JPH10182647A - Khellactone derivative and platelet aggregation inhibitor - Google Patents

Khellactone derivative and platelet aggregation inhibitor

Info

Publication number
JPH10182647A
JPH10182647A JP8347676A JP34767696A JPH10182647A JP H10182647 A JPH10182647 A JP H10182647A JP 8347676 A JP8347676 A JP 8347676A JP 34767696 A JP34767696 A JP 34767696A JP H10182647 A JPH10182647 A JP H10182647A
Authority
JP
Japan
Prior art keywords
group
cis
platelet aggregation
derivative
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8347676A
Other languages
Japanese (ja)
Inventor
Naoki Takeuchi
直樹 竹内
Toshio Kasama
俊男 笠間
Yoichi Miyamoto
洋一 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP8347676A priority Critical patent/JPH10182647A/en
Publication of JPH10182647A publication Critical patent/JPH10182647A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the subject new compound capable of exhibiting excellent platelet activation factor(PAF) antagonist activity and useful as an active compound of a platelet aggregation inhibitor. SOLUTION: This is a khellactone derivative expressed by formula I [R<1> is a 1-22C aliphatic hydrocarbon; either of R<2> or R<3> is H and the other is a group of formula II (either of R<6> or R<7> is H and the other is methyl); either of R<4> or R<5> is H and the other is a group of formula III (either of R<8> or R<9> is H and the other is methyl)] and (±)-cis-3-methoxy-3',4'-ditigloylkhellactone is exemplified. The compound of the formula I is obtained by, e.g. acetylating 2,4-dihydroxybenzaldehyde as a starting raw material with acetic anhydride, introducing to a coumarin skeleton by cyclocondensing with N-acetylglycine, further introducing to a seselin skeleton and acylating. The derivative is expected as a preventive or a curing agent for asthma, arthritis or glomerular nephritis, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は新規なケイラクトン
誘導体、ならびにこのケイラクトン誘導体を有効成分と
する薬剤であって、血小板活性化因子アンタゴニストと
して作用する血小板凝集抑制剤に関するものである。
TECHNICAL FIELD The present invention relates to a novel silactone derivative and a drug containing the silactone derivative as an active ingredient, which is an inhibitor of platelet aggregation that acts as a platelet activating factor antagonist.

【0002】[0002]

【従来の技術】血小板活性化因子(以下PAFと略す)
(J.Exp.Med.,136,1356〜137
5,1972)はグリセロール骨格の1位にエーテル結
合で長鎖のアルキル基を有し、2位にアセチル基を有す
るアルキルリゾリン脂質であり(J.Biol.Che
m.,255,5514〜5516,1980)、刺激
に応じて好中球、好塩基球、単球、血管内皮細胞等、種
々の細胞によって産生される。PAFは、生体内におい
て標的細胞表面のPAF受容体に認識されることによ
り、血小板を始め、種々の細胞を活性化させる。PAF
受容体はヒト白血球(J.Biol.Chem.,26
6,20400〜20405,1991)およびモルモ
ット肺(Nature,349,342〜346,19
91)に由来するものが同定されており、いずれもアミ
ノ酸ユニット342個よりなる7回膜貫通型のG蛋白共
役受容体であることが明らかにされている。
2. Description of the Related Art Platelet activating factor (hereinafter abbreviated as PAF)
(J. Exp. Med., 136, 1356-137)
5,1972) is an alkyl lysophospholipid having a long-chain alkyl group at the 1-position of the glycerol skeleton through an ether bond and an acetyl group at the 2-position (J. Biol. Che).
m. , 255, 5514-5516, 1980), and are produced by various cells such as neutrophils, basophils, monocytes, and vascular endothelial cells in response to stimulation. PAF activates various cells including platelets by being recognized in vivo by a PAF receptor on the surface of a target cell. PAF
The receptor is human leukocytes (J. Biol. Chem., 26
6, 20400-20405, 1991) and guinea pig lung (Nature, 349, 342-346, 19).
91) have been identified, and it has been clarified that each is a seven-transmembrane G protein-coupled receptor consisting of 342 amino acid units.

