JPH10185797A - Evaluation method for corrosion resistance of alloy - Google Patents

Evaluation method for corrosion resistance of alloy

Info

Publication number
JPH10185797A
JPH10185797A JP34026796A JP34026796A JPH10185797A JP H10185797 A JPH10185797 A JP H10185797A JP 34026796 A JP34026796 A JP 34026796A JP 34026796 A JP34026796 A JP 34026796A JP H10185797 A JPH10185797 A JP H10185797A
Authority
JP
Japan
Prior art keywords
alloy
powder
evaluated
corrosion resistance
environment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34026796A
Other languages
Japanese (ja)
Inventor
Kahei Shimizu
嘉平 清水
Toshihiro Kubo
俊裕 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP34026796A priority Critical patent/JPH10185797A/en
Publication of JPH10185797A publication Critical patent/JPH10185797A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an evaluation method in which the corrosion resistance of an alloy is evaluated in a short time by a method wherein an alloy is changed into a powder, the powder is immersed in an aqueous solution which conforms to an environment to be evaluated and the weight change, of the alloy, which is generated during its immersion is measured. SOLUTION: An alloy is changed into a powder, the powder is immersed in an aqueous solution which conforms to an environment to be evaluated, and the weight change, of the alloy, which is generated during its immersion is measured. When the alloy is changed into the powder, its specific surface area is increased, and the alloy is easily affected in the environment to be evaluated. Then, when the alloy is affected such as corroded or the like, its weight is increased generally. Consequently, when its weight change is measured, the corrosion on the surface of the powder alloy can be estimated easily, and the corrosion resistance of the alloy can be evaluated in a short period. The particle size of the powder alloy is set in a range of 50 to 100μm, and its average is set desirably at 70 to 80μm. Thereby, when an optimum alloy is to be selected from many candidates, a result can be obtained quickly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、合金の耐蝕性評価方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the corrosion resistance of an alloy.

【0002】[0002]

【従来の技術】鋳鉄管の防食皮膜として、合金の溶射コ
ーティングが知られている。ところで、この溶射コーテ
ィングを行うに先立ち、合金の耐蝕性評価を行う必要が
ある。
2. Description of the Related Art Thermal spray coating of an alloy is known as an anticorrosion film for cast iron tubes. Before performing the thermal spray coating, it is necessary to evaluate the corrosion resistance of the alloy.

【0003】従来この耐蝕性評価は、合金を土壌中に埋
設し、あるいは水道水、食塩水あるいは硫酸溶液などの
評価対象環境を設定するための試験液中に浸し、表面の
耐蝕性を目視観察で行っていた。
Conventionally, this corrosion resistance evaluation is performed by burying the alloy in soil or immersing it in a test solution for setting the environment to be evaluated such as tap water, saline solution or sulfuric acid solution, and visually observing the corrosion resistance of the surface. I was going.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記評
価方法は、明確な評価結果を得るまでに最低1カ月、長
いものでは1年以上もかかるため、多数の候補材料の中
から最適材料を探索する試験のように、試験対象が多数
にわたる場合の評価方法としては時間が掛かり過ぎて不
適当である問題があった。
However, the above evaluation method requires at least one month to obtain a clear evaluation result, and more than one year to obtain a clear evaluation result. Therefore, an optimum material is searched for from a large number of candidate materials. As in the test, there is a problem that it takes too much time and is unsuitable as an evaluation method when a large number of test objects are used.

【0005】この発明は、上記問題点を解消することを
目的としてなされたものである。
[0005] The present invention has been made to solve the above problems.

【0006】[0006]

【課題を解決するための手段】すなわち、この発明の合
金の耐蝕性評価方法は、合金を粉末にし、該粉末を評価
対象環境に適合する水溶液に浸し、浸漬中に生じた前記
合金の重量変化を測定することを特徴とするものであ
る。
That is, in the method for evaluating the corrosion resistance of an alloy according to the present invention, the alloy is powdered, the powder is immersed in an aqueous solution suitable for the environment to be evaluated, and the weight change of the alloy caused during immersion is obtained. Is measured.

【0007】[0007]

【作用】合金を粉末化すれば、合金の重量に対する比表
面積が増し、評価対象環境中における影響を受けやすく
なる。
When the alloy is powdered, the specific surface area with respect to the weight of the alloy increases, and the alloy is easily affected in the environment to be evaluated.

【0008】そして、合金は腐食等の影響を受ければ重
量が一般に増加する。従って、この重量変化を測定すれ
ば、粉末合金表面の腐食が容易に推定でき、これによっ
て短期間の内に合金の耐蝕性の評価が可能となる。
[0008] The weight of an alloy generally increases if it is affected by corrosion or the like. Therefore, by measuring the change in weight, the corrosion of the powder alloy surface can be easily estimated, whereby the corrosion resistance of the alloy can be evaluated within a short period of time.

