化量及び移動速度変化量をそれぞれ
所定のしきい値を基準にしきい値判別し、該各しきい値
判別結果を総合して衝突判定を下す判定手段とを具備す
ることを特徴とする車両の衝突判定装置。
4. An acceleration sensor for detecting a combined acceleration caused by an impact causing at least one of a side deformation and a lateral movement of a vehicle, and a combined speed change by integrating the combined acceleration to a current value over a predetermined section. Combined speed change amount calculating means for calculating an amount, an acceleration sensor for detecting a moving acceleration caused by a component of the impact that causes the vehicle to move laterally, and integrating the moving acceleration to a current value over a predetermined section. Moving speed change amount calculating means for calculating the moving speed change amount, and determining the combined speed change amount and the moving speed change amount based on predetermined threshold values, respectively. A collision determination device for a vehicle, comprising: a determination unit that comprehensively determines a collision.
【請求項5】 前記合成速度変化量算出手段は、前記合
成加速度を短区間と中区間と長区間の3区間に亙ってそ
れぞれ区間積分して各合成速度変化量を算出し、前記移
動速度変化量算出手段は、前記移動加速度を短区間と中
区間と長区間の3区間に亙ってそれぞれ区間積分して各
移動速度変化量を算出し、前記判定手段は、短区間合成
速度変化量又は中区間合成速度変化量がしきい値を越
え、かつ前記移動加速度が所定のしきい値を越えたか、
或いは短区間合成速度変化量又は中区間合成速度変化量
がしきい値を越え、かつ長区間移動速度変化量が所定の
しきい値を越えたか、或いは長区間合成速度変化量が所
定のしきい値を越え、かつ短区間移動速度変化量か又は
中区間移動速度変化量が所定のしきい値を越えたとき
に、衝突判定を下すことを特徴とする請求項4記載の車
両の衝突判定装置。
5. The synthetic speed change amount calculating means calculates each synthetic speed change amount by section integrating the synthetic acceleration over three sections of a short section, a middle section, and a long section. The change amount calculating means calculates each moving speed change amount by section integrating the moving acceleration over three sections of a short section, a middle section and a long section, and the determining means calculates the short section combined speed change amount. Or whether the intermediate section synthetic speed change amount exceeds a threshold value, and whether the moving acceleration exceeds a predetermined threshold value,
Alternatively, the short section synthetic speed change amount or the middle section synthetic speed change amount exceeds a threshold value, and the long section moving speed change amount exceeds a predetermined threshold value, or the long section synthetic speed change amount exceeds a predetermined threshold. 5. The collision judging device for a vehicle according to claim 4, wherein a collision judgment is made when the vehicle speed exceeds a predetermined value and a change amount in the short section moving speed or a change amount in the middle section exceeds a predetermined threshold value. .
【請求項6】 前記合成速度変化量算出手段は、前記合
成加速度を短区間と中区間と長区間の3区間に亙ってそ
れぞれ区間積分して各合成速度変化量を算出し、前記移
動速度変化量算出手段は、前記移動加速度を短区間と中
区間と長区間の3区間に亙ってそれぞれ区間積分して各
移動速度変化量を算出し、前記判定手段は、短区間合成
速度変化量又は中区間合成速度変化量がしきい値を越
え、かつ前記移動加速度が所定のしきい値を越えたか、
或いは短区間合成速度変化量がしきた値を越え、かつ中
区間合成速度変化量又は長区間合成速度変化量がしきい
値を越え、なおかつ短区間移動速度変化量又は中区間移
動速度変化量又は長区間移動速度変化量が所定のしきい
値を越えたときに、衝突判定を下すことを特徴とする請
求項4記載の車両の衝突判定装置。
6. The synthetic speed change amount calculating means calculates each synthetic speed change amount by integrating each of the synthetic accelerations in three sections of a short section, a middle section, and a long section. The change amount calculating means calculates each moving speed change amount by section integrating the moving acceleration over three sections of a short section, a middle section and a long section, and the determining means calculates the short section combined speed change amount. Or whether the intermediate section synthetic speed change amount exceeds a threshold value, and whether the moving acceleration exceeds a predetermined threshold value,
Alternatively, the short section combined speed change amount exceeds the obtained value, and the middle section combined speed change amount or the long section combined speed change amount exceeds the threshold value, and the short section movement speed change amount or the middle section movement speed change amount or 5. The collision determination device for a vehicle according to claim 4, wherein a collision determination is made when the amount of change in the long section traveling speed exceeds a predetermined threshold value.
JP29143497A 1996-10-23 1997-10-23 Vehicle collision determination method and collision determination device Expired - Fee Related JP3204180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29143497A JP3204180B2 (en) 1996-10-23 1997-10-23 Vehicle collision determination method and collision determination device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28041996 1996-10-23
JP8-280419 1996-10-23
JP29143497A JP3204180B2 (en) 1996-10-23 1997-10-23 Vehicle collision determination method and collision determination device

