JPH10185756A - Continuous-wind-tunnel apparatus - Google Patents

Continuous-wind-tunnel apparatus

Info

Publication number
JPH10185756A
JPH10185756A JP34304096A JP34304096A JPH10185756A JP H10185756 A JPH10185756 A JP H10185756A JP 34304096 A JP34304096 A JP 34304096A JP 34304096 A JP34304096 A JP 34304096A JP H10185756 A JPH10185756 A JP H10185756A
Authority
JP
Japan
Prior art keywords
intake
port
wind tunnel
return pipe
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34304096A
Other languages
Japanese (ja)
Inventor
Yoshikazu Kimura
好和 木村
Susumu Nakano
晋 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34304096A priority Critical patent/JPH10185756A/en
Publication of JPH10185756A publication Critical patent/JPH10185756A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a continuous-wind-tunnel apparatus in which the protrusion amount to a flow passage of a movable intake and evacuation mechanism can be changed, in which the loss of the flow passage is reduced and in which the operating costs of a wind tunnel can be reduced by installing the movable intake and evacuation mechanism by which the open area ratio of an intake port and an evacuation port formed at a return pipe is changed simultaneously. SOLUTION: An aerial current from a blower 1 increases its flow velocity due to a reduction in the area of a flow passage at a nozzle 3, and it is spouted to a test part 5 from a spout 4. The aerial current which is passed through the test part 5 is decelerated by a diffuser 6 in an expanded flow passage 6, and it is guided to the blower 1 again through a return pipe 7. An intake port 9 which introduces the air at the inside and an evacuation port 10 which evacuates a part of the aerial current to the outside are installed at the return pipe 7 so as to be adjacent, and an intake and evacuation mechanism 14 is installed between the intake port 9 and the evacuation port 10. Then, since the intake and evacuation mechanism 14 can be moved to the radial direction of the return pipe 7 by a hydraulic driving mechanism 16, the open area ratio of the intake port 9 and the evacuation port 10 can be changed simultaneously. Consequently, since the aerial current can be evacuated to the outside so as to introduce the air at the outside, the temperature of the aerial current at the inside of a wind tunnel can be adjusted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は連続式風洞装置に関
する。
The present invention relates to a continuous wind tunnel device.

【0002】[0002]

【従来の技術】図2は、ノズルから試験部に噴出した気
流を再び送風機へ導く回流型の連続式風洞装置の気流の
冷却機構の一例を示したもので、このような回流型の連
続式風洞装置は「Low−Speed wind Tunnel Testing」の
69ページから72ページ等で述べられている。
2. Description of the Related Art FIG. 2 shows an example of an airflow cooling mechanism of a continuous flow type wind tunnel apparatus of a circulating type in which an airflow ejected from a nozzle to a test section is guided again to a blower. The wind tunnel device is described in “Low-Speed wind Tunnel Testing” on pages 69 to 72 and the like.

【0003】送風機1から供給された気流は、導管2を
通してノズル3へ導かれ、縮小流路のノズル3では流路
面積の縮小に伴い気流を増速させ、噴出口4から所定の
流速の気流を試験部5へ噴出する。試験部5を通過した
気流は拡大流路のディフューザ6で減速させた後、戻り
管7を通して再び送風機1へ導く構造とする。また、戻
り管7には開口率が固定された吸気口9及び排気口10
が設置してあり、排気口10からは風洞内部の気流の一
部を外部へ排気し、吸気口9からは外気を導入して気流
の冷却を行う。また、吸気口と排気口10の間には気流
を吸排気し易くし排気口10から排気した気流が吸気口
9から入り難くするための吸排気機構14が設置されて
おり、風洞内部にはその一部が常に突出した状態とな
る。
[0003] The air flow supplied from the blower 1 is guided to the nozzle 3 through the conduit 2, the air flow is increased at the nozzle 3 of the reduced flow path as the flow path area is reduced, and the air flow having a predetermined flow velocity is discharged from the jet port 4. To the test section 5. The airflow that has passed through the test section 5 is decelerated by the diffuser 6 in the enlarged flow path, and then guided again to the blower 1 through the return pipe 7. The return pipe 7 has an intake port 9 and an exhaust port 10 having a fixed aperture ratio.
A part of the airflow inside the wind tunnel is exhausted to the outside from the exhaust port 10, and outside air is introduced from the intake port 9 to cool the airflow. An intake / exhaust mechanism 14 is provided between the intake port and the exhaust port 10 to facilitate intake and exhaust of the airflow and to prevent the airflow exhausted from the exhaust port 10 from entering through the intake port 9. A part thereof is always in a protruding state.

【0004】[0004]

【発明が解決しようとする課題】従来技術では、風洞内
部の気流の排気し外気を導入する吸排気機構の一部が戻
り管の流路の内面側に常に突出した状態となっている
が、このように流路内部に突出した部分があるとその部
分では圧力損失が発生する。そのため、従来の風洞装置
では吸排気機構で常に同じ圧力損失が発生するので、圧
力損失分を考慮して送風機の出力を増加させて運転しな
ければならず、その出力増加分が常に動力の損失となり
風洞の運転コストが高くなっていた。
In the prior art, a part of the intake / exhaust mechanism for exhausting the airflow inside the wind tunnel and introducing the outside air always projects to the inner surface side of the flow path of the return pipe. If there is such a protruding portion inside the flow path, a pressure loss occurs in that portion. Therefore, in the conventional wind tunnel device, the same pressure loss always occurs in the intake / exhaust mechanism, so that the fan must be operated with the output of the blower increased in consideration of the pressure loss. The operating cost of the wind tunnel was high.