【0009】上記粉末合金の粒度は、50〜100 μm の範
囲で、平均70〜80μm とすることが望ましい。50μm よ
り小さい粒度は得るのが困難となり、100 μm より大き
いと比表面積が小さくなり、厳密かつ正確な測定結果が
得られないからである。
The particle size of the powder alloy is desirably in the range of 50 to 100 μm, with an average of 70 to 80 μm. If the particle size is smaller than 50 μm, it is difficult to obtain the particle size. If the particle size is larger than 100 μm, the specific surface area becomes small, and accurate and accurate measurement results cannot be obtained.

【0010】なお、上記の範囲において平均70〜80μm
とするのが、測定精度と粉末粒度の得易さから好適な範
囲である。また、評価対象環境に適合する水溶液とは、
水道水、食塩水、あるいは硫酸、塩酸等の酸性水溶液を
いう。
In the above range, an average of 70 to 80 μm
Is a preferable range from the viewpoint of the measurement accuracy and the ease of obtaining the particle size of the powder. In addition, the aqueous solution compatible with the environment to be evaluated is
It refers to tap water, saline, or an acidic aqueous solution such as sulfuric acid or hydrochloric acid.

【0011】[0011]

【実施例】次にこの発明の実施例を説明する。対象金属
として下記のアルミ合金等を用意した。
Next, an embodiment of the present invention will be described. The following aluminum alloys and the like were prepared as target metals.

【0012】記 (1) Al-12Si-15Fe 合金 (2) Al- 4Si-15Mn 合金 (3) Al- 8Si-15Mn 合金 (4) Al (5) Zn (6) Fe-50Si 合金 上掲の(1) 〜(6) の金属を粒径50〜100 μm の粉末と
し、各粉末を各1g正確に測定し、それぞれを清潔なビ
ーカーに入れた。
(1) Al-12Si-15Fe alloy (2) Al-4Si-15Mn alloy (3) Al-8Si-15Mn alloy (4) Al (5) Zn (6) Fe-50Si alloy Each of the metals 1) to (6) was made into a powder having a particle size of 50 to 100 μm, and each powder was accurately measured in an amount of 1 g and placed in a clean beaker.

【0013】次に、評価環境用の資料水として(イ)pH
2.8の硫酸水溶液、(ロ)3%食塩水、(ハ)水道水を
各10ml添加し、これらを室温下で五日間静置した。五日
間経過後蒸留水で各粉末を攪拌洗浄後、乾燥させ重量を
測定した所、表1の結果となった。
Next, as the reference water for the evaluation environment, (a) pH
10 ml each of a 2.8 sulfuric acid aqueous solution, (b) 3% saline solution, and (c) tap water were added, and these were allowed to stand at room temperature for 5 days. After 5 days, each powder was stirred and washed with distilled water, dried, and weighed. The results are shown in Table 1.

【0014】 表1 重 量 変 化 検 査 対 象 項 目 (イ) (ロ) (ハ) (1) Al-12Si-15Fe 合金 +2.0 % +12.87% +3.49 % (2) Al- 4Si-15Mn 合金 +0.25 % + 6.97% +5.83 % (3) Al- 8Si-15Mn 合金 +0.54 % + 8.05% +3.35 % (4) Al +0.25 % +49.52% +2.90 % (5) Zn +2.1 % + 2.00 % +1.48 % (6) Fe-50Si 合金 +0.03 % + 0.07% +0.04 % 表1において重量変化の項目の+は重量増加を示す。Table 1 Weight change inspection items (a) (b) (c) (1) Al-12Si-15Fe alloy + 2.0% + 12.87% + 3.49% (2) Al-4Si-15Mn Alloy + 0.25% + 6.97% + 5.83% (3) Al-8Si-15Mn alloy + 0.54% + 8.05% + 3.35% (4) Al + 0.25% + 49.52% + 2.90% (5) Zn + 2.1% +2.00 % + 1.48% (6) Fe-50Si alloy + 0.03% + 0.07% + 0.04% In Table 1, + in the item of weight change indicates weight increase.

【0015】表1より明らかなように、この発明の方法
による判定結果によると、各水溶液に対する金属の耐蝕
性の傾向が明瞭にあらわれているのが見られ、従来の一
カ月以上かかっていた合金の耐蝕性の評価が一週間程度
の短期間で行えることが判明した。
As is apparent from Table 1, according to the results of the judgment according to the method of the present invention, the tendency of the corrosion resistance of the metal to each aqueous solution is clearly seen, and the alloy which took more than one month in the prior art is shown. It was found that the corrosion resistance of the steel sheet could be evaluated in a short period of about one week.