【0003】PAFの生理作用として血小板活性化、気
管支等の平滑筋収縮、血管透過性亢進および好中球、単
球、マクロファージ、好酸球等の遊走、活性化等が知ら
れている。また、PAFによる血圧降下、潰瘍形成およ
び妊娠の成立と分娩等に対する関与も報告されている。
このようにPAFは広範な作用を仲介することから、喘
息をはじめ、成人性呼吸窮迫症候群、関節炎、心・血管
系の種々の疾患、糸球体腎炎、虚血性腸管壊死、膵炎、
潰瘍、心筋虚血、脳虚血、移植に対する拒絶反応、寒冷
蕁麻疹、アナフィラキシーや敗血症によるショック等、
臨床上重大な種々の疾患に対してPAFが大きく関与し
ていることが知られている(Med.Res.Re
v.,10,351〜370,1990)。
[0003] As physiological functions of PAF, platelet activation, smooth muscle contraction of bronchi and the like, increased vascular permeability, migration and activation of neutrophils, monocytes, macrophages, eosinophils and the like are known. It has also been reported that PAF is involved in lowering blood pressure, ulceration, establishment of pregnancy and delivery, etc.
Thus, PAF mediates a wide range of actions, including asthma, adult respiratory distress syndrome, arthritis, various diseases of the cardiovascular system, glomerulonephritis, ischemic intestinal necrosis, pancreatitis,
Ulcer, myocardial ischemia, cerebral ischemia, rejection to transplant, cold urticaria, shock due to anaphylaxis or sepsis, etc.
It is known that PAF is greatly involved in various clinically important diseases (Med. Res. Re).
v. , 10, 351-370, 1990).

【0004】このようにPAFは生体内で重要な役割を
担っているので、PAFの作用に対する拮抗薬もしくは
遮断薬は、医薬品として役立つことが期待されている。
これに対して最近、発明者らは、生薬の白花前胡(Pe
ucedanum praeruptorum Duu
n)の成分の一つであるケイラクトン化合物のプラエル
プトリンAとプラエルプトリンB、およびこれらの誘導
体がPAF受容体に対するアンタゴニスト活性を持つこ
とを見いだし、これを報告した(Chem.Phar
m.Bull.,43,859〜847,1995)。
しかし、報告されたケイラクトン化合物のPAFアンタ
ゴニスト活性は小さく、臨床的使用のために、さらに強
力なPAFアンタゴニスト活性を持つ薬物の開発が望ま
れていた。
[0004] Since PAF plays an important role in vivo as described above, an antagonist or blocker for the action of PAF is expected to be useful as a pharmaceutical.
On the other hand, recently, the present inventors have proposed a crude drug, white flower maize (Pe).
ucedanum Praeruptorum Duu
One of the components of n), the lacylactone compounds praelputrin A and praelputrin B, and their derivatives were found to have antagonistic activity on the PAF receptor, and this was reported (Chem. Phar).
m. Bull. , 43, 859-847, 1995).
However, the reported PAF antagonist activity of the lacylactone compound is small, and development of a drug having a stronger PAF antagonist activity for clinical use has been desired.

【0005】[0005]

【発明が解決しようとする課題】本発明の第一の目的
は、優れたPAFアンタゴニスト活性を発揮する新規な
ケイラクトン誘導体を提供することにある。また本発明
の第二の目的は、ケイラクトン誘導体を有効成分とする
血小板凝集抑制剤を提供することにある。
SUMMARY OF THE INVENTION It is a first object of the present invention to provide a novel silalactone derivative exhibiting excellent PAF antagonist activity. A second object of the present invention is to provide a platelet aggregation inhibitor comprising a silicateone derivative as an active ingredient.

【0006】[0006]

【課題を解決するための手段】本発明者らは鋭意研究の
結果、PAFによる血小板凝集作用に対する阻害活性を
指標に、新たに合成したケイラクトン誘導体のPAFア
ンタゴニスト活性を評価することにより、優れたPAF
アンタゴニスト活性を有する新規なケイラクトン誘導体
を見いだし、本発明を完成するに至った。すなわち本発
明は一般式(1)で表されるケイラクトン誘導体であ
る。
Means for Solving the Problems As a result of earnest studies, the present inventors have evaluated the PAF antagonist activity of a newly synthesized lacylactone derivative using the inhibitory activity of PAF on the platelet aggregation effect as an index, and obtained an excellent PAF antagonist.
The present inventors have found a novel silalactone derivative having antagonist activity, and have completed the present invention. That is, the present invention is a silicactone derivative represented by the general formula (1).