【0005】[0005]

【課題を解決するための手段】本発明は、吸排気機構を
可動にし風洞内部への吸排気機構の突出量を風洞内部の
気流の温度によって変更する構造としたものである。こ
れにより、吸排気機構の流路への突出量が変更できるの
で、突出量が小さい場合には従来技術の風洞装置よりも
流路損失を低減できるので、風洞の運転コストの低減が
できる。
SUMMARY OF THE INVENTION The present invention has a structure in which an air intake / exhaust mechanism is made movable and the amount of protrusion of the air intake / exhaust mechanism into the wind tunnel is changed according to the temperature of the air flow inside the wind tunnel. As a result, the amount of protrusion of the intake / exhaust mechanism into the flow path can be changed. If the amount of protrusion is small, the flow path loss can be reduced as compared with the conventional wind tunnel device, so that the operating cost of the wind tunnel can be reduced.

【0006】試験部を通過した気流を送風機に導く戻り
管等に、吸気口及び排気口を隣接して設置し、さらに吸
気口及び排気口の面積を等しくする。また、吸気口及び
排気口にはそれぞれの開口率を流路側に移動することに
よって同時に変更できる吸排気機構を設置し、この吸排
気機構を油圧等によって作動させる駆動機構に接続す
る。吸排気機構は、軸方向(気流の流れ方向)中央部を
中心として左右対称な形状とする。さらに、試験部には
気流の温度を検知する熱電対等の温度検知器、また吸気
口の入口部近傍には外気の気温を検出する熱電対等の温
度検知器を設置し、熱電対及び吸排気機構の駆動機構を
制御装置に接続する。
[0006] An intake port and an exhaust port are provided adjacent to a return pipe or the like for guiding an air flow passing through the test section to a blower, and the areas of the intake port and the exhaust port are made equal. An intake / exhaust mechanism that can simultaneously change the opening ratio of each of the intake port and the exhaust port by moving the aperture ratio to the flow path side is installed, and this intake / exhaust mechanism is connected to a drive mechanism that operates by hydraulic pressure or the like. The intake / exhaust mechanism has a symmetrical shape with respect to the center in the axial direction (flow direction of the airflow). In addition, a temperature detector such as a thermocouple that detects the temperature of the airflow is installed in the test section, and a temperature detector such as a thermocouple that detects the temperature of the outside air is installed near the inlet of the intake port. Is connected to the control device.

【0007】試験部の温度が設定温度よりも低い状態で
は、吸気口及び排気口の開口率を小さくしておく。試験
部の温度が上昇し、所定の温度よりも高い温度となった
場合、吸排気機構の駆動装置が作動して吸排気機構を開
き、風洞内部の気流の一部が排気口から排気されるとと
もに吸気口から外気が導入される。吸排気機構の移動
量、すなわち吸気口及び排気口の開口率は、風洞の外部
に設置した熱電対と試験部に設置した熱電対で検知した
温度の差によって設定される。このように、吸排気機構
の流路への突出量を可変にすることにより、気流の温度
が低い場合には吸排気機構の流路への突出量を少なくで
きるので、流路損失が低減でき、風洞の運転コストを低
減することができる。
When the temperature of the test section is lower than the set temperature, the opening ratio of the intake port and the exhaust port is reduced. When the temperature of the test section rises and becomes higher than a predetermined temperature, the drive device of the intake / exhaust mechanism operates to open the intake / exhaust mechanism, and a part of the airflow inside the wind tunnel is exhausted from the exhaust port. At the same time, outside air is introduced from the intake port. The amount of movement of the intake / exhaust mechanism, that is, the opening ratio of the intake port and the exhaust port, is set by the difference between the temperature detected by the thermocouple installed outside the wind tunnel and the temperature detected by the thermocouple installed in the test section. As described above, by making the amount of protrusion of the intake / exhaust mechanism into the flow path variable, the amount of protrusion of the intake / exhaust mechanism into the flow path can be reduced when the temperature of the airflow is low, so that the flow path loss can be reduced. In addition, the operating cost of the wind tunnel can be reduced.

【0008】また、吸気口及び排気口の開口率を等し
く、吸排気機構は軸方向(気流の流れ方向)中央部を中
心として左右対称な形状とするので、吸排気機構の流路
内部への移動量によって吸気口及び排気口の開口率を同
時に等しく変更することができる。
In addition, since the opening ratios of the intake port and the exhaust port are equal and the intake / exhaust mechanism is symmetrical with respect to the center portion in the axial direction (flow direction of the air flow), the intake / exhaust mechanism is provided with a symmetrical shape. The opening ratio of the intake port and the exhaust port can be simultaneously and equally changed depending on the amount of movement.