Publications (2)

Publication Number Publication Date
JPH10185942A true JPH10185942A (en) 1998-07-14
JP3204180B2 JP3204180B2 (en) 2001-09-04

Family

ID=26553766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29143497A Expired - Fee Related JP3204180B2 (en) 1996-10-23 1997-10-23 Vehicle collision determination method and collision determination device

Country Status (1)

Country Link
JP (1) JP3204180B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001000955A1 (en) * 1999-06-25 2001-01-04 Mitsubishi Denki Kabushiki Kaisha Automatic door lock releasing device
JP2002029351A (en) * 2000-05-22 2002-01-29 Temic Telefunken Microelectronic Gmbh Operation algorithm generating method for rollover detection for safety system for vehicle
JP2003327073A (en) * 2002-05-13 2003-11-19 Nissan Motor Co Ltd Occupant protective device for vehicle
JP2008096186A (en) * 2006-10-10 2008-04-24 Honda Motor Co Ltd Deformation detecting sensor
JP2010132034A (en) * 2008-12-02 2010-06-17 Keihin Corp Vehicle collision determination device and occupant protection system
JP2015013599A (en) * 2013-07-05 2015-01-22 本田技研工業株式会社 Occupant protection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4131403B2 (en) * 2003-09-05 2008-08-13 株式会社デンソー Collision determination device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001000955A1 (en) * 1999-06-25 2001-01-04 Mitsubishi Denki Kabushiki Kaisha Automatic door lock releasing device
US6411875B2 (en) 1999-06-25 2002-06-25 Mitsubishi Denki Kabushiki Kaisha Automatic door lock releasing apparatus
JP2002029351A (en) * 2000-05-22 2002-01-29 Temic Telefunken Microelectronic Gmbh Operation algorithm generating method for rollover detection for safety system for vehicle
JP2003327073A (en) * 2002-05-13 2003-11-19 Nissan Motor Co Ltd Occupant protective device for vehicle
JP2008096186A (en) * 2006-10-10 2008-04-24 Honda Motor Co Ltd Deformation detecting sensor
JP2010132034A (en) * 2008-12-02 2010-06-17 Keihin Corp Vehicle collision determination device and occupant protection system
JP2015013599A (en) * 2013-07-05 2015-01-22 本田技研工業株式会社 Occupant protection device

Also Published As

Publication number Publication date
JP3204180B2 (en) 2001-09-04

Similar Documents

Publication Publication Date Title
JP4072059B2 (en) Method for triggering occupant restraint in an automobile
US6438475B1 (en) Crash detection system
US8145386B2 (en) Activation apparatus for occupant protection system
CN1137779A (en) Method for judging collision with three directional accelerative signals and apparatus for performing the same
US6095553A (en) Side impact sensor system and method
CN108340864B (en) Occupant protection device for vehicle and occupant protection method for vehicle
JP2000503278A (en) Trigger device for vehicle occupant protection means
US20150283968A1 (en) Control device for occupant protection device
US20210284091A1 (en) Vehicle safety system implementing integrated active-passive front impact control algorithm
JP3204201B2 (en) Vehicle collision determination method and collision determination device
JP2014530790A (en) Method and apparatus for analyzing vehicle collisions
JP3204181B2 (en) Vehicle collision determination method and collision determination device
CN103863234A (en) Vehicle-occupant protection system
JP3204180B2 (en) Vehicle collision determination method and collision determination device
US8527150B2 (en) Method and control device for triggering passenger protection means for a vehicle
US9751483B2 (en) Control device for occupant protection device
US20030078715A1 (en) Arrangement having a damper element, motor vehicle with such an arrangement and method for operating such an arrangement or such a motor vehicle
US6559763B2 (en) Frontal impact characterization apparatus for a motor vehicle restraint system
US10688949B2 (en) Occupant protection device
US8165761B2 (en) Apparatus to control airbag for side collision
JP2004536742A (en) Vehicle impact detection system and control method
JP2004502593A (en) Occupant restraint system for automobiles
JP2008528377A (en) Safety system
JP2019027833A (en) Collision detection device
US20070013496A1 (en) Collision detection device for vehicle

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010529

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080629

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090629

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees