JPH10185538A - Method and equipment for ultrasonically measuring gap of a rotator - Google Patents

Method and equipment for ultrasonically measuring gap of a rotator

Info

Publication number
JPH10185538A
JPH10185538A JP35580996A JP35580996A JPH10185538A JP H10185538 A JPH10185538 A JP H10185538A JP 35580996 A JP35580996 A JP 35580996A JP 35580996 A JP35580996 A JP 35580996A JP H10185538 A JPH10185538 A JP H10185538A
Authority
JP
Japan
Prior art keywords
gap
ultrasonic sensor
rotating body
ultrasonic
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35580996A
Other languages
Japanese (ja)
Other versions
JP2905871B2 (en
Inventor
Takeshi Tagashira
剛 田頭
Shichikei Sugiyama
七契 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Aerospace Laboratory of Japan
Original Assignee
National Aerospace Laboratory of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Aerospace Laboratory of Japan filed Critical National Aerospace Laboratory of Japan
Priority to JP35580996A priority Critical patent/JP2905871B2/en
Publication of JPH10185538A publication Critical patent/JPH10185538A/en
Application granted granted Critical
Publication of JP2905871B2 publication Critical patent/JP2905871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize an easy noncontact measurement of the dimensions of a radial or axial gap of a metallic or nonmetallic rotator even in a dirty environment. SOLUTION: The inventive equipment comprises an ultrasonic sensor 3 for generating an ultrasonic pulse and receiving the reflected wave thereof fixed in the radial direction of a rotator or the direction of an axial gap thereof, and a sensor 5 for removing the effect of a resonance wave from the output signal of the ultrasonic sensor 3 upon excitation thereof and detecting the temperature in the gap. Sound velocity in the gap variable with the temperature is then calculated and then the dimensions of the gap are calculated based the time interval between transmission and reception of the ultrasonic pulse derived from the noise-free output signal, and the calculated sound speed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、回転体の間隙寸
法を計測する方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring a gap size of a rotating body.

【0002】[0002]

【従来の技術】回転体の間隙量の計測手段として、渦電
流式、放電式、静電容量式、光反射式、X線透過式とい
ったものがある。また、間隙よりはるかに量の大きな距
離の計測手段として超音波送受信方式のものもある。
2. Description of the Related Art There are eddy current type, discharge type, capacitance type, light reflection type, and X-ray transmission type as means for measuring the gap amount of a rotating body. In addition, there is an ultrasonic transmission / reception method as a means for measuring a distance much larger than the gap.

【0003】[0003]

【発明が解決しようとする課題】上記従来の間隙計測装
置は、渦電流式、放電式、静電容量式のように、回転体
が金属でなければならないもの、光反射式のように汚れ
に弱いもの、X線透過式のように装置が大がかりなも
の、など一長一短であり使用上の問題点があった。ま
た、距離の計測装置として、超音波式のものは、計測範
囲は数十メートル以上であり、回転体の間隙(数十ミリ
メートル以下)計測には適していない。この発明は、こ
の問題点を解決するためになされたもので、金属あるい
は非金属の回転半径方向間隙寸法あるいは軸方向間隙寸
法を、非接触で、汚れた環境においても、容易に計測す
ることができる計測方法及び装置を提供することを目的
とする。
The above-mentioned conventional gap measuring devices are of a type in which the rotating body must be made of a metal, such as an eddy current type, a discharge type, and a capacitance type, and a dirt such as a light reflection type. There are advantages and disadvantages such as a weak device and a device having a large device such as an X-ray transmission type, which has a problem in use. In addition, an ultrasonic type distance measuring device has a measuring range of several tens of meters or more, and is not suitable for measuring a gap (several tens of millimeters or less) between rotating bodies. The present invention has been made to solve this problem, and it is possible to easily measure the rotating radial gap or the axial gap of a metal or nonmetal in a non-contact and dirty environment. It is an object of the present invention to provide a measurement method and apparatus that can perform the measurement.

