JPH10184804A - Driving shaft having excellent torsional fatigue characteristics - Google Patents

Driving shaft having excellent torsional fatigue characteristics

Info

Publication number
JPH10184804A
JPH10184804A JP34944896A JP34944896A JPH10184804A JP H10184804 A JPH10184804 A JP H10184804A JP 34944896 A JP34944896 A JP 34944896A JP 34944896 A JP34944896 A JP 34944896A JP H10184804 A JPH10184804 A JP H10184804A
Authority
JP
Japan
Prior art keywords
balance weight
welding
shaft
strength
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34944896A
Other languages
Japanese (ja)
Inventor
Junji Yamanaka
淳史 山中
Itsurou Hiroshige
逸朗 弘重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34944896A priority Critical patent/JPH10184804A/en
Publication of JPH10184804A publication Critical patent/JPH10184804A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an automotive driving shaft capable of manufacturing without needing big change in conventional manufacturing processes, in which resistance to torsional fatigue of a welded part of a balance weight is high, and in which the fatigue strength is in well balanced with the joining strength of the balance weight. SOLUTION: In a driving shaft for transmitting automobile engine driving force to an axle, to which a balance weight for reducing rotational whirling is mounted by projection welding, the diameter (a) of a welded joint part at which the balance weight is welded to the shaft, and the thickness (d) of the balance weight at the welded part satisfy the following equations: a+4d<=10mm, 1.5mm<=(a)<=4.5mm, 0.5mm<=(d)<=2.0mm. Thus, a driving shaft having excellent torsional fatigue strength characteristics can be obtained. Further, when the number of welding points at which the balance weight is welded to the shaft is set to be three or more, and the arrangement of the welding points is to be a row in the circumferential direction of the shaft, a driving shaft which is excellent in the joining strength of the balance weight and in the torsional fatigue characteristic, can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、乗用車・トラック
・トラクターといった、いわゆる広義の自動車に属する
車両のエンジン推進力を各車輪に伝える駆動軸、例えば
プロペラシャフト、ドライブシャフトといった部品に関
するもので、特に従来品より疲労特性が向上し、サイズ
ダウンによる軽量化が可能な自動車駆動軸に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive shaft, such as a propeller shaft or a drive shaft, for transmitting the engine propulsion force of each vehicle belonging to a so-called automobile such as a car, truck or tractor. The present invention relates to an automobile drive shaft that has improved fatigue characteristics compared to conventional products and can be reduced in weight by reducing the size.

【0002】[0002]

【従来の技術】自動車駆動軸は、自動車技術ハンドブッ
ク(第4分冊、生産・品質・整備編p233 自動車工
業会 1991年)に記載されるように、高速回転時に
振動が少ないことが重要な特性の1つである。その対策
として、図1の駆動部品の外観図に示すように、鋼管1
にバランスウエイト2を取り付け、周方向の重量バラン
ス調整が行われる。
2. Description of the Related Art As described in the Automobile Technology Handbook (Vol. 4, Production, Quality, and Maintenance, p. 233, The Automobile Manufacturers Association, 1991), it is important for the driving shaft of an automobile to have low vibration during high-speed rotation. One. As a countermeasure, as shown in the external view of the driving parts in FIG.
The balance weight 2 is attached to the, and the weight balance adjustment in the circumferential direction is performed.

【0003】このバランスウエイトの取付方法には抵抗
溶接が用いられ、図2に示す(a)スポット溶接、ある
いは(b)プロジェクション溶接の2通りが存在する
が、いずれの方法でも駆動力を繰返し伝達することに対
応するねじり疲労試験を実施すると、図3(a)に示す
ようにバランスウエイトの溶接部からの疲労割れ6が認
められる場合がある。引張強さが500MPa未満の低
強度材の疲労試験の場合は、図3(b)のようにジョイ
ント部品接合部3からの疲労割れ7が特性を決めていた
のに対し、特開平2−197525号公報に記載される
ような材料強度を高め駆動軸の断面積を減らして軽量化
を進めた場合の疲労破壊は、図3(a)に示すようにバ
ランスウエイト溶接部からの疲労割れ6が支配的とな
り、ねじり疲労特性が劣化して軽量化のための大きな障
害であった。
[0003] Resistance welding is used as a method of mounting the balance weight, and there are two types, (a) spot welding and (b) projection welding shown in FIG. 2. In either case, the driving force is repeatedly transmitted. When a torsional fatigue test corresponding to the above is performed, a fatigue crack 6 from the welded portion of the balance weight may be recognized as shown in FIG. In the case of a fatigue test of a low-strength material having a tensile strength of less than 500 MPa, the characteristics are determined by the fatigue crack 7 from the joint part 3 of the joint as shown in FIG. As shown in FIG. 3A, when the weight of the drive shaft is reduced by increasing the material strength and reducing the cross-sectional area of the drive shaft, the fatigue fracture is caused by fatigue cracks 6 from the balance weight weld as shown in FIG. It became dominant, and the torsional fatigue properties deteriorated, which was a major obstacle for weight reduction.

【0004】バランスウエイト溶接部からの疲労割れの
主な原因としては、溶接部の幾何学形状に起因する応
力集中、溶接時の急熱急冷による金属組織の変化、
溶接残留応力などが考えられる。これらを解決するた
め、例えば、特開平6−246440号公報には、バラ
ンスウエイト取付部を加熱することで疲労特性を向上さ
せる製造方法が開示されている。さらに、特開平6−2
46439号公報には、取付方法に従来のスポット溶接
やプロジェクション溶接を用いず、アーク溶接を用いて
バランスウエイトを取り付けたねじり疲労特性に優れた
自動車駆動軸が、また、特開平6−249291号公報
には、接着剤を用いてバランスウエイトを取り付けたね
じり疲労特性に優れた自動車駆動軸が開示されている。
しかし、これらの発明では、従来のバランスウエイト取
付工程での生産性の低下を招いたり、設備・工程の大幅
な変更や新設の必要があり、経済性の面での難点があっ
た。
[0004] The main causes of fatigue cracking from a balance weight weld are stress concentration due to the geometrical shape of the weld, changes in the metal structure due to rapid heating and rapid cooling during welding, and the like.
Welding residual stress can be considered. In order to solve these problems, for example, Japanese Unexamined Patent Application Publication No. 6-246440 discloses a manufacturing method in which the fatigue characteristics are improved by heating a balance weight mounting portion. Further, Japanese Patent Laid-Open No. 6-2
Japanese Patent No. 46439 discloses an automobile drive shaft excellent in torsional fatigue characteristics in which a balance weight is mounted by using arc welding without using conventional spot welding or projection welding as a mounting method. Discloses an automobile drive shaft having excellent torsional fatigue characteristics, to which a balance weight is attached using an adhesive.
However, in these inventions, the productivity is reduced in the conventional balance weight mounting process, and the equipment and process need to be changed or newly installed, which has a disadvantage in terms of economy.

【0005】一般的なバランスウエイト取付では、ま
ず、バランサーでバランスウエイト取付位置を算出し、
スポット溶接またはプロジェクション溶接でバランスウ
エイトを取り付け、その後、再度バランサーで駆動軸の
回転重心が所定の位置にあるかを確認するといった工程
をとる。現状の工程に、例えば、特開平6−24644
0号公報の製造方法を適用するには、新たに加熱用のラ
インを設ける必要があるし、特開平6−246439号
公報の発明を適用するには溶接機の変更が必要である。
特開平6−249291号公報の発明を適用する上で
は、バランスウエイト取付後の回転重心位置の確認を行
うのに、接着剤の乾燥を待たねばならず、生産性の低下
を招くといった難点がある。
[0005] In a general balance weight mounting, first, a balance weight mounting position is calculated by a balancer.
A balance weight is attached by spot welding or projection welding, and then the balancer is used again to check whether the rotational center of gravity of the drive shaft is at a predetermined position. For example, Japanese Patent Laid-Open No. 6-24644
In order to apply the manufacturing method disclosed in Japanese Patent Application Publication No. 0-204, it is necessary to newly provide a heating line, and to apply the invention disclosed in Japanese Patent Application Laid-Open No. 6-246439, it is necessary to change the welding machine.
In applying the invention of Japanese Patent Application Laid-Open No. 6-249291, it is necessary to wait for the adhesive to dry in order to confirm the position of the center of gravity of rotation after the balance weight is attached, and there is a problem that the productivity is reduced. .

【0006】また、特開平7−317844号公報に
は、プロジェクション溶接部においてバランスウエイト
のプロジェクション突起の径と溶接接合部の径を、ある
比率の範囲に限定して、疲労強度を高めた駆動軸が開示
されているが、これは接合部の径のみに注目したもので
あって、接合部の径だけの制御では、十分な疲労強度向
上が得られず、さらに疲労強度とバランスウエイトの接
合強度を高い次元でバランスさせることが不可能であっ
た。
Japanese Unexamined Patent Publication No. 7-317844 discloses a drive shaft in which the fatigue strength is increased by limiting the diameter of the projection projection of the balance weight and the diameter of the welded joint in a projection welded portion to a certain ratio. However, this focuses only on the diameter of the joint, and control of only the diameter of the joint does not provide a sufficient improvement in fatigue strength. Was impossible to balance in a high dimension.

【0007】[0007]

【発明が解決しようとする課題】以上のような現状に鑑
み、本発明は、従来の製造工程の大きな変更を要するこ
となく製造できる、バランスウエイト溶接部の耐ねじり
疲労特性が高く、さらに疲労強度とバランスウエイトの
接合強度のバランスにも優れた自動車駆動軸を得ようと
するものである。
SUMMARY OF THE INVENTION In view of the above situation, the present invention provides a balance weight weld having a high torsional fatigue resistance and a high fatigue strength, which can be manufactured without a major change in the conventional manufacturing process. The purpose of the present invention is to obtain an automobile drive shaft that is excellent in the balance between the joining strength of the balance weight and the balance weight.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
に対して種々の検討を行った結果、バランスウエイトと
軸の溶接接合部の径と厚さを所定の大きさにすること
で、ねじり疲労強度が向上し、高い疲労強度が得られる
ことを見出した。また、溶接接合部の径と厚さを所定の
大きさにした上で、溶接点の配置を考慮しながら多点化
することにより、疲労強度とバランスウエイトの接合強
度を高次元でバランスさせることに成功した。
Means for Solving the Problems The present inventors have conducted various studies on the above-mentioned problems, and as a result, by adjusting the diameter and thickness of the welded portion between the balance weight and the shaft to predetermined sizes. It has been found that torsional fatigue strength is improved and high fatigue strength is obtained. In addition, by setting the diameter and thickness of the welded joint to a predetermined size and increasing the number of points while considering the arrangement of the welding points, the fatigue strength and the joining strength of the balance weight can be balanced at a high level. succeeded in.

【0009】すなわち、本発明の要旨とするところは以
下のとおりである。 (1)回転振れまわりを低減するためのバランスウエイ
トをプロジェクション溶接で取り付けた、自動車のエン
ジン推進力を車輪に伝える駆動軸において、バランスウ
エイトと軸の溶接接合部の径aと溶接接合部のバランス
ウエイトの厚さdが、 a+4d≦10mm 1.5mm≦a≦4.5mm 0.5mm≦d≦2.0mm を満たす範囲であることを特徴とするねじり疲労特性に
優れた駆動軸。
That is, the gist of the present invention is as follows. (1) In a drive shaft that transmits the engine propulsion force of a car to wheels by mounting a balance weight for reducing rotational whirling by projection welding, the diameter a of the weld joint of the balance weight and the shaft and the balance of the weld joint A drive shaft having excellent torsional fatigue characteristics, wherein the thickness d of the weight is within a range satisfying a + 4d ≦ 10 mm 1.5 mm ≦ a ≦ 4.5 mm 0.5 mm ≦ d ≦ 2.0 mm.

【0010】(2)回転振れまわりを低減するためのバ
ランスウエイトをプロジェクション溶接で取り付けた、
自動車のエンジン推進力を車輪に伝える駆動軸におい
て、バランスウエイトと軸の溶接点の数が3個以上であ
って、かつ、各溶接点の配置を軸の周方向一列とし、さ
らに、各溶接点の溶接接合部の径aと各溶接点の溶接接
合部のバランスウエイトの厚さdが、 a+4d≦10mm 1.5mm≦a≦4.5mm 0.5mm≦d≦2.0mm を満たす範囲であることを特徴とするバランスウエイト
の接合強度とねじり疲労特性に優れた駆動軸。
(2) A balance weight for reducing rotational whirling is attached by projection welding.
In the drive shaft transmitting the engine propulsion force of the vehicle to the wheels, the number of welding points between the balance weight and the shaft is three or more, and the arrangement of each welding point is arranged in a row in the circumferential direction of the shaft. And the thickness d of the balance weight of the weld joint at each welding point is within a range satisfying a + 4d ≦ 10 mm 1.5 mm ≦ a ≦ 4.5 mm 0.5 mm ≦ d ≦ 2.0 mm. A drive shaft with excellent balance weight joint strength and torsional fatigue characteristics.

【0011】[0011]

【発明の実施の形態】前述のように、バランスウエイト
溶接部からの疲労割れの主な原因としては、溶接部の
幾何学形状に起因する応力集中、溶接時の急熱急冷に
よる金属組織の変化、溶接残留応力などが考えられ
る。また、バランスウエイトは通常複数の溶接点で軸に
固定されるため、軸のねじり変形時に、溶接点間に互
いを拘束する力が発生する。本発明者らは、これらの要
因のうち、バランスウエイト溶接部の疲労特性に及ぼす
影響が最も大きいのは、およびであるという考え方
に立ち、に対してはバランスウエイトと軸の溶接接合
部の寸法を適正化して応力集中を抑えること、に対し
ては溶接点の配置を適正化して溶接点間の拘束力を抑え
ることを検討した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the main causes of fatigue cracking from a balance weight weld are stress concentration due to the geometrical shape of the weld, and changes in the metal structure due to rapid heating and quenching during welding. And welding residual stress. Further, since the balance weight is usually fixed to the shaft at a plurality of welding points, a force is generated between the welding points when the shaft is torsionally deformed. The inventors of the present invention have conceived that, among these factors, the one having the greatest effect on the fatigue properties of the balance weight weld is and. In order to reduce stress concentration by optimizing the welding force, we examined how to optimize the arrangement of welding points and reduce the binding force between welding points.

【0012】プロジェクション溶接の場合、バランスウ
エイトと軸の溶接部は一般に図4に示すような形状とな
る。ねじりの交番応力を受けた場合には、この形状ゆえ
に溶接部には応力集中が発生し、疲労特性が劣化する。
本発明者らは、応力集中と溶接接合部の径、厚さの関係
に着目し、溶接接合部の径と厚さの両者を制御すること
で応力集中の発生を低減し、疲労特性の向上を図ること
を検討した。その結果、溶接接合部の径を小さくするこ
と、および厚さを薄くすることが、疲労強度向上に有効
であることを見出した。
In the case of projection welding, the weld between the balance weight and the shaft generally has a shape as shown in FIG. When subjected to torsional alternating stress, stress concentration occurs in the welded portion due to this shape, and fatigue characteristics deteriorate.
The present inventors focused on the relationship between the stress concentration and the diameter and thickness of the welded joint, and reduced the occurrence of stress concentration by controlling both the diameter and the thickness of the welded joint, and improved the fatigue characteristics. We considered that we planned. As a result, it has been found that reducing the diameter of the welded joint and reducing the thickness are effective in improving the fatigue strength.

【0013】溶接接合部の径が小さければ小さいほど疲
労強度は向上するが、径が小さすぎるとバランスウエイ
トと軸の間の接合強度が不十分で、駆動軸の使用時にバ
ランスウエイトが軸から離脱してしまう不都合を生じる
ため、溶接接合部の径の下限は1.5mmとした。溶接
接合部の厚さも径と同様に、小さければ小さいほど疲労
強度は向上する。しかし、小さすぎると駆動軸の使用時
にバランスウエイトがちぎれ、軸から離脱してしまう不
都合を生じるため、下限を0.5mmとした。
[0013] The smaller the diameter of the welded joint, the higher the fatigue strength. However, if the diameter is too small, the joint strength between the balance weight and the shaft is insufficient, and the balance weight separates from the shaft when the drive shaft is used. Therefore, the lower limit of the diameter of the welded joint is set to 1.5 mm. Like the diameter of the welded joint, the smaller the thickness, the higher the fatigue strength. However, if it is too small, the balance weight is torn off when the drive shaft is used, and there is a disadvantage that the drive shaft is separated from the shaft.

【0014】溶接接合部の径と厚さの上限については、
本発明者らの検討によると、図5に示すように、径を
a、厚さをdとするとき、 a+4d≦10mm の範囲にあれば良好な疲労強度が得られた。ただし、径
aが4.5mmを超えると、aとdが上式の範囲内にあ
っても十分な疲労強度が得られない。また、厚さdにつ
いても、2.0mmを超えるとaとdが上式の範囲内に
あっても十分な疲労強度が得られない。以上より、本発
明では、径a、厚さdを a+4d≦10mm 1.5mm≦a≦4.5mm 0.5mm≦d≦2.0mm の範囲に限定した。
Regarding the upper limit of the diameter and thickness of the welded joint,
According to the study by the present inventors, as shown in FIG. 5, when the diameter is a and the thickness is d, good fatigue strength is obtained if a + 4d ≦ 10 mm. However, if the diameter a exceeds 4.5 mm, sufficient fatigue strength cannot be obtained even if a and d are within the range of the above formula. Further, when the thickness d exceeds 2.0 mm, sufficient fatigue strength cannot be obtained even if a and d are within the range of the above formula. As described above, in the present invention, the diameter a and the thickness d are limited to the range of a + 4d ≦ 10 mm 1.5 mm ≦ a ≦ 4.5 mm 0.5 mm ≦ d ≦ 2.0 mm.

【0015】溶接接合部の径を制御する方法としては、
例えば、バランスウエイトのプロジェクション突起の径
の大きさを変える方法、プロジェクション溶接時の溶接
入熱を制御する方法などがある。また、溶接接合部の厚
さは、同じく溶接入熱を制御する方法や、バランスウエ
イトのプロジェクション突起部の肉厚を変える方法があ
る。プロジェクション突起部の肉厚を変える場合は、バ
ランスウエイトに必要な重量およびバランスウエイト作
製時の生産性や経済性に応じて、プロジェクション突起
部のみ、あるいはその近傍のみの肉厚を変えてもよい
し、バランスウエイト全体の肉厚を変えてもよい。
As a method of controlling the diameter of the welded joint,
For example, there are a method of changing the size of the diameter of the projection protrusion of the balance weight, a method of controlling welding heat input during projection welding, and the like. As for the thickness of the welded joint, there are a method of controlling the heat input similarly and a method of changing the thickness of the projection protrusion of the balance weight. When the thickness of the projection protrusion is changed, the thickness of only the projection protrusion or only the vicinity thereof may be changed depending on the weight required for the balance weight and the productivity and economy in producing the balance weight. Alternatively, the thickness of the entire balance weight may be changed.

【0016】上記のように、溶接接合部の径と厚さを制
御するための方法は種々考えられるが、いずれの方法を
用いた場合であっても、その目的が本発明の本質である
溶接接合部の径と厚さを一定の範囲内に制御することで
ある限り、本発明の範囲を逸脱するものではない。バラ
ンスウエイトは通常2点で軸に溶接されることが多い。
これは溶接点が多いと前記の拘束力のため疲労強度が
劣化するためである。疲労強度の観点からは、溶接点は
1点が理想的であるが、1点の溶接ではバランスウエイ
トの接合強度が不足することがあり、駆動軸の使用時に
軸から離脱してしまう不都合を生じる場合がある。従っ
て、従来は接合強度と疲労強度のバランスから2点溶接
が一般的となっていた。
As described above, various methods for controlling the diameter and thickness of the welded joint can be considered, but whichever method is used, the object of the present invention is the essence of the present invention. This does not depart from the scope of the present invention, as long as the diameter and thickness of the joint are controlled within a certain range. The balance weight is usually welded to the shaft at two points.
This is because if the number of welding points is large, the fatigue strength is deteriorated due to the restraining force. From the viewpoint of fatigue strength, one welding point is ideal, but one-point welding may result in insufficient joint strength of the balance weight, causing a disadvantage that the drive shaft is separated from the shaft when used. There are cases. Therefore, conventionally, two-point welding has been generally used from the balance between joining strength and fatigue strength.

【0017】駆動軸の使用条件に照らして接合強度に余
裕のある場合は、溶接接合部の径と厚さを本発明の範囲
に制御することで、十分な接合強度を確保しつつ、疲労
強度を向上させることが可能である。しかしながら、接
合強度に余裕のない場合は、従来の2点溶接のままで
は、疲労強度の向上のために溶接接合部の径と厚さを小
さくすると接合強度が不足するため、疲労強度を犠牲に
しても溶接点を多点化して接合強度を上げることが必要
となる。本発明者らはこの矛盾する課題を解決するた
め、多点化した場合の溶接点の配置と、疲労強度と接合
強度バランスについて検討した。
If there is a margin in the joint strength in the light of the operating conditions of the drive shaft, controlling the diameter and thickness of the welded joint within the range of the present invention ensures sufficient joint strength while maintaining the fatigue strength. Can be improved. However, if the joint strength is not sufficient, the conventional two-point welding is not sufficient if the diameter and thickness of the weld joint are reduced to improve the fatigue strength. However, it is necessary to increase the welding strength by increasing the number of welding points. In order to solve this contradictory problem, the present inventors have studied the arrangement of welding points when multiple points are used, and the balance between fatigue strength and bonding strength.

【0018】駆動軸がねじりにより変形する際には、バ
ランスウエイトと軸の各溶接点の相対的位置が変化し、
その結果としてバランスウエイトが変形する。この時、
各溶接点はバランスウエイトの変形の反力を受ける。溶
接点が1点の場合はバランスウエイトの変形は起こらな
いのに対して、溶接点が複数の場合にはバランスウエイ
トの変形反力の分だけ溶接点は大きな応力を受ける。こ
のため、溶接点の数を増やすことは疲労強度の劣化をも
たらす。
When the drive shaft is deformed by torsion, the relative positions of the welding points of the balance weight and the shaft change,
As a result, the balance weight is deformed. At this time,
Each welding point receives a reaction force of the deformation of the balance weight. When the number of welding points is one, the deformation of the balance weight does not occur. On the other hand, when there are a plurality of welding points, the welding point receives a large stress by the deformation reaction force of the balance weight. Therefore, increasing the number of welding points results in deterioration of fatigue strength.

【0019】しかし、本発明者らは、駆動軸の変形がね
じり変形であることに着目し、溶接点の配置を工夫すれ
ば、疲労強度の劣化を最小限にとどめ、かつ高い接合強
度を得ることができると考えた。この考え方に基づき、
溶接点の配置を図6(a)に示すように駆動軸の軸方向
に配置した場合、図6(b)に示すように周方向に配置
した場合、図6(c)に示すように軸方向と周方向に十
字に配置した場合について検討を行った。図8に検討結
果を示すが、従来一般的な周方向2点溶接に対して、周
方向4点溶接、軸方向4点溶接、十字4点溶接のいずれ
もの場合も、溶接点数が増えることで接合強度が上昇す
るとともに疲労強度は低下するが、周方向配置が最も疲
労強度劣化が少ない。
However, the present inventors have paid attention to the fact that the deformation of the drive shaft is torsional deformation, and if the arrangement of the welding points is devised, the deterioration of the fatigue strength is minimized and the high joining strength is obtained. Thought it could be. Based on this idea,
When the welding points are arranged in the axial direction of the drive shaft as shown in FIG. 6 (a), when the welding points are arranged in the circumferential direction as shown in FIG. 6 (b), the shaft as shown in FIG. 6 (c) The case where they were arranged in a cross in the direction and the circumferential direction was examined. FIG. 8 shows the results of the study. In contrast to the conventional general two-point welding in the circumferential direction, the number of welding points is increased in any of four-point welding in the circumferential direction, four-point welding in the axial direction, and four-point welding in the cross direction. Although the fatigue strength decreases as the joining strength increases, the fatigue strength deterioration is least in the circumferential arrangement.

【0020】周方向の配置で多点化した場合の疲労強度
劣化が小さいのは、次のような理由によるものと考えら
れる。ねじり変形では駆動軸上の各点の移動は、周方向
成分のみで、軸方向成分はない。従って、周方向に配列
された溶接点では、各点間の相対的位置の変化がない。
一方、軸方向に配列された場合は、各溶接点は軸上の位
置によって異なった大きさの周方向移動成分を持つた
め、相対的位置が変化する。よって、周方向配列では溶
接点の相対的位置変化に起因するバランスウエイトの変
形がないのに対して、軸方向配列ではバランスウエイト
が変形して、溶接点に反力が作用する。以上のようなこ
とから、周方向配列は疲労強度劣化が小さいものと考え
られる。
It is considered that the deterioration in fatigue strength when the number of points is increased in the circumferential arrangement is due to the following reasons. In torsional deformation, the movement of each point on the drive shaft has only a circumferential component and no axial component. Therefore, there is no change in the relative position between the welding points arranged in the circumferential direction.
On the other hand, when the welding points are arranged in the axial direction, the relative positions change because the welding points have circumferential movement components having different magnitudes depending on the positions on the axis. Therefore, in the circumferential arrangement, the balance weight is not deformed due to a change in the relative position of the welding point, whereas in the axial arrangement, the balance weight is deformed and a reaction force acts on the welding point. From the above, it is considered that the circumferential arrangement has little fatigue strength deterioration.

【0021】接合強度と疲労強度のバランスの観点から
見ると、接合強度は溶接点を多点化することによって、
溶接点の配置によらずほぼ比例的に上昇するが、周方向
配置は他の配置方法に比べて疲労強度の劣化が小さいの
で、接合強度と疲労強度のバランスに優れる。以上のよ
うな検討から、本発明者らは周方向配置での溶接点多点
化により、接合強度と疲労強度のバランスを高めること
に成功した。
From the viewpoint of the balance between the joint strength and the fatigue strength, the joint strength is increased by increasing the number of welding points.
Although it rises almost proportionally regardless of the arrangement of the welding points, the circumferential arrangement is less deteriorated in fatigue strength than other arrangement methods, so that the balance between joining strength and fatigue strength is excellent. From the above study, the present inventors succeeded in increasing the balance between the joint strength and the fatigue strength by increasing the number of welding points in the circumferential arrangement.

【0022】実際に駆動軸へバランスウエイトを溶接す
る場合には、バランスウエイトのプロジェクション突起
加工時の位置決め精度や、溶接の際のバランスウエイト
の位置決め精度により、溶接点の配列が周方向成分だけ
でなく、小さいながら軸方向成分を持つことがある。溶
接点配列に軸方向成分があると、上記に述べた理由によ
り疲労強度の劣化をもたらすため、精度のよい位置決め
によって、できる限り軸方向成分は排除するのが好まし
い。しかしながら、本発明者らの検討によれば、通常の
機械加工やプロジェクション溶接時の位置決め精度の範
囲内であれば、疲労強度に及ぼす影響はない。また、図
7に示す隣合う溶接点同士を結ぶ線と軸の周方向のなす
角θが、15度以内に配置されている場合には、疲労強
度の劣化はそれほど顕著ではなく、この範囲内に溶接点
が配置されている場合には、本発明でいう周方向一列の
配置であるとみなせる。
When the balance weight is actually welded to the drive shaft, the arrangement of the welding points is limited to the circumferential component only due to the positioning accuracy of the balance weight at the time of projection projection processing and the positioning accuracy of the balance weight at the time of welding. And may have an axial component, albeit small. If the welding point arrangement has an axial component, the fatigue strength is deteriorated for the reasons described above. Therefore, it is preferable to eliminate the axial component as much as possible by accurate positioning. However, according to the study of the present inventors, there is no influence on the fatigue strength as long as it is within the range of the positioning accuracy at the time of ordinary machining or projection welding. When the angle θ between the line connecting the adjacent welding points shown in FIG. 7 and the circumferential direction of the shaft is arranged within 15 degrees, the deterioration of the fatigue strength is not so remarkable. When the welding points are arranged in the circumferential direction, it can be considered that they are arranged in a line in the circumferential direction according to the present invention.

【0023】周方向配置における溶接点の数について
は、図8に示すように、3点で既に従来の2点止めより
接合強度−疲労強度バランスの向上が認められるので、
溶接点の数は3点以上がより好ましい。本発明では溶接
点の数の上限については特に限定するものではないが、
実際にプロジェクション溶接を行う際には、溶接点が多
ければ多いほど、バランスウエイトのプロジェクション
突起加工時の突起高さ精度、および軸の外周にバランス
ウエイトを沿わせるためのR加工の精度の問題から、各
プロジェクション突起を均等に軸に当てることが困難に
なり、各溶接点の溶接品質がばらつくという生産上の問
題が生じる。従って、溶接点の数は、駆動軸に要求され
る接合強度−疲労強度バランスと、前記の生産上の問題
を勘案して選択すればよい。本発明者らの検討では、通
常に使用されている駆動軸の使用条件であれば、接合強
度−疲労強度バランスは6点以下で十分な場合が多く、
前記の生産上の問題も精度の良いバランスウエイト加工
と溶接上の工夫により解決することができる。
With respect to the number of welding points in the circumferential arrangement, as shown in FIG. 8, three points have already improved the joint strength-fatigue strength balance compared to the conventional two-point fixing.
The number of welding points is more preferably three or more. In the present invention, the upper limit of the number of welding points is not particularly limited,
When actually performing projection welding, the larger the number of welding points, the higher the projection height of the balance weight when projecting the projection, and the accuracy of the R processing for aligning the balance weight along the outer periphery of the shaft. In addition, it becomes difficult to uniformly apply the projections to the shaft, which causes a problem in production that the welding quality at each welding point varies. Therefore, the number of welding points may be selected in consideration of the joint strength-fatigue strength balance required for the drive shaft and the above-mentioned production problems. In the study of the present inventors, if the operating conditions of the drive shaft that is normally used, the joint strength-fatigue strength balance is often sufficient at 6 points or less,
The above production problem can also be solved by means of accurate balance weight processing and welding.

【0024】[0024]

【実施例】外径114.3mm、肉厚4.0mm、引張
強さ735MPaクラスの高強度鋼管部分を持つ駆動軸
に、バランスウエイトをプロジェクション溶接により取
り付け、ねじり疲労試験を実施した。バランスウエイト
には、周方向に2点のプロジェクション突起を持つも
の、軸方向に4点のプロジェクション突起を持つもの、
十字に4点のプロジェクション突起を持つもの、周方向
に4点のプロジェクション突起をもつものを各種準備
し、プロジェクション突起部の径と厚さ、および溶接条
件を変化させて、接合部径と接合部厚さを変化させた。
このようにして作製した、各種の駆動軸をねじりトルク
±7kNmでねじり疲労試験に供した。溶接接合部の径
と厚さは、疲労試験後に溶接接合部を切り出して測定し
た。接合強度測定には、疲労試験に供した駆動軸と同じ
条件でバランスウエイトを溶接した試験片を準備し、バ
ランスウエイトの剥離に要する荷重を測定した。
EXAMPLE A balance weight was attached to a drive shaft having an outer diameter of 114.3 mm, a wall thickness of 4.0 mm, and a high-strength steel pipe having a tensile strength of 735 MPa class by projection welding, and a torsional fatigue test was performed. Balance weights have two projection projections in the circumferential direction, four projection projections in the axial direction,
Various types of projections with four projection projections in the cross and four projection projections in the circumferential direction are prepared, and the diameter and thickness of the projection projections and welding conditions are changed to obtain the joint diameter and the junction. The thickness was changed.
Various drive shafts produced in this manner were subjected to a torsional fatigue test at a torsional torque of ± 7 kNm. The diameter and thickness of the welded joint were measured by cutting out the welded joint after the fatigue test. For the joint strength measurement, a test piece was prepared by welding a balance weight under the same conditions as the drive shaft used for the fatigue test, and the load required for peeling the balance weight was measured.

【0025】結果を表1、表2(表1のつづき)に示
す。周方向2点溶接において、溶接接合部の径aと厚さ
dを本発明範囲にした本発明例1〜4は優れた疲労強度
を有するのに対して、図5に示すように、a+4dが1
0mmを超える比較例12、aまたはdが本発明の範囲
を超える比較例13、14は疲労強度が顕著に低下して
いる。
The results are shown in Tables 1 and 2 (continued from Table 1). In the circumferential two-point welding, Examples 1 to 4 of the present invention in which the diameter a and the thickness d of the welded joint are within the range of the present invention have excellent fatigue strength, while as shown in FIG. 1
Fatigue strength of Comparative Examples 12, 14 and 14 exceeding 0 mm is significantly reduced.

【0026】また、図8に示すように、溶接点を3点以
上として周方向に配置した本発明例5〜11は、周方向
2点溶接より接合強度−疲労強度バランスに優れる。し
かし、隣り合う溶接点を結ぶ線と軸の周方向のなす角θ
が15度を超える比較例15、溶接点配置が軸方向ある
いは十字である比較例16、17では、2点溶接に対す
る接合強度−疲労強度バランスの優位性はない。
As shown in FIG. 8, Examples 5 to 11 of the present invention, in which the number of welding points is three or more and arranged in the circumferential direction, are more excellent in joint strength-fatigue strength balance than circumferential two-point welding. However, the angle θ between the line connecting the adjacent welding points and the circumferential direction of the shaft
In Comparative Examples 15 and 15 in which the welding point arrangement is greater than 15 degrees, and in Comparative Examples 16 and 17 in which the welding points are arranged in the axial direction or in a cross shape, there is no superiority in the joint strength-fatigue strength balance with respect to two-point welding.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【発明の効果】本発明を用いれば、回転振れまわりを低
減するためのバランスウエイトをプロジェクション溶接
で取り付けた自動車駆動軸において、ねじり疲労特性を
低下させていたバランスウエイト取付部からの疲労破壊
発生を遅らせることができるとともに、バランスウエイ
トの接合強度も確保することが可能である。その結果、
実使用応力の上昇が可能であり、自動車駆動軸の軽量化
に寄与する。
According to the present invention, in an automobile drive shaft to which a balance weight for reducing rotational whirling is attached by projection welding, the occurrence of fatigue fracture from the balance weight attachment portion, which has reduced the torsional fatigue characteristics, is reduced. In addition to being able to be delayed, it is possible to secure the bonding strength of the balance weight. as a result,
The actual working stress can be increased, which contributes to a reduction in the weight of the drive shaft of an automobile.

【図面の簡単な説明】[Brief description of the drawings]

【図1】代表的な自動車駆動軸の構造を示す図である。FIG. 1 is a diagram showing the structure of a typical automobile drive shaft.

【図2】駆動軸にバランスウエイトを取り付けるスポッ
ト溶接(a)とプロジェクション溶接(b)の概要を示
す図である。
FIG. 2 is a diagram showing an outline of spot welding (a) for attaching a balance weight to a drive shaft and projection welding (b).

【図3】(a)、(b)は駆動軸に対して主要な性能評
価であるねじり疲労試験を実施した場合の疲労破壊発生
位置を示す図である。
FIGS. 3 (a) and 3 (b) are diagrams showing fatigue fracture occurrence positions when a torsional fatigue test, which is a main performance evaluation, is performed on a drive shaft.

【図4】バランスウエイトと駆動軸のプロジェクション
溶接部の断面形状を示す図である。
FIG. 4 is a view showing a cross-sectional shape of a projection welding portion between a balance weight and a drive shaft.

【図5】プロジェクション溶接接合部径a、溶接接合部
厚さdと疲労強度の関係を示す図である。
FIG. 5 is a diagram showing a relationship between a projection weld joint diameter a, a weld joint thickness d, and fatigue strength.

【図6】プロジェクション溶接点の配置を示す図で、
(a)は軸方向配置、(b)は周方向配置、(c)は十
字配置を示す。
FIG. 6 is a diagram showing an arrangement of projection welding points;
(A) shows an axial arrangement, (b) shows a circumferential arrangement, and (c) shows a cross arrangement.

【図7】隣り合う溶接点を結ぶ線と駆動軸の周方向がな
す角θを示す図である。
FIG. 7 is a diagram showing an angle θ between a line connecting adjacent welding points and a circumferential direction of a drive shaft.

【図8】プロジェクション溶接点の点数、配置と、接合
強度・疲労強度のバランスを示す図である。
FIG. 8 is a diagram showing the number and arrangement of projection welding points and the balance between joint strength and fatigue strength.

【符号の説明】[Explanation of symbols]

1 鋼管 2 バランスウエイト 3 ジョイント部品接合部 4 ジョイント部品 5 電極チップ 6 バランスウエイト溶接部からの疲労割れ 7 ジョイント部品接合部からの疲労割れ 8 バランスウエイトのプロジェクション(突起) a 溶接接合部径 d 溶接接合部厚さ 9 未溶着部 10 プロジェクション溶接点 θ 隣り合う溶接点を結ぶ線が駆動軸の周方向となす
DESCRIPTION OF SYMBOLS 1 Steel pipe 2 Balance weight 3 Joint part joint part 4 Joint part 5 Electrode chip 6 Fatigue crack from balance weight weld part 7 Fatigue crack from joint part joint part 8 Projection of balance weight (projection) a Weld joint diameter d Weld joint Part thickness 9 Unwelded part 10 Projection welding point θ Angle between the line connecting the adjacent welding points and the circumferential direction of the drive shaft

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 回転振れまわりを低減するためのバラン
スウエイトをプロジェクション溶接で取り付けた、自動
車のエンジン推進力を車輪に伝える駆動軸において、バ
ランスウエイトと軸の溶接接合部の径aと溶接接合部の
バランスウエイトの厚さdが、 a+4d≦10mm 1.5mm≦a≦4.5mm 0.5mm≦d≦2.0mm を満たす範囲であることを特徴とするねじり疲労特性に
優れた駆動軸。
1. A drive shaft for transmitting an engine propulsion force of an automobile to a wheel, to which a balance weight for reducing rotational whirling is attached by projection welding, wherein a diameter a of a weld joint between the balance weight and the shaft and a weld joint are provided. Wherein the thickness d of the balance weight is within a range satisfying a + 4d ≦ 10 mm 1.5 mm ≦ a ≦ 4.5 mm 0.5 mm ≦ d ≦ 2.0 mm.
【請求項2】 回転振れまわりを低減するためのバラン
スウエイトをプロジェクション溶接で取り付けた、自動
車のエンジン推進力を車輪に伝える駆動軸において、バ
ランスウエイトと軸の溶接点の数が3個以上であって、
かつ、各溶接点の配置を軸の周方向一列とし、さらに、
各溶接点の溶接接合部の径aと各溶接点の溶接接合部の
バランスウエイトの厚さdが、 a+4d≦10mm 1.5mm≦a≦4.5mm 0.5mm≦d≦2.0mm を満たす範囲であることを特徴とするバランスウエイト
の接合強度とねじり疲労特性に優れた駆動軸。
2. A drive shaft for transmitting engine propulsion force of an automobile to a wheel, wherein a balance weight for reducing rotational whirling is attached by projection welding, wherein the number of welding points between the balance weight and the shaft is three or more. hand,
In addition, the arrangement of each welding point is arranged in a line in the circumferential direction of the shaft, and further,
The diameter a of the welding joint at each welding point and the thickness d of the balance weight of the welding joint at each welding point satisfy the following condition: a + 4d ≦ 10 mm 1.5 mm ≦ a ≦ 4.5 mm 0.5 mm ≦ d ≦ 2.0 mm A drive shaft with excellent bonding strength and torsional fatigue characteristics of the balance weight, characterized by being within the range.
JP34944896A 1996-12-27 1996-12-27 Driving shaft having excellent torsional fatigue characteristics Pending JPH10184804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34944896A JPH10184804A (en) 1996-12-27 1996-12-27 Driving shaft having excellent torsional fatigue characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34944896A JPH10184804A (en) 1996-12-27 1996-12-27 Driving shaft having excellent torsional fatigue characteristics

Publications (1)

Publication Number Publication Date
JPH10184804A true JPH10184804A (en) 1998-07-14

Family

ID=18403827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34944896A Pending JPH10184804A (en) 1996-12-27 1996-12-27 Driving shaft having excellent torsional fatigue characteristics

Country Status (1)

Country Link
JP (1) JPH10184804A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007062493A (en) * 2005-08-30 2007-03-15 Jtekt Corp Drive shaft
JP2007095876A (en) * 2005-09-28 2007-04-12 Tdk Corp Method of manufacturing solid electrolytic capacitor
JP2019132412A (en) * 2018-02-02 2019-08-08 株式会社松井製作所 Balance weight and rotary shaft with balance weight

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007062493A (en) * 2005-08-30 2007-03-15 Jtekt Corp Drive shaft
JP2007095876A (en) * 2005-09-28 2007-04-12 Tdk Corp Method of manufacturing solid electrolytic capacitor
JP2019132412A (en) * 2018-02-02 2019-08-08 株式会社松井製作所 Balance weight and rotary shaft with balance weight

Similar Documents

Publication Publication Date Title
US6656079B2 (en) Differential gear and method of making same
JP4770661B2 (en) Friction spot welding method
EP2425911A1 (en) Process for producing cast aluminum alloy member
US10661532B2 (en) Chassis component having high durability
US10415124B2 (en) Chassis or drive component
RU2746759C1 (en) Welded steel part used as vehicle part and method for manufacturing specified welded steel part
JPH10184804A (en) Driving shaft having excellent torsional fatigue characteristics
JP4076818B2 (en) Constant velocity universal joint
JP3241775B2 (en) Improved balancing device for rotating members
EP1790864A1 (en) Hollow power transmission shaft
US6554714B2 (en) Boron carbide aluminum driveshaft tube
KR20200144229A (en) Steering apparatus of vehicle
US20060121994A1 (en) Stir welded drive shaft and method of making same
JPS58197258A (en) Car part suffering from big bending stress
JPH0735200A (en) High-performance automobile driving shaft excellent in torsional fatigue characteristic
JPH09291974A (en) High performance automobile drive shaft excellent in torsional fatigue characteristic
JP3859382B2 (en) Power transmission shaft
SE541072C2 (en) Driveshaft assembly and method for its production
JPH06341422A (en) High performance automobile drive shaft excellent in torsional fatigue characteristic
JP2005214335A (en) Balance weight of propeller shaft
JP2001098340A (en) Steel for welding structure excellent in heat-affected zone
JPH07317844A (en) High strength drive shaft for power transmission and manufacture thereof
KR19990012030A (en) How to balance the propeller shaft assembly for automobiles
JP2000230537A (en) Strong driving shaft having superior torsional fatigue characteristic, and manufacture thereof
JPH09291973A (en) Drive shaft having excellent fatigue characteristic

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20041015

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050809