【0009】[0009]

【発明の実施の形態】本発明の第1の実施例を図1によ
り説明する。本発明の回流型の連続式風洞装置の基本構
成は従来技術の風洞装置と同じで、送風機1から供給さ
れた気流は、導管2を通してノズル3へ導かれ、縮小流
路のノズル3では流路面積の縮小に伴い気流の流速を増
速させ、所定の流速の気流を噴出口4から試験部5へ噴
出し、試験部5を通過した気流は拡大流路のディフュー
ザ6で減速させた後、戻り管7を通して再び送風機1へ
導く。試験は、試験部5に噴出される気流を利用して行
われる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG. The basic structure of the circulating type continuous wind tunnel device of the present invention is the same as that of the prior art wind tunnel device, and the air flow supplied from the blower 1 is guided to the nozzle 3 through the conduit 2, The air flow velocity is increased with the reduction of the area, the air flow having a predetermined flow velocity is jetted from the ejection port 4 to the test section 5, and the air flow passing through the test section 5 is decelerated by the diffuser 6 in the enlarged flow path. It is led to the blower 1 again through the return pipe 7. The test is performed by using an airflow jetted to the test section 5.

【0010】本実施例では、戻り管7に外部の空気を導
入する吸気口9及び風洞内部の気流の一部を外部へ排気
する排気口10を面積を等しくして軸方向(気流の流れ
方向)に隣接して設置し、吸気口9と排気口10の間に
吸排気機構14を設置する。この吸排気機構14は、戻
り管7の半径方向に移動可能な構造とし、吸排気機構1
4を油圧駆動機構16と接続する。この油圧駆動機構1
6を作動させることによって吸排気機構14を作動し、
吸気口9及び排気口10の開口率を変更して、吸気量及
び排気量を変更し、気流の温度を調節するようにしたも
のである。なお、吸排気機構14が閉じた状態、すなわ
ち吸気口9及び排気口10が閉じた状態では、風洞内部
の気流が外部に漏れない構造とする。
In the present embodiment, the intake port 9 for introducing external air into the return pipe 7 and the exhaust port 10 for exhausting a part of the airflow inside the wind tunnel to the outside are made equal in area, so that they have the same area in the axial direction (the flow direction of the airflow). ), And an intake / exhaust mechanism 14 is provided between the intake port 9 and the exhaust port 10. The intake / exhaust mechanism 14 is configured to be movable in the radial direction of the return pipe 7,
4 is connected to the hydraulic drive mechanism 16. This hydraulic drive mechanism 1
6 to activate the intake / exhaust mechanism 14,
The opening ratio of the intake port 9 and the exhaust port 10 is changed to change the amount of intake air and the amount of exhaust gas, thereby adjusting the temperature of the airflow. When the intake / exhaust mechanism 14 is closed, that is, when the intake port 9 and the exhaust port 10 are closed, the airflow inside the wind tunnel is not leaked to the outside.

【0011】また、吸排気機構14は、吸排気機構14
を作動させる油圧駆動機構16が設置してあり、それぞ
れは連結材13によって連結する。吸排気機構14は
「エ」の字形の形状をしており、油圧駆動機構側のガイ
ド22は、排気口10から排気した気流が吸気口9から
再び吸引されないようにする役割を有している。また、
気流の流れる導入面32及び排気面33は圧力損失を小
さくするため滑らかな円弧形状とする。
The intake / exhaust mechanism 14 includes an intake / exhaust mechanism 14.
Are installed, and each is connected by a connecting member 13. The intake / exhaust mechanism 14 has an “D” shape, and the guide 22 on the hydraulic drive mechanism side has a role to prevent the airflow exhausted from the exhaust port 10 from being sucked again from the intake port 9. . Also,
The introduction surface 32 and the exhaust surface 33 through which the air flow flows are formed into a smooth arc shape in order to reduce the pressure loss.

【0012】油圧駆動機構16は、シリンダ17の内部
を自由に移動するピストン18が設置する。また、シリ
ンダ17の両端には油圧導管19,20を設置し、油圧
導管19,20の他端は図示しない油圧ポンプと接続し
てあり、油圧ポンプから油圧駆動機構16に油圧を導く
ようにする。油圧導管19,20には遮断弁21が設置
する。遮断弁21を開いた状態で油圧導管19側から油
圧を導きピストン18に圧力が加えると、ピストン18
が戻り管7側に動くので連結材13を介して吸排気機構
14が流路方向へ移動し、排気口10及び吸気口9が開
く。一方、遮断弁21を開いた状態で油圧導管20から
油圧を導いてピストン18に力を加えると、ピストン1
8,連結材13及び吸排気機構14は吸気口9及び排気
口10を閉じる方向に作動して、吸気口9及び排気口1
0が閉じる方向に動く。また、遮断弁21を閉じること
によってピストン18を固定することができる。なお、
シリンダ18は、風洞装置に固定する。
The hydraulic drive mechanism 16 is provided with a piston 18 that freely moves inside a cylinder 17. Hydraulic conduits 19 and 20 are installed at both ends of the cylinder 17, and the other ends of the hydraulic conduits 19 and 20 are connected to a hydraulic pump (not shown) so that hydraulic pressure is guided from the hydraulic pump to the hydraulic drive mechanism 16. . A shutoff valve 21 is installed in the hydraulic conduits 19 and 20. When the hydraulic pressure is guided from the hydraulic pressure pipe 19 side and the pressure is applied to the piston 18 with the shut-off valve 21 opened, the piston 18
Moves to the return pipe 7 side, so that the intake / exhaust mechanism 14 moves in the flow path direction via the connecting member 13, and the exhaust port 10 and the intake port 9 are opened. On the other hand, when the hydraulic pressure is guided from the hydraulic conduit 20 to apply a force to the piston 18 with the shut-off valve 21 opened, the piston 1
8, the connecting member 13 and the intake / exhaust mechanism 14 operate in the direction to close the intake port 9 and the exhaust port 10, and the intake port 9 and the exhaust port 1
0 moves in the closing direction. Further, the piston 18 can be fixed by closing the shutoff valve 21. In addition,
The cylinder 18 is fixed to the wind tunnel device.

【0013】以上により、油圧駆動機構16を作動させ
ることによって吸排気機構14を戻り管7の半径方向に
移動させることができるので、吸気口9及び排気口10
の開口率を同時にしかも、同一の開口率に変更すること
ができる。従って、風洞内部の気流の一部を外部へ排気
し、吸気口9から外部の空気を風洞内部に導入すること
ができるので、風洞内部の気流の温度を調節することが
できる。これにより、気流の温度が低い状態の時の吸排
気機構の流路内部への突出量を小さくすることができ
る。
As described above, the intake / exhaust mechanism 14 can be moved in the radial direction of the return pipe 7 by operating the hydraulic drive mechanism 16, so that the intake port 9 and the exhaust port 10 can be moved.
Can be simultaneously changed to the same aperture ratio. Therefore, a part of the airflow inside the wind tunnel can be exhausted to the outside, and external air can be introduced into the inside of the wind tunnel from the intake port 9, so that the temperature of the airflow inside the wind tunnel can be adjusted. Thus, the amount of protrusion of the intake / exhaust mechanism into the flow channel when the temperature of the airflow is low can be reduced.

【0014】図3は、戻り管7の流路断面形状が矩形の
場合の吸排気機構14の構造を示したものである。
(a)は吸排気機構が設置する戻り管7の位置の中央部
BBの断面図で、(b)はAAの位置の断面図を示し
た。また、吸排気機構14の幅W2は、戻り管7流路の
内面の幅Wとほぼ等しくしてあり、吸排気機構14と戻
り管7は図示しないOリング等のシール部材を介して接
触している。これにより、戻り管7の流路面近傍の流れ
を幅方向に渡って排気できるとともに、外気を導入する
ことができる。吸排気機構14の幅を大きくすることに
より戻り管7の流路への突出量が小さくても多くの気流
を排気及び吸気を行うことができる。このように、吸排
気機構14の流路への突出量を小さくすることにより、
圧力損失を小さくすることができる。
FIG. 3 shows the structure of the intake / exhaust mechanism 14 when the cross-sectional shape of the return pipe 7 is rectangular.
(A) is a cross-sectional view of the central portion BB at the position of the return pipe 7 where the intake / exhaust mechanism is installed, and (b) is a cross-sectional view of the position of AA. The width W 2 of the intake / exhaust mechanism 14 is substantially equal to the width W of the inner surface of the return pipe 7 flow path, and the intake / exhaust mechanism 14 and the return pipe 7 are in contact with each other via a sealing member such as an O-ring (not shown). doing. Thereby, the flow near the flow path surface of the return pipe 7 can be exhausted in the width direction, and outside air can be introduced. By increasing the width of the intake / exhaust mechanism 14, a large amount of airflow can be exhausted and intake even if the amount of protrusion of the return pipe 7 into the flow path is small. As described above, by reducing the amount of protrusion of the intake / exhaust mechanism 14 into the flow path,
Pressure loss can be reduced.

【0015】図4は、戻り管7の流路断面形状が円形の
場合の吸排気機構14の構造を示した。(a)は吸排気
機構が設置する戻り管7の位置の中央部BBの断面図
で、(b)はAAの位置の断面図を示した。吸排気機構
14の幅は、戻り管7の内径Dよりも小さい幅W2 とな
っている。吸排気機構14の流路面側の面は、流路の曲
率に沿った曲面形状とする。他の構造については図3の
戻り管7が矩形断面の流路形状の場合と同じである。
FIG. 4 shows the structure of the intake / exhaust mechanism 14 when the cross section of the return pipe 7 is circular. (A) is a cross-sectional view of the central portion BB at the position of the return pipe 7 where the intake / exhaust mechanism is installed, and (b) is a cross-sectional view of the position of AA. The width of the intake / exhaust mechanism 14 is a width W 2 smaller than the inner diameter D of the return pipe 7. The surface on the flow path surface side of the intake / exhaust mechanism 14 has a curved shape along the curvature of the flow path. Other structures are the same as those in the case where the return pipe 7 in FIG.

【0016】図5は、戻り管7の流路形状が円形断面の
場合で、吸排気機構14を設置する位置の流路構造を矩
形断面形状の矩形ダクト23に変更し、その下流側で再
び円形の流路断面形状の戻り管7とした。なお、図5は
吸気口9及び排気口10の部分を簡略的に示してある。
円形断面形状の戻り管7と矩形ダクト23は円形から矩
形に形状が徐々に変化する流路形状変更管34で接続す
る。戻り管7と矩形ダクト23の流路断面積は等しくな
るようにする。本実施例により、流路断面形状が円形の
場合の戻り管7でも流路断面形状が矩形の戻り管7の場
合と同様の吸排気機構14とすることができる。
FIG. 5 shows a case where the flow path of the return pipe 7 has a circular cross section. The flow path structure at the position where the intake / exhaust mechanism 14 is installed is changed to a rectangular duct 23 having a rectangular cross section. The return pipe 7 had a circular cross section. FIG. 5 schematically shows the intake port 9 and the exhaust port 10.
The return pipe 7 having a circular cross section and the rectangular duct 23 are connected by a flow path shape change pipe 34 whose shape gradually changes from a circle to a rectangle. The cross-sectional areas of the return pipe 7 and the rectangular duct 23 are made equal. According to the present embodiment, even in the case of the return pipe 7 having a circular channel cross-sectional shape, the same suction and exhaust mechanism 14 as that of the return pipe 7 having a rectangular channel cross-sectional shape can be obtained.

【0017】本発明の第2の実施例を図6により説明す
る。本実施例は、吸排気機構14の一端が回転軸25に
接続されており、吸排気機構14が回転軸25を中心と
して回転可能な状態で固定されている。また、吸気口9
側及び排気口10側の開口率を変更する吸排気機構14
は、連動して反対方向に回転する構造としてあり、回転
軸25の先端には図示しない歯車が設置する。さらに図
示しない吸排気機構14の駆動用の電動機が設置し、電
動機にも歯車を設置し、この歯車を回転軸25に接続す
る歯車と噛み合う状態で設置する。これにより、電動機
を作動させることにより歯車を介して回転軸25が回転
させることができるので吸排気機構14の開閉を行うこ
とができる。また、吸気口9と排気口10の上方には、
ガイド板24が設置してあり、排気口10から外部に排
気した気流が吸気口9から流入しない構造とする。
A second embodiment of the present invention will be described with reference to FIG. In this embodiment, one end of the intake / exhaust mechanism 14 is connected to the rotary shaft 25, and the intake / exhaust mechanism 14 is fixed so as to be rotatable about the rotary shaft 25. In addition, intake port 9
Intake / exhaust mechanism 14 for changing the opening ratio of the side and the exhaust port 10 side
Has a structure that rotates in the opposite direction in conjunction with it, and a gear (not shown) is provided at the tip of the rotating shaft 25. Further, an electric motor for driving the intake / exhaust mechanism 14 (not shown) is installed, and a gear is also installed on the electric motor, and the gear is installed in a state of meshing with a gear connected to the rotating shaft 25. Thereby, the rotating shaft 25 can be rotated via the gears by operating the electric motor, so that the intake and exhaust mechanism 14 can be opened and closed. In addition, above the intake port 9 and the exhaust port 10,
A guide plate 24 is provided so that the airflow exhausted from the exhaust port 10 to the outside does not flow through the intake port 9.

【0018】本発明の第3の実施例を図7により説明す
る。本実施例は、第1から第3の実施例で、試験部5の
気流の温度を熱電対等で検知し、試験部5の気流の温度
が設定値以上の温度に達した場合、気流の温度に対応し
て吸排気機構14の移動量を決定して、吸気口9及び排
気口10の開口率を自動的に変更するようにした。
A third embodiment of the present invention will be described with reference to FIG. In this embodiment, the temperature of the airflow of the test unit 5 is detected by a thermocouple or the like in the first to third embodiments, and when the temperature of the airflow of the test unit 5 reaches a temperature equal to or higher than a set value, the temperature of the airflow is measured. Accordingly, the amount of movement of the intake / exhaust mechanism 14 is determined in response to the above, and the opening ratios of the intake port 9 and the exhaust port 10 are automatically changed.

【0019】図7は、第1の実施例を試験部5の気流の
温度によって変更するようにした。吸排気機構14の移
動量を変更する油圧駆動機構16の油圧ポンプ31は油
圧ポンプ制御盤30に接続してあり、油圧ポンプ制御盤
30及び遮断弁21の信号線35は制御装置に接続す
る。なお、遮断弁21は、電磁弁等の電気信号によって
開閉可能な遮断弁を設置する。また、試験部5及び吸気
口9の入口近傍には熱電対26等の温度検知器が設置し
てあり、それぞれの出力信号線35はデータ収録装置2
7に接続する。データ収録装置27はパーソナルコンピ
ュータ等の演算処理装置28に接続してあり、データ収
録装置27で収録されたデータは演算処理装置28に取
り込まれる。演算処理装置28は温度差より、外気の風
洞内部への導入量を計算し、吸排気機構14の移動量を
算出する。演算処理装置28と制御盤29は信号線35
で接続する。
FIG. 7 shows a modification of the first embodiment depending on the temperature of the airflow in the test section 5. The hydraulic pump 31 of the hydraulic drive mechanism 16 that changes the moving amount of the intake / exhaust mechanism 14 is connected to the hydraulic pump control panel 30, and the signal line 35 of the hydraulic pump control panel 30 and the shut-off valve 21 is connected to the control device. The shut-off valve 21 is provided with a shut-off valve that can be opened and closed by an electric signal such as an electromagnetic valve. A temperature detector such as a thermocouple 26 is installed near the entrance of the test section 5 and the intake port 9, and each output signal line 35 is connected to the data recording device 2.
Connect to 7. The data recording device 27 is connected to an arithmetic processing device 28 such as a personal computer, and the data recorded by the data recording device 27 is taken into the arithmetic processing device 28. The arithmetic processing unit 28 calculates the amount of outside air introduced into the wind tunnel from the temperature difference, and calculates the amount of movement of the intake / exhaust mechanism 14. The arithmetic processing unit 28 and the control panel 29 are connected to a signal line 35.
Connect with.

【0020】試験部5の気流の温度及び外気の温度を熱
電対26で検知し、その結果はデータ収録装置27を介
して演算処理装置28に取り込まれる。演算処理装置2
8では、試験部5の気流の温度が所定の温度以下である
か否かを判定する。試験部5が所定の温度以上である場
合、風洞内部に導く空気流量を試験部5の気流の温度及
び外気の温度差から算出し、吸気口9及び排気口10の
開口率を決定する。吸気口9及び排気口10の開口率が
決まるとその結果がデータ収録装置27及び制御盤29
を介して油圧制御盤30に制御信号が送られ、制御盤2
9から遮断弁19,20の開放の信号が送られる。これ
により、遮断弁19,20は開き、油圧導管19側から
油圧が導かれ、ピストン18に押出す方向(戻り管7の
方向)に圧力が加わり、連結材13を介して吸排気機構
14を所定の位置まで移動させ、吸気口9及び排気口1
0の開口率とする。また、気流の温度が所定の温度より
も低下した場合、逆に油圧導管20側から油圧が導入さ
れ吸排気機構14が閉じる方向に動き、所定の開口率に
変更する。また、温度が安定した場合、油圧ポンプ31
を停止し遮断弁19,20を閉じることによりピストン
18を固定できるので、吸排気機構14も固定される。
これにより試験部5の気流の温度に対応して吸気口9及
び排気口10の開口率を自動的に変更できるので、外気
の導入量及び風洞内部の気流の排気量を自動的に調節で
きるので、気流の温度を自動的に調節することができ
る。
The temperature of the airflow in the test section 5 and the temperature of the outside air are detected by a thermocouple 26, and the results are taken into an arithmetic processing unit 28 via a data recording device 27. Arithmetic processing unit 2
At 8, it is determined whether or not the temperature of the airflow of the test section 5 is equal to or lower than a predetermined temperature. When the temperature of the test section 5 is equal to or higher than a predetermined temperature, the flow rate of air introduced into the wind tunnel is calculated from the temperature difference between the airflow of the test section 5 and the temperature of the outside air, and the opening ratio of the intake port 9 and the exhaust port 10 is determined. When the opening ratio of the intake port 9 and the exhaust port 10 is determined, the result is transmitted to the data recording device 27 and the control panel 29.
A control signal is sent to the hydraulic control panel 30 via the
A signal for opening the shutoff valves 19 and 20 is sent from 9. As a result, the shutoff valves 19 and 20 are opened, hydraulic pressure is guided from the hydraulic pressure conduit 19 side, and pressure is applied to the piston 18 in the pushing direction (the direction of the return pipe 7). It is moved to a predetermined position, and the intake port 9 and the exhaust port 1
The aperture ratio is 0. On the other hand, when the temperature of the airflow falls below the predetermined temperature, the oil pressure is introduced from the hydraulic pressure pipe 20 side, and the intake / exhaust mechanism 14 moves in the closing direction to change to the predetermined opening ratio. When the temperature is stabilized, the hydraulic pump 31
Is stopped and the shut-off valves 19 and 20 are closed to fix the piston 18, so that the intake / exhaust mechanism 14 is also fixed.
Thus, the opening ratio of the intake port 9 and the exhaust port 10 can be automatically changed in accordance with the temperature of the airflow in the test section 5, so that the amount of outside air introduced and the amount of exhausted airflow inside the wind tunnel can be automatically adjusted. , The air flow temperature can be adjusted automatically.

【0021】[0021]

【発明の効果】本発明の構造を有する回流型の連続式風
洞装置は、吸排気機構を作動させることにより吸気口及
び排気口の開口率を等しく同時に変更できる。さらに、
試験部の気流の温度によって吸気口及び排気口の開口率
を変更でき、風洞内部の気流の温度が低い状態では吸排
気機構の突出量を小さくできる。従って、吸排気機構で
発生する圧力損失を低減でき、風洞の運転コストが低減
できる。
The circulating continuous wind tunnel apparatus having the structure of the present invention can change the opening ratios of the intake port and the exhaust port at the same time by operating the intake / exhaust mechanism. further,
The opening ratio of the intake port and the exhaust port can be changed depending on the temperature of the airflow in the test section, and the amount of protrusion of the intake / exhaust mechanism can be reduced when the temperature of the airflow inside the wind tunnel is low. Therefore, the pressure loss generated in the intake / exhaust mechanism can be reduced, and the operating cost of the wind tunnel can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の説明図。FIG. 1 is an explanatory diagram of a first embodiment of the present invention.

【図2】従来の風洞装置の説明図。FIG. 2 is an explanatory view of a conventional wind tunnel device.

【図3】本発明の第1の実施例の説明図。FIG. 3 is an explanatory diagram of the first embodiment of the present invention.

【図4】本発明の第1の実施例の説明図。FIG. 4 is an explanatory diagram of the first embodiment of the present invention.

【図5】本発明の第1の実施例の説明図。FIG. 5 is an explanatory diagram of the first embodiment of the present invention.

【図6】本発明の第2の実施例の説明図。FIG. 6 is an explanatory diagram of a second embodiment of the present invention.

【図7】本発明の第3の実施例の説明図。FIG. 7 is an explanatory view of a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…送風機、2…導管、3…ノズル、4…噴出口、5…
試験部、6…ディフューザ、7…戻り管、9…吸気口、
10…排気口、13…連結材、14…吸排気機構、16
…油圧駆動機構、17…シリンダ、18…ピストン、1
9,20…油圧導管、21…遮断弁、22…ガイド,3
2…導入面、33…排出面。
DESCRIPTION OF SYMBOLS 1 ... Blower, 2 ... Conduit, 3 ... Nozzle, 4 ... Outlet, 5 ...
Test section, 6 ... diffuser, 7 ... return pipe, 9 ... intake port,
Reference numeral 10: exhaust port, 13: connecting member, 14: intake / exhaust mechanism, 16
... hydraulic drive mechanism, 17 ... cylinder, 18 ... piston, 1
9, 20: hydraulic conduit, 21: shut-off valve, 22: guide, 3
2 ... introduction surface, 33 ... discharge surface.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】試験を行うための気流を供給する送風機
と、上記送風機から送られた気流をノズルへ導く導管
と、縮小流路で面積の縮小に伴い気流の流速を増速させ
る先細形状のノズルと、ノズルを通して噴出した気流を
外気から遮へいするとともに試験を行う試験部と、上記
試験部を通過した気流を送風機へ導く戻り管等からなる
回流型の連続式風洞装置において、戻り管に風洞内部の
気流の一部を外部に排気する排気口及び外気を風洞内部
に導入する吸気口を隣接して設け、吸気口及び排気口の
開口率を同時変更する可動の吸排気機構を設置したこと
を特徴とする回流型の連続式風洞装置。
1. A blower for supplying an air flow for conducting a test, a conduit for guiding the air flow sent from the blower to a nozzle, and a tapered shape for increasing the flow velocity of the air flow as the area is reduced in a reduced flow path. In a circulating continuous wind tunnel device comprising a nozzle, a test section for shielding an air flow ejected through the nozzle from outside air and performing a test, and a return pipe for guiding the air flow passing through the test section to a blower, a wind tunnel is provided in the return pipe. An exhaust port that exhausts part of the internal airflow to the outside and an intake port that introduces outside air into the wind tunnel are provided adjacent to each other, and a movable intake and exhaust mechanism that simultaneously changes the opening ratio of the intake port and the exhaust port is installed. Circulation type continuous wind tunnel device characterized by the following.
【請求項2】戻り管の一部に面積の等しい吸気口及び排
気口を軸方向に隣接して設置し、上記吸気口及び上記排
気口の開口率を戻り管の半径方向に直線的に動くことに
より変更する吸排気機構を設置したことを特徴とする回
流型の連続式風洞装置。
2. An intake port and an exhaust port having the same area are installed adjacent to each other in the axial direction in a part of the return pipe, and the opening ratio of the intake port and the exhaust port moves linearly in the radial direction of the return pipe. A circulation type continuous wind tunnel device characterized by installing an intake / exhaust mechanism that is changed by changing the flow.
【請求項3】戻り管の一部に面積の等しい吸気口及び排
気口を軸方向に隣接して設置し、流れ方向に対して垂直
に形成された回転軸を持ち、上記回転軸を中心に回転す
ることにより同時に吸気口及び排気口の開口率を変更す
る吸排気機構を設置した請求項1に記載の回流型の連続
式風洞装置。
3. An intake port and an exhaust port having the same area are provided in a part of the return pipe so as to be adjacent to each other in the axial direction, and have a rotation axis formed perpendicular to the flow direction. 2. The continuous flow type wind tunnel apparatus according to claim 1, further comprising a suction / exhaust mechanism for simultaneously changing an opening ratio of an intake port and an exhaust port by rotating.
【請求項4】試験部に気流の温度を計測する熱電対等の
温度検知器及び風洞外部に外気の気温を計測する熱電対
等の温度検知器を設置し、試験部の気流の温度及び外気
の温度によって吸排気機構の移動量を自動的に変更する
ようにした請求項1または請求項2または請求項3に記
載の回流型の連続式風洞装置。
4. A temperature detector, such as a thermocouple, for measuring the temperature of the airflow in the test section and a temperature detector, such as a thermocouple for measuring the temperature of the outside air outside the wind tunnel, are installed. 4. The continuous flow type wind tunnel apparatus according to claim 1, wherein the amount of movement of the intake / exhaust mechanism is automatically changed by the change.
JP34304096A 1996-12-24 1996-12-24 Continuous-wind-tunnel apparatus Pending JPH10185756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34304096A JPH10185756A (en) 1996-12-24 1996-12-24 Continuous-wind-tunnel apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34304096A JPH10185756A (en) 1996-12-24 1996-12-24 Continuous-wind-tunnel apparatus

Publications (1)

Publication Number Publication Date
JPH10185756A true JPH10185756A (en) 1998-07-14

Family

ID=18358482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34304096A Pending JPH10185756A (en) 1996-12-24 1996-12-24 Continuous-wind-tunnel apparatus

Country Status (1)