【0004】[0004]

【課題を解決するための手段】この発明に係る回転体の
間隙計測装置は、回転体の半径方向、あるいは軸方向の
間隙において、間隙方向に取り付けられ、超音波パルス
を発生するとともに反射波を受信する超音波センサと、
該超音波センサの出力信号から超音波センサを励起した
際の共振波の影響を除去する手段と、上記間隙部の温度
を検出するセンサと、該検出温度より音速を算出する手
段と、前記超音波パルスの送受信の時間間隔と算出され
た前記音速とから、前記間隙量を算出する演算装置とを
備えたものである。
SUMMARY OF THE INVENTION A gap measuring device for a rotating body according to the present invention is mounted in a gap in a radial or axial gap of the rotating body, generates an ultrasonic pulse and generates a reflected wave. An ultrasonic sensor for receiving,
Means for removing the influence of the resonance wave when exciting the ultrasonic sensor from the output signal of the ultrasonic sensor, a sensor for detecting the temperature of the gap, a means for calculating a sound speed from the detected temperature, A calculating device for calculating the gap amount from the time interval of transmission and reception of the sound pulse and the calculated sound speed.

【0005】[0005]

【発明の実施の形態】トリガパルスで超音波センサを励
起させ超音波を発生させると、この超音波は間隙空間を
音速で伝播し物体壁面で反射され、その反射波は同じ超
音波センサ受信されて計測される。この超音波の発生か
ら反射波の受信までの経過時間Tは、間隙寸法Lに比例
し、音速Vに反比例する。従って、この経過時間および
音速を計測すれば、 L=T・V/2 ‥‥‥ (1) (1)式の関係で、間隙寸法が計測される。超音波セン
サは耐環境性はよく、高温で汚れた環境でも問題なく作
動する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS When an ultrasonic sensor is excited by a trigger pulse to generate an ultrasonic wave, the ultrasonic wave propagates at a sound speed in a gap space and is reflected on an object wall, and the reflected wave is received by the same ultrasonic sensor. Measured. The elapsed time T from the generation of the ultrasonic wave to the reception of the reflected wave is proportional to the gap dimension L and inversely proportional to the sound velocity V. Therefore, if the elapsed time and the sound speed are measured, the gap size is measured according to the relationship of L = TV / 2 ‥‥‥ (1) (1). The ultrasonic sensor has good environmental resistance and can operate without problems even in a high-temperature and dirty environment.

【0006】さて、この測定法を回転体の間隙量計測に
適用しようとする場合には、回転体の構造が半径方向あ
るいは軸方向に均等であるとは限らないという問題があ
り、もし、構造上凹凸があるものであればその対峙する
壁面との間隙は回転にともない変化することとなる。従
って、間隙量を計測するといってもそれが回転体凸部と
壁面との間隙であるのか、回転体の特定部と壁面との間
隙であるのか、あるいは回転体と壁面間の時間的に変化
する間隙を求めるのかによってその計測法は異なってく
る。また、音速にしても常に一定として扱えるものでは
なく、音波が伝播する媒質が何であるか(例えば空
気)、更に温度、密度によっても変化するものである。
したがって、本願発明は環境変化に対応した音速を計算
し間隙を演算するものである。
When this measuring method is applied to the measurement of the gap amount of the rotating body, there is a problem that the structure of the rotating body is not always uniform in the radial direction or the axial direction. If there are upper and lower irregularities, the gap between the opposing wall surface will change with rotation. Therefore, even if the gap amount is measured, whether it is the gap between the rotating body convex part and the wall surface, the gap between the specific part of the rotating body and the wall surface, or the temporal change between the rotating body and the wall surface The measurement method differs depending on whether a gap is determined. Further, the sound speed cannot always be treated as being constant, but changes depending on what medium the sound wave propagates (for example, air), and furthermore, the temperature and the density.
Therefore, the present invention is to calculate the sound speed corresponding to the environmental change and calculate the gap.

【0007】本願発明では回転体の任意の特定点と壁面
との間隙量を求めることを考える。その特定点は、回転
体の何れかに基準点を決め1回転につき1回その基準点
が通過する際の信号を検出する基準位置センサ配設し、
その信号を適切な遅延をもたせて上記トリガパルスとす
ることにより、回転体の回転位置を特定することができ
る。それは基準位置センサと超音波センサの位置関係、
回転体の回転速度そしてこの遅延時間により決定され
る。この遅延時間を変更することで回転体の適宜の位置
の間隙を計測することができる。
In the present invention, it is considered that a gap amount between an arbitrary specific point of the rotating body and a wall surface is obtained. The specific point is provided with a reference position sensor that determines a reference point on any of the rotating bodies and detects a signal when the reference point passes once per rotation.
By setting the trigger pulse with the signal with an appropriate delay, the rotational position of the rotating body can be specified. It is the positional relationship between the reference position sensor and the ultrasonic sensor,
It is determined by the rotation speed of the rotating body and this delay time. By changing the delay time, the gap at an appropriate position of the rotating body can be measured.

【0008】また、超音波送受信法によって間隙計測を
行った場合、反射波を受信する超音波センサ3の実際の
振動はこの反射波の受信によるものの他に発信の際の励
起に基づく超音波センサ自身の共振波が重畳されてい
る。長い距離の計測であれば反射波の到達時間はそれだ
け長くなり、励起共振波は十分に減衰しているのでこの
共振波の重畳はさほど問題にはならなかったが、計測す
べき間隙が狭い場合、反射波の到達時間が短いため、励
振共振波の減衰が少なく反射波をこの励起共振波から区
別して、正確な反射波の受信タイミングを割り出すこと
が困難になるという問題を生じる。そこで、本願発明は
励起共振波の減衰波形特性を予め記憶しておき、超音波
センサ3の出力信号からこれを差し引くようにして励起
共振波の影響を除去するようにしている。間隙が無限大
であれば反射波の受信はなく、超音波センサの出力は単
純に励起共振波に対応するものとみなすことができるの
で、この励起共振波の減衰波形特性は間隙が無限大の時
の超音波センサ3の計測データとして得ることができ
る。本発明はこの様に励起共振波の影響を除去すること
で反射波の受信タイミングを正確に割り出し、トリガパ
ルスから反射波までの経過時間の算出を容易にするもの
である。
When the gap is measured by the ultrasonic transmission / reception method, the actual vibration of the ultrasonic sensor 3 for receiving the reflected wave is not limited to the reception of the reflected wave but also the ultrasonic sensor based on the excitation at the time of transmission. The own resonance wave is superimposed. When measuring long distances, the arrival time of the reflected wave becomes longer and the excitation resonance wave is sufficiently attenuated, so superposition of this resonance wave did not matter much, but when the gap to be measured was narrow Since the arrival time of the reflected wave is short, there is a problem that it is difficult to distinguish the reflected wave from the excited resonance wave and to determine the accurate reception timing of the reflected wave because the excitation resonance wave is less attenuated. Therefore, according to the present invention, the attenuation waveform characteristic of the excitation resonance wave is stored in advance, and this is subtracted from the output signal of the ultrasonic sensor 3 to remove the influence of the excitation resonance wave. If the gap is infinite, no reflected wave is received, and the output of the ultrasonic sensor can be simply regarded as corresponding to the excitation resonance wave. It can be obtained as measurement data of the ultrasonic sensor 3 at the time. The present invention removes the influence of the excitation resonance wave in this way to accurately determine the reception timing of the reflected wave and to easily calculate the elapsed time from the trigger pulse to the reflected wave.

【0009】[0009]

【実施例1】図1は、この発明の一実施例を示す構成図
で、圧縮機あるいはタービンの回転翼端とケーシングと
の間隙を計測する例である。図1において、1は回転
翼、2はケーシング、3は超音波センサ、4は基準位置
センサ、5は温度センサ、6は増幅器、7は演算装置で
あって、マイクロプロセサ、AD変換器およびDA変換
器で構成されており、トリガ信号の遅延(可変)、経過
時間の計測、温度変化に対応した音速の計算、励起共振
波の影響除去処理を行い、間隙寸法を算出する。
Embodiment 1 FIG. 1 is a block diagram showing an embodiment of the present invention, in which a gap between a rotor blade end of a compressor or a turbine and a casing is measured. In FIG. 1, 1 is a rotor, 2 is a casing, 3 is an ultrasonic sensor, 4 is a reference position sensor, 5 is a temperature sensor, 6 is an amplifier, 7 is an arithmetic unit, and is a microprocessor, an AD converter and a DA. It is composed of a converter, and performs delay (variable) of a trigger signal, measurement of elapsed time, calculation of a sound speed corresponding to a temperature change, and a process of removing the influence of an excited resonance wave to calculate a gap size.

【0010】次に動作について説明する。回転体の回転
方向基準位置が基準位置センサ4(例えば、回転翼の一
つに磁石を取り付けておきその通過を検出する磁気セン
サ)により検出される。その信号は図2Aのような信号
であるが、その信号はAD変換器8(例えば、ある閾値
以上の信号に応動するワンショットマルチバイブレー
タ)を介して図2Bのようなディジタルのパルス信号と
され、演算装置7内で図2Cのように遅延(τ)され
る。遅延された信号はDA変換器9(例えば、信号がハ
イの時だけゲート出力するアナログ発振器)を介して図
2Dのようなパルス幅の超音波振動周波数のアナログ信
号に変換され、超音波センサ3のトリガパルスとなる。
このパルスにより超音波センサ3を励起し、Dと同形の
超音波が放出され、回転翼1に向かった超音波は翼端で
反射される。反射波は同じ超音波センサ3で検出(図2
Eの様な信号)され、増幅器6に入力されて増幅される
ことになる。しかし、この超音波センサ3の実際の振動
はこの反射波の受信によるものの他に発信の際の励起に
基づく超音波センサ自身の共振波が重畳されており、そ
れに対応した電気信号(図2F)が増幅器6を介してA
D変換器10に送られディジタル値とされる。反射波を
この励起共振波から区別して、正確な反射波の受信タイ
ミングを割り出すことが困難である。そこで、図2Gの
ような励起共振波の減衰波形特性(間隙が無限大の時の
超音波センサ3の計測データ)を演算装置7内に記憶し
ておき、超音波センサ3の出力信号よりこれを差し引く
ようにすれば励起共振波の影響を除去することができ、
Eの反射波の受信に対応した図2Hのような信号を得る
ことが出来る。メモリからの励起共振波の減衰波形読み
出しのタイミングはAD変換器10の出力に重畳された
励起共振波信号と同期されるようにされ、減算器で減算
される。この様に励起共振波の影響を除去することでト
リガパルスから反射波までの経過時間の算出が容易にな
る。
Next, the operation will be described. The reference position in the rotation direction of the rotating body is detected by a reference position sensor 4 (for example, a magnetic sensor that attaches a magnet to one of the rotor blades and detects passage thereof). The signal is a signal as shown in FIG. 2A. The signal is converted into a digital pulse signal as shown in FIG. 2B via an AD converter 8 (for example, a one-shot multivibrator responding to a signal having a certain threshold or more). , Is delayed (τ) in the arithmetic unit 7 as shown in FIG. 2C. The delayed signal is converted to an analog signal having an ultrasonic vibration frequency with a pulse width as shown in FIG. 2D via a DA converter 9 (for example, an analog oscillator that outputs a gate only when the signal is high), and the ultrasonic sensor 3 Trigger pulse.
The ultrasonic sensor 3 is excited by this pulse, and an ultrasonic wave having the same shape as D is emitted, and the ultrasonic wave directed to the rotary wing 1 is reflected at the blade tip. The reflected wave is detected by the same ultrasonic sensor 3 (FIG. 2)
A signal like E) is input to the amplifier 6 and amplified. However, the actual vibration of the ultrasonic sensor 3 is not only a result of receiving the reflected wave but also a resonance wave of the ultrasonic sensor itself based on excitation at the time of transmission, and an electric signal corresponding thereto (FIG. 2F). Is A through the amplifier 6
The data is sent to the D converter 10 and is converted into a digital value. It is difficult to distinguish the reflected wave from this excitation resonance wave and to determine the accurate reception timing of the reflected wave. Therefore, the attenuation waveform characteristic of the excitation resonance wave (measurement data of the ultrasonic sensor 3 when the gap is infinite) as shown in FIG. 2G is stored in the arithmetic unit 7, and this is obtained from the output signal of the ultrasonic sensor 3. By subtracting, the effect of the excitation resonance wave can be removed,
A signal as shown in FIG. 2H corresponding to the reception of the reflected wave of E can be obtained. The timing of reading the attenuation waveform of the excitation resonance wave from the memory is synchronized with the excitation resonance signal superimposed on the output of the AD converter 10, and is subtracted by the subtractor. Eliminating the influence of the excitation resonance wave in this manner facilitates calculation of the elapsed time from the trigger pulse to the reflected wave.

【0011】一方、計測すべき間隙の近傍に設置された
温度センサ5で温度が計測され、AD変換器11を介し
てディジタル化され、既知の作動流体の物性値を使い温
度に対応した音速が計算される。ちなみに空気中の音速
Vを考えると、 V=332m/sec+0.61t ‥‥(2) で与えられ、圧力や密度によらず、温度tによって変化
するので、温度センサ5によって計測された温度値より
音速Vを計算する。そして経過時間は間隙の往復分に対
応するので、計測すべき間隙Lは、演算器においてT
(経過時間)×V(音速)÷2なる計算で求められる。
On the other hand, the temperature is measured by a temperature sensor 5 installed in the vicinity of the gap to be measured, digitized via an AD converter 11, and the sound velocity corresponding to the temperature is determined using the known physical property values of the working fluid. Is calculated. By the way, when the sound velocity V in the air is considered, it is given by: V = 332 m / sec + 0.61t (2), which varies depending on the temperature t regardless of the pressure or the density. Calculate the sound velocity V. Since the elapsed time corresponds to the reciprocation of the gap, the gap L to be measured is calculated by T
(Elapsed time) × V (sound speed) ÷ 2.

【0012】上記のトリガパルスの遅延時間(τ)を変
えることにより、任意の回転翼の翼端間隙が計測されう
る。また、回転翼がない時にトリガパルスが出るように
遅延時間を調整すれば、上記の励起共振波の減衰波形特
性(間隙が無限大の時の超音波センサ3の計測データ)
が計測できるので、このデータを予めRAMに記憶して
おけばよい。
By changing the delay time (τ) of the trigger pulse, the tip clearance of an arbitrary rotor can be measured. Further, if the delay time is adjusted so that a trigger pulse is output when there is no rotor, the above-described attenuation waveform characteristics of the excitation resonance wave (measurement data of the ultrasonic sensor 3 when the gap is infinite)
Can be measured, and this data may be stored in the RAM in advance.

【0013】[0013]

【発明の効果】この発明は、超音波送受信方式の距離測
定法を間隙計測に適応可能としたもので、金属あるいは
非金属の回転体の半径方向間隙寸法あるいは軸方向間隙
寸法を、非接触で、汚れた環境においても、容易に計測
することができる計測装置であり、航空用ガスタービン
エンジンをはじめ、産業用ガスタービン、スティームタ
ービン等の運転時の翼端間隙計測、回転軸の軸方向変位
の計測、等を可能にする。これにより、これらのエンジ
ンの性能向上、安全性向上を図ることが可能となる。
According to the present invention, the distance measurement method of the ultrasonic transmission / reception method can be adapted to the gap measurement, and the gap size in the radial direction or the gap size in the axial direction of the metallic or non-metallic rotating body can be measured in a non-contact manner. This is a measurement device that can easily measure even in dirty environments, measuring the tip clearance during operation of aviation gas turbine engines, industrial gas turbines, steam turbines, etc., and axial displacement of the rotating shaft Measurement, etc. This makes it possible to improve the performance and safety of these engines.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing one embodiment of the present invention.

【図2】この発明の一実施例における動作波形を示す図
である。
FIG. 2 is a diagram showing operation waveforms in one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 タービン回転翼 2 タービンのケーシング 3 超音波センサ(送受波器) 4 基準位置センサ 5 温度センサ 6 増幅器 7 演算装置 DESCRIPTION OF SYMBOLS 1 Turbine rotor blade 2 Turbine casing 3 Ultrasonic sensor (Transceiver) 4 Reference position sensor 5 Temperature sensor 6 Amplifier 7 Arithmetic unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 回転体との間隙を超音波の送受信により
到達時間間隔として測定する方法であって、温度によっ
て変化する音速を算出すると共に、超音波センサの出力
中に重畳される励起共振波の影響を除去することによ
り、正確な反射波形を得て、精度の良い伝播時間を得、
その伝播時間と上記算出された音速から間隙寸法を算出
することを特徴とする回転体の間隙を計測する方法。
1. A method for measuring a gap with a rotating body as an arrival time interval by transmitting and receiving an ultrasonic wave, wherein a sound velocity that changes with temperature is calculated, and an excitation resonance wave superimposed on an output of an ultrasonic sensor. By removing the effect of, an accurate reflected waveform is obtained, and an accurate propagation time is obtained.
A method of measuring a gap of a rotating body, comprising calculating a gap size from the propagation time and the calculated sound velocity.
【請求項2】 回転体の半径方向、あるいは軸方向の間
隙において、間隙方向に取り付けられ、トリガパルスに
基づいて超音波パルスを発生するとともに反射波を受信
する超音波センサと、該超音波センサの出力信号から超
音波センサを励起した際の共振波の影響を除去する手段
と、上記間隙部の温度を検出するセンサと、該検出温度
より間隙部における音速を算出する手段と、前記超音波
パルスの送受信の時間間隔と算出された前記音速とか
ら、前記間隙寸法を算出する演算装置とを備えたことを
特徴とする回転体の間隙計測装置。
2. An ultrasonic sensor mounted in a gap in a radial direction or an axial direction of a rotating body and configured to generate an ultrasonic pulse based on a trigger pulse and receive a reflected wave, and the ultrasonic sensor. Means for removing the effect of the resonance wave when the ultrasonic sensor is excited from the output signal of the ultrasonic sensor, a sensor for detecting the temperature of the gap, a means for calculating the speed of sound in the gap from the detected temperature, A gap calculating device for calculating the gap dimension from a time interval of pulse transmission and reception and the calculated sound velocity.
【請求項3】 回転体の一部に基準位置を示す部材を設
け、超音波センサとある回転角度離れた位置に当該部材
の通過を検出する基準位置検出センサを配設すると共
に、この基準位置センサの出力を遅延する手段とを備
え、1回転につき1回その基準点が通過する際の信号を
検出し、その信号を適宜の遅延をもたせてトリガパルス
とすることにより、計測すべき回転体の回転部位を特定
することができる請求項2に記載された回転体の間隙計
測装置。
3. A member for indicating a reference position is provided on a part of the rotating body, and a reference position detection sensor for detecting passage of the member at a position apart from the ultrasonic sensor by a certain rotation angle is provided. Means for delaying the output of the sensor, detecting a signal when the reference point passes once per rotation, and providing the signal with an appropriate delay as a trigger pulse, thereby obtaining a rotating body to be measured. The gap measuring device for a rotating body according to claim 2, wherein the rotating portion of the rotating body can be specified.
【請求項4】 超音波センサの出力を記憶する記憶手段
と減算手段を演算装置内に備え、適宜の遅延時間を与え
て回転体との間隙が十分に大きな部位を特定して、超音
波パルスを発生した際の超音波センサの出力信号を記憶
しておき、超音波センサの出力から超音波センサを励起
した際の共振波の影響を減算除去する請求項3に記載さ
れた回転体の間隙計測装置。
4. An arithmetic unit comprising a storage means for storing the output of the ultrasonic sensor and a subtraction means, and a part having a sufficiently large gap with the rotating body is specified by giving an appropriate delay time, and the ultrasonic pulse is generated. 4. The gap of the rotating body according to claim 3, wherein an output signal of the ultrasonic sensor when the vibration is generated is stored, and the effect of the resonance wave when the ultrasonic sensor is excited is subtracted from the output of the ultrasonic sensor. Measuring device.
JP35580996A 1996-12-25 1996-12-25 Method and apparatus for measuring gap of rotating body by ultrasonic wave Expired - Lifetime JP2905871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35580996A JP2905871B2 (en) 1996-12-25 1996-12-25 Method and apparatus for measuring gap of rotating body by ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35580996A JP2905871B2 (en) 1996-12-25 1996-12-25 Method and apparatus for measuring gap of rotating body by ultrasonic wave

Publications (2)

Publication Number Publication Date
JPH10185538A true JPH10185538A (en) 1998-07-14
JP2905871B2 JP2905871B2 (en) 1999-06-14

Family

ID=18445866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35580996A Expired - Lifetime JP2905871B2 (en) 1996-12-25 1996-12-25 Method and apparatus for measuring gap of rotating body by ultrasonic wave

Country Status (1)

Country Link
JP (1) JP2905871B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163675A (en) * 2013-02-21 2014-09-08 Toshiba Corp Rotary machine monitoring system and rotary machine monitoring method
WO2018123343A1 (en) * 2016-12-28 2018-07-05 株式会社日立製作所 Ultrasonic measurement device and ultrasonic measurement method
CN108645910A (en) * 2018-06-04 2018-10-12 华中科技大学 A method of the inflection point the detection of gas compositions based on velocity of sound spectral line

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163675A (en) * 2013-02-21 2014-09-08 Toshiba Corp Rotary machine monitoring system and rotary machine monitoring method
WO2018123343A1 (en) * 2016-12-28 2018-07-05 株式会社日立製作所 Ultrasonic measurement device and ultrasonic measurement method
JPWO2018123343A1 (en) * 2016-12-28 2019-07-11 株式会社日立製作所 Ultrasonic measurement device and ultrasonic measurement method
US11009346B2 (en) 2016-12-28 2021-05-18 Hitachi, Ltd. Ultrasonic measurement apparatus and ultrasonic measurement method
CN108645910A (en) * 2018-06-04 2018-10-12 华中科技大学 A method of the inflection point the detection of gas compositions based on velocity of sound spectral line
CN108645910B (en) * 2018-06-04 2020-06-26 华中科技大学 Method for detecting gas components based on inflection point of acoustic velocity spectral line

Also Published As

Publication number Publication date
JP2905871B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
EP2275776B1 (en) Method and apparatus for measuring turbine blade tip clearance
EP2786100B1 (en) Ultrasonic flow meter with digitally under-sampled flow measurements
US8600702B2 (en) Non-destructive thickness measurement systems and methods
WO1999027359A1 (en) Apparatus and method for ultrasonic inspection of machinery
JP2007010543A (en) Apparatus and method for measuring thickness of oxide film
JP2905871B2 (en) Method and apparatus for measuring gap of rotating body by ultrasonic wave
JPS6238360A (en) Ultrasonic phase reflectoscope
JP2008151705A (en) Ultrasonic thickness measuring method and device
Bychkov et al. Active Ultrasonic Vibration Control of Electrical Equipment: Correlation Signal Processing
JP3421412B2 (en) Pipe thinning measurement method and equipment
WO2013017880A1 (en) Wear measurement
RU2231753C1 (en) Procedure measuring thickness of article with use of ultrasonic pulses
JP2008157677A (en) System and method for measuring quantity of flow, computer program, and ultrasonic transducer
JP4904099B2 (en) Pulse signal propagation time measurement device and ultrasonic flow measurement device
Tagashira et al. Measurement of blade tip clearance using an ultrasonic sensor
Kang et al. Low-power EMAT measurements for wall thickness monitoring
Bezlyud'Ko et al. Portable electromagnetic-acoustic thickness meters (emat)
Binghui et al. The development of aero-engine tip-clearance measurement technology: A simple review
JP4674007B2 (en) Liquid level measuring device in pipe and liquid level measuring method
JP4704536B2 (en) Liquid level measuring device in pipe and liquid level measuring method
Weiss et al. Monostatic radio-acoustic sounding system
CA3114307A1 (en) Method and device for acoustic measuring in a pipeline
Gushchina et al. Development of the experimental equipment for measuring the velocity of ultrasonic waves with high accuracy
Schlaberg et al. Wind speed and direction measurement with narrowband ultrasonic sensors using dual frequencies
JPWO2005119182A1 (en) Fluid flow rate measuring method and flow rate measuring device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990223

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term