【化4】 [式中、R1は炭素数1〜22の脂肪族炭化水素基。
2、R3のいずれか一方は水素原子であり他方は下記一
般式(2)
Embedded image [Wherein, R 1 is an aliphatic hydrocarbon group having 1 to 22 carbon atoms.
One of R 2 and R 3 is a hydrogen atom, and the other is the following general formula (2)

【化5】 (式中、R6、R7のいずれか一方は水素原子であり他方
はメチル基である。)で表される基である。R4、R5
いずれか一方は水素原子であり他方は下記一般式(3)
Embedded image (In the formula, one of R 6 and R 7 is a hydrogen atom and the other is a methyl group.) One of R 4 and R 5 is a hydrogen atom and the other is the following general formula (3)

【化6】 (式中、R8、R9のいずれか一方は水素原子であり他方
はメチル基である。)で表される基である。] また、本発明は一般式(1)のケイラクトン誘導体を用
いた血小板活性化因子アンタゴニスト、並びに血小板凝
集抑制剤である。
Embedded image (In the formula, one of R 8 and R 9 is a hydrogen atom and the other is a methyl group.) Further, the present invention is a platelet activating factor antagonist using a silicate derivative of the general formula (1), and a platelet aggregation inhibitor.

【0007】[0007]

【発明の実施の形態】本発明における、一般式(1)の
1は炭素数1〜22の脂肪族炭化水素基を示す。炭素
数1〜22の脂肪族炭化水素基としては、メチル基、エ
チル基、プロピル基、ブチル基、ペンチル基、ヘキシル
基、ヘプチル基、オクチル基、ノニル基、デシル基、ウ
ンデシル基、ドデシル基、トリデシル基、テトラデシル
基、ペンタデシル基、ヘキサデシル基、ヘプタデシル
基、オクタデシル基、ノナデシル基等の直鎖アルキル
基、イソプロピル基、イソブチル基、s−ブチル基、t
−ブチル基、イソペンチル基、ネオペンチル基、t−ペ
ンチル基、イソヘキシル基等の分岐鎖アルキル基、ビニ
ル基、アリル基、イソプロペニル基、cis−9−テト
ラデセニル基、trans−3−ヘキサデセニル基、c
is−9−ヘキサデセニル基、cis−6−オクタデセ
ニル基、cis−9−オクタデセニル基、trans−
9−オクタデセニル基、cis−11−オクタデセニル
基、cis−9−エイコセニル基、cis−13−ドコ
セニル基、cis−2,cis−4−ヘキサジエニル
基、cis−2,trans−4−ヘキサジエニル基、
trans−2,cis−4−ヘキサジエニル基、tr
ans−2,trans−4−ヘキサジエニル基、ci
s−9,cis−12−オクタデカジエニル基、cis
−6,cis−9−オクタデカジエニル基、cis−
9,cis−12,cis−15−オクタデカトリエニ
ル基、cis−6,cis−9,cis−12−オクタ
デカトリエニル基、cis−9,trans−11,t
rans−13−オクタデカトリエニル基、cis−
5,cis−8,cis−11,cis−14−エイコ
サテトラエニル基、cis−5,cis−8,cis−
11,cis−14,cis−17−エイコサペンタエ
ニル基、cis−4,cis−7,cis−10,ci
s−13,cis−16−ドコサペンタエニル基、ci
s−4,cis−7,cis−10,cis−13,c
is−16,cis−19−ドコサヘキサエニル基等の
アルケニル基などが好ましく例示される。これらの炭素
数1〜22の脂肪族炭化水素基のうち、化合物の扱い易
さの点からは炭素数1〜22の直鎖または分岐鎖アルキ
ル基がより好ましく、更には炭素数1〜22の直鎖アル
キル基が最も好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, R 1 in the general formula (1) represents an aliphatic hydrocarbon group having 1 to 22 carbon atoms. Examples of the aliphatic hydrocarbon group having 1 to 22 carbon atoms include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, Linear alkyl groups such as tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, isopropyl group, isobutyl group, s-butyl group, t
A branched alkyl group such as -butyl group, isopentyl group, neopentyl group, t-pentyl group, isohexyl group, vinyl group, allyl group, isopropenyl group, cis-9-tetradecenyl group, trans-3-hexadecenyl group, c
is-9-hexadecenyl group, cis-6-octadecenyl group, cis-9-octadecenyl group, trans-
9-octadecenyl group, cis-11-octadecenyl group, cis-9-eicosenyl group, cis-13-docosenyl group, cis-2, cis-4-hexadienyl group, cis-2, trans-4-hexadienyl group,
trans-2, cis-4-hexadienyl group, tr
ans-2, trans-4-hexadienyl group, ci
s-9, cis-12-octadecadienyl group, cis
-6, cis-9-octadecadienyl group, cis-
9, cis-12, cis-15-octadecatrienyl group, cis-6, cis-9, cis-12-octadecatrienyl group, cis-9, trans-11, t
ran-13-octadecatrienyl group, cis-
5, cis-8, cis-11, cis-14-eicosatetraenyl group, cis-5, cis-8, cis-
11, cis-14, cis-17-eicosapentaenyl group, cis-4, cis-7, cis-10, ci
s-13, cis-16-docosapentaenyl group, ci
s-4, cis-7, cis-10, cis-13, c
Alkenyl groups such as is-16 and cis-19-docosahexaenyl are preferred. Among these aliphatic hydrocarbon groups having 1 to 22 carbon atoms, a linear or branched alkyl group having 1 to 22 carbon atoms is more preferable from the viewpoint of easy handling of the compound, and furthermore, having 1 to 22 carbon atoms. Straight-chain alkyl groups are most preferred.

【0008】一般式(1)のR2、R3は、いずれか一方
が水素原子であり他方は一般式(2)の基を示す。一般
式(2)のR6、R7は、いずれか一方が水素原子であり
他方はメチル基を示す。一般式(1)のR4、R5は、い
ずれか一方が水素原子であり他方は一般式(3)の基を
示す。一般式(3)のR8、R9は、いずれか一方が水素
原子であり他方はメチル基を示す。このうち、一般式
(1)のケイラクトン誘導体のR2が一般式(2)の基
であり、R4が一般式(3)の基でありさらにR7とR9
がそれぞれメチル基であるものがPAFアンタゴニスト
活性に優れていると考えられるため特に好ましく例示さ
れるが、血小板凝集抑制剤などの医薬品として使用する
場合には一般式(1)に示される化合物であれば、特に
限定されない。
One of R 2 and R 3 in the general formula (1) is a hydrogen atom, and the other is a group of the general formula (2). One of R 6 and R 7 in the general formula (2) represents a hydrogen atom, and the other represents a methyl group. One of R 4 and R 5 in the general formula (1) is a hydrogen atom, and the other is a group of the general formula (3). One of R 8 and R 9 in the general formula (3) represents a hydrogen atom, and the other represents a methyl group. Of these, R 2 of the silactone derivative of the general formula (1) is a group of the general formula (2), R 4 is a group of the general formula (3), and R 7 and R 9
Are preferably methyl groups, because they are considered to be excellent in PAF antagonist activity. However, when they are used as a pharmaceutical such as a platelet aggregation inhibitor, the compounds represented by the general formula (1) There is no particular limitation.

【0009】本発明のケイラクトン誘導体は、例えば以
下のような方法により合成できる。一般式(1)で示さ
れるケイラクトン誘導体は、2,4−ジヒドロキシベン
ズアルデヒドを出発原料として、これを無水酢酸でアセ
チル化して、次にN−アセチルグリシンを用いて環化縮
合し、クマリン骨格へと誘導する。次にこれをテイラー
らの方法(Aust.J.Chem.,24,2347
〜2354,1971)を応用してセセリン骨格へと誘
導する。これを例えば常法によりチグリン酸無水物でア
シル化すれば、ジチグロイル体のケイラクトン誘導体が
得られる。
The silactone derivative of the present invention can be synthesized, for example, by the following method. The silalactone derivative represented by the general formula (1) is obtained by acetylating 2,4-dihydroxybenzaldehyde as a starting material with acetic anhydride, and then performing cyclocondensation using N-acetylglycine to form a coumarin skeleton. Induce. This is then described by the method of Taylor et al. (Aust. J. Chem., 24, 2347).
232354,1971) to induce a secerin skeleton. When this is acylated with tiglic anhydride, for example, by a conventional method, a dilacyl derivative of a silactone derivative can be obtained.

【0010】このようにして得られる一般式(1)のケ
イラクトン誘導体は、抽出、再結晶、クロマトグラフィ
ーなどの従来既知の方法により単離、精製することがで
きる。また選択的結晶化や異性化カラムなどを用いて、
光学異性体や立体異性体を分離することも良く行われ
る。
The silactone derivative of the general formula (1) thus obtained can be isolated and purified by a conventionally known method such as extraction, recrystallization, chromatography and the like. Also, using selective crystallization or isomerization columns,
It is also common to separate optical isomers and stereoisomers.

【0011】本発明の血小板凝集抑制剤は、前記、一般
式(1)で表されるケイラクトン誘導体を有効成分とし
て含有するものである。本発明の血小板凝集抑制剤は、
PAFアンタゴニストとして働くことにより、PAFに
よる血小板凝集を抑制する他、喘息をはじめ、成人性呼
吸窮迫症候群、関節炎、心・血管系の種々の疾患、糸球
体腎炎、虚血性腸管壊死、膵炎、潰瘍、心筋虚血、脳虚
血、移植に対する拒絶反応、寒冷蕁麻疹、アナフィラキ
シーや敗血症によるショックなど、PAFが直接的ある
いは間接的に関与する種々の疾患の予防または治療に対
して有効である。
[0011] The platelet aggregation inhibitor of the present invention contains the above-mentioned silalactone derivative represented by the general formula (1) as an active ingredient. The platelet aggregation inhibitor of the present invention,
By acting as a PAF antagonist, it inhibits platelet aggregation caused by PAF, as well as asthma, adult respiratory distress syndrome, arthritis, various diseases of the cardiovascular system, glomerulonephritis, ischemic intestinal necrosis, pancreatitis, ulcer, It is effective in preventing or treating various diseases in which PAF is directly or indirectly involved, such as myocardial ischemia, cerebral ischemia, rejection to transplantation, cold urticaria, shock due to anaphylaxis or sepsis.

【0012】本発明の血小板凝集抑制剤は、一般式
(1)で表されるケイラクトン誘導体をそれ自体公知の
薬理的に許容される担体、賦形剤、崩壊剤、矯正剤、増
量剤、希釈剤、溶解補助剤などと混合し、公知の方法に
従って医薬組成物、例えば錠剤、カプセル剤、顆粒剤、
散剤、粉末剤、丸剤、溶剤、ドリンク剤、注射剤、点滴
剤、座剤などの形態に製剤化することができる。このよ
うな製剤は経口的もしくは非経口的に投与することがで
きる。
[0012] The platelet aggregation inhibitor of the present invention is obtained by converting a silactone derivative represented by the general formula (1) into a known pharmacologically acceptable carrier, excipient, disintegrator, corrector, extender, diluent, or the like. Agents, solubilizers and the like, mixed with a pharmaceutical composition according to a known method, for example, tablets, capsules, granules,
It can be formulated into powders, powders, pills, solvents, drinks, injections, drops, suppositories and the like. Such formulations can be administered orally or parenterally.

【0013】投与量は投与対象、投与経路、症状などに
よっても異なるが、経口的に投与する場合、一般式
(1)で表されるケイラクトン誘導体として通常1回量
として約0.01〜100mg/kg体重、好ましくは
約0.01〜10mg/kg体重を1日1〜3回程度投
与する。また、非経口的に投与する場合、例えば座剤で
は一般式(1)で表されるケイラクトン誘導体として約
0.05〜20mg/kg体重を1日1〜2回投与す
る。 また油性製剤の注射剤においては、一般式(1)
で表されるケイラクトン誘導体として約0.001〜5
mg/kg体重を1日1〜2回投与することが好まし
い。
The dosage varies depending on the administration subject, administration route, symptoms, and the like. However, when administered orally, the dose of the silactone derivative represented by the general formula (1) is usually about 0.01 to 100 mg / dose. kg body weight, preferably about 0.01 to 10 mg / kg body weight, is administered about 1 to 3 times a day. In the case of parenteral administration, for example, in the case of suppositories, about 0.05 to 20 mg / kg body weight is administered once or twice a day as a silactone derivative represented by the general formula (1). In the case of injections of oily preparations, general formula (1)
About 0.001 to 5 as a silactone derivative represented by
It is preferred to administer mg / kg body weight once or twice a day.