Country Link
JP (1) JPH10185756A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10230013A1 (en) * 2002-07-04 2004-01-22 Bayerische Motoren Werke Ag Open measurement chamber wind tunnel has fresh air inlets and outlets to purge smoke particles used for air flow measurement
JP2010175422A (en) * 2009-01-30 2010-08-12 Mitsubishi Heavy Ind Ltd Wind tunnel device
CN102944377A (en) * 2012-11-30 2013-02-27 上海第二工业大学 Natural wind physical simulating device installed in laboratory or natural environment
CN106323585A (en) * 2016-11-10 2017-01-11 中国航天空气动力技术研究院 Pore plate capable of adjusting aperture online
CN108999820A (en) * 2018-08-27 2018-12-14 中国空气动力研究与发展中心高速空气动力研究所 A kind of soft wall coordinated control system of wind-tunnel and method
WO2019051374A1 (en) * 2017-09-11 2019-03-14 Winfield Solutions, Llc Flow diverting wind tunnel
US10533922B2 (en) 2017-09-11 2020-01-14 Winfield Solutions, Llc Adjustable liquid trap for liquid waste drainage under differential pressure conditions
US10627308B2 (en) 2012-01-18 2020-04-21 Winfield Solutions, Llc Low speed wind tunnel design for agricultural spray particle analysis
KR20220068698A (en) * 2020-11-19 2022-05-26 주식회사 기술융합 Roof Adjust Type Climate Simulation Wind Tunnel Chamber and Wind Tunnel having the Same
US11678602B2 (en) 2018-11-21 2023-06-20 Winfield Solutions, Llc Methods of using drift reduction adjuvant compositions

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10230013A1 (en) * 2002-07-04 2004-01-22 Bayerische Motoren Werke Ag Open measurement chamber wind tunnel has fresh air inlets and outlets to purge smoke particles used for air flow measurement
JP2010175422A (en) * 2009-01-30 2010-08-12 Mitsubishi Heavy Ind Ltd Wind tunnel device
US10627308B2 (en) 2012-01-18 2020-04-21 Winfield Solutions, Llc Low speed wind tunnel design for agricultural spray particle analysis
CN102944377A (en) * 2012-11-30 2013-02-27 上海第二工业大学 Natural wind physical simulating device installed in laboratory or natural environment
CN106323585A (en) * 2016-11-10 2017-01-11 中国航天空气动力技术研究院 Pore plate capable of adjusting aperture online
US10533922B2 (en) 2017-09-11 2020-01-14 Winfield Solutions, Llc Adjustable liquid trap for liquid waste drainage under differential pressure conditions
WO2019051374A1 (en) * 2017-09-11 2019-03-14 Winfield Solutions, Llc Flow diverting wind tunnel
US10712232B2 (en) 2017-09-11 2020-07-14 Winfield Solutions, Llc Flow diverting wind tunnel
US11047764B2 (en) 2017-09-11 2021-06-29 Winfield Solutions, Llc Flow diverting wind tunnel
US11268879B2 (en) 2017-09-11 2022-03-08 Winfield Solutions Llc Adjustable liquid trap for liquid waste drainage under differential pressure conditions
US11846571B2 (en) 2017-09-11 2023-12-19 Winfield Solutions, Llc Adjustable liquid trap for liquid waste drainage under differential pressure conditions
US11846570B2 (en) 2017-09-11 2023-12-19 Winfield Solutions, Llc Flow diverting wind tunnel
CN108999820A (en) * 2018-08-27 2018-12-14 中国空气动力研究与发展中心高速空气动力研究所 A kind of soft wall coordinated control system of wind-tunnel and method
US11678602B2 (en) 2018-11-21 2023-06-20 Winfield Solutions, Llc Methods of using drift reduction adjuvant compositions
KR20220068698A (en) * 2020-11-19 2022-05-26 주식회사 기술융합 Roof Adjust Type Climate Simulation Wind Tunnel Chamber and Wind Tunnel having the Same

Similar Documents

Publication Publication Date Title
US4086761A (en) Stator bypass system for turbofan engine
US8147186B2 (en) Centrifugal compressor
JPH10185756A (en) Continuous-wind-tunnel apparatus
US20040165984A1 (en) Centrifugal air blower unit having movable portion
JP2008544126A (en) Exhaust turbocharger exhaust turbine
JPH0231799A (en) Controller with flap valve used for drier
US5347807A (en) Combined jet engine with RAM jet and turbojet
JP2008166817A (en) Evacuation device, evacuation method and semiconductor manufacturing apparatus having evacuation device
JP2003106293A (en) Fluid machinery
US6843224B2 (en) Throttle apparatus
CN116735141A (en) Valve group of direct-current temporary flushing blowing type hypersonic wind tunnel and working method
JPH0843248A (en) Supersonic wind tunnel
EP1608855A1 (en) Automotive turbocharger systems
JPH09145534A (en) Supersonic nozzle
JPH07167092A (en) Compressor
KR100262719B1 (en) The structure of indoor unit for air-conditioner
CN112648203B (en) Electronic equipment
JPH04270936A (en) Control device of exhaust gas distributing, diluting and sampling apparatus
JPH0755632A (en) Wind-tunnel test facility
KR101450446B1 (en) Centrifugal compressor
JPH08192618A (en) Forced intake and exhaust device
JPS5575151A (en) Defrosting operation controller
JPH04362223A (en) Turbine nozzle part opening/closing device
KR20000004410U (en) Variable Intake Control System of Vehicle
JP3708189B2 (en) Variable cross-section venturi exhaust shunt