【0016】[0016]

【発明の効果】以上説明したように、この発明の方法に
よれば、従来非常に長期間を要していた合金の耐蝕性試
験が一週間程度の短期間で済むので、非常に多数の候補
の中から最適な合金を選びたいような場合に、迅速に結
果が得られるといった効果を有する。
As described above, according to the method of the present invention, the corrosion resistance test of the alloy, which has conventionally required a very long time, can be completed in a short period of about one week, so that a very large number of candidates can be obtained. When it is desired to select an optimum alloy from the above, the effect is obtained that the result can be obtained quickly.

【0017】従って、この方法により候補となる金属を
選定して行けば、最終的な最適合金の絞り込みが簡単と
なる効果を有する。
Therefore, if a candidate metal is selected by this method, the effect of simplifying the final selection of the optimum alloy can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 合金を粉末にし、該粉末を評価対象環境
に適合する水溶液に浸し、浸漬中に生じた前記合金の重
量変化を測定することを特徴とする合金の耐蝕性評価方
法。
1. A method for evaluating corrosion resistance of an alloy, comprising: forming an alloy into a powder; immersing the powder in an aqueous solution suitable for an environment to be evaluated; and measuring a weight change of the alloy generated during the immersion.
JP34026796A 1996-12-20 1996-12-20 Evaluation method for corrosion resistance of alloy Pending JPH10185797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34026796A JPH10185797A (en) 1996-12-20 1996-12-20 Evaluation method for corrosion resistance of alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34026796A JPH10185797A (en) 1996-12-20 1996-12-20 Evaluation method for corrosion resistance of alloy

Publications (1)

Publication Number Publication Date
JPH10185797A true JPH10185797A (en) 1998-07-14

Family

ID=18335310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34026796A Pending JPH10185797A (en) 1996-12-20 1996-12-20 Evaluation method for corrosion resistance of alloy

Country Status (1)

Country Link
JP (1) JPH10185797A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105466844A (en) * 2015-11-26 2016-04-06 中国航空工业集团公司沈阳飞机设计研究所 Aluminum lithium alloy corrosion resistance evaluation method
CN111879653A (en) * 2020-07-06 2020-11-03 肇庆理士电源技术有限公司 Method for testing corrosion resistance of anode of polar plate based on polymer semiconductor material PPTC

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105466844A (en) * 2015-11-26 2016-04-06 中国航空工业集团公司沈阳飞机设计研究所 Aluminum lithium alloy corrosion resistance evaluation method
CN111879653A (en) * 2020-07-06 2020-11-03 肇庆理士电源技术有限公司 Method for testing corrosion resistance of anode of polar plate based on polymer semiconductor material PPTC

Similar Documents

Publication Publication Date Title
Taylor et al. Uncertainty analysis of metal-casting porosity measurements using Archimedes' principle
Akid et al. A comparison between conventional macroscopic and novel microscopic scanning electrochemical methods to evaluate galvanic corrosion
Chen et al. Corrosion behavior of novel imitation-gold copper alloy with rare earth in 3.5% NaCl solution
US4571368A (en) Aluminum and zinc sacrificial alloy
Ferreira et al. The use of computational thermodynamics for the determination of surface tension and Gibbs–Thomson coefficient of multicomponent alloys
JPH10185797A (en) Evaluation method for corrosion resistance of alloy
CN110231278A (en) A kind of salt spray test method detecting bright as silver material antirust oil protecting effect
JP6048445B2 (en) Metal corrosivity evaluation method
WO2003060180A1 (en) Method of applying the coatings from aluminium alloy on cast iron and steel products
JP6354813B2 (en) Methods for predicting the type and amount of corrosion products
JP6544403B2 (en) Method of predicting corrosion of metals by numerical analysis
Ivošević The prospects of application of shape memory materials in the marine environment
JP2013029335A (en) Corrosion test method for anti-corrosion steel for cargo ballast hold of coal-carrying vessel and coal/ore-carrying vessel
JP2012132893A (en) Corrosion testing method for anticorrosive steel for cargo holds of coal carrying ships and combined coal/ore carrying ships, and method of predicting service lives of ships by using the same
JP4471897B2 (en) Accelerated test method for metal corrosion and method for predicting corrosion life by the method
Kuah et al. Corrosion Characteristics of Secondary Phases in WE43 Magnesium Alloys under Various Exposure Conditions
RU1817013C (en) Method of determination of service life of protective coatings on metals in corrosive media
Britton et al. Tin-Nickel Alloy Coatings—Estimation of Thickness and Porosity
US2531154A (en) Process for producing stainless steel immune to intercrystalline corrosion
Kuzmak et al. A coulometric study of the corrosion kinetics of carbon steel in microgram range
Fischer et al. Applications of the Lawrence Corrosion Detection Gauge (CDG-2)
PANOVKO The workability of alloys
JPS61223545A (en) Evaluation test for anticorrosion of material
CN116818592A (en) Method for predicting corrosion weight loss of aluminum alloy
Phull Evaluating exfoliation corrosion