【0014】[0014]

【実施例】本発明を実施例を用いて更に詳細に説明す
る。 実施例1 本発明化合物である(±)−cis−3−メトキシ−
3’,4’−ジチグロイルケイラクトンを下記の[1]
〜[10]の工程により合成した。 [1]2,4−ジアセトキシベンズアルデヒドの合成 2,4−ジヒドロキシベンズアルデヒド6.0g(4
3.5mmol)を脱水エーテル200mlに溶かし、
炭酸カリウム無水塩40.2g(291.5mmol)
と市販品を蒸留して得た無水酢酸20mlを加えて3時
間環流し、析出した無機物を濾取して、その濾液を減圧
下留去した。残さに氷水と酢酸エチルを注ぎ、1.5時
間撹拌後、酢酸エチル層を分取して、飽和硫酸マグネシ
ウムで乾燥後、溶媒を減圧下に留去した。残さをエーテ
ル−ヘキサンから再結晶し、2,4−ジアセトキシベン
ズアルデヒドの無色針状結晶8.8g(収率91.2
%)を得た。この化合物の分析結果は次の通りである。
The present invention will be described in more detail with reference to examples. Example 1 The compound of the present invention (±) -cis-3-methoxy-
3 ', 4'-Dithigloylsilicactone is represented by the following [1]
To [10]. [1] Synthesis of 2,4-diacetoxybenzaldehyde 6.0 g of 2,4-dihydroxybenzaldehyde (4
3.5 mmol) in 200 ml of dehydrated ether,
40.2 g (291.5 mmol) of anhydrous potassium carbonate
And 20 ml of acetic anhydride obtained by distilling a commercially available product was added thereto, and the mixture was refluxed for 3 hours. The precipitated inorganic substance was collected by filtration, and the filtrate was distilled off under reduced pressure. Ice water and ethyl acetate were poured into the residue. After stirring for 1.5 hours, the ethyl acetate layer was separated, dried over saturated magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was recrystallized from ether-hexane to give 8.8 g of colorless needle crystals of 2,4-diacetoxybenzaldehyde (yield 91.2).
%). The analysis results of this compound are as follows.

【0015】融点:62〜64.5℃ IR(cm-1,KBr):1767,1690,160
7,1586,1493 1H−NMR(δ(ppm),
CDCl3):2.32(3H,s,−Me),2.3
9(3H,s,−Me),7.05(1H,d,J=
2.2Hz,aromatic H),7.17(1
H,dd,J=8.4,2.2Hz,aromatic
H),7.91(1H,d,J=8.4Hz,aro
matic H),10.10(1H,s,−CHO) 高分解能質量分析:理論値222.0528(C1110
5),実測値222.0533
Melting point: 62-64.5 ° C. IR (cm-1, KBr): 1767, 1690, 160
7,1586,1493 1H-NMR (δ (ppm),
CDClThree): 2.32 (3H, s, -Me), 2.3
9 (3H, s, -Me), 7.05 (1H, d, J =
2.2 Hz, aromatic H), 7.17 (1
H, dd, J = 8.4, 2.2 Hz, aromatic
 H), 7.91 (1H, d, J = 8.4 Hz, aro
magnetic H), 10.10 (1H, s, -CHO) high-resolution mass spectrometry: theoretical 222.0528 (C11HTen
OFive), Measured 222.0533

【0016】[2]3−アセトアミド−7−アセトキシ
クマリンの合成 2,4−ジアセトキシベンズアルデヒド3.84g(1
7.3mmol)を無水酢酸35mlに溶解し、N−ア
セチルグリシン10.12g(86.5mmol)およ
び無水酢酸ナトリウム5.67g(69.2mmol)
を加えて90℃にて11時間撹拌した。反応液を氷水と
クロロホルムの混液に注いで3時間撹拌後、30%水酸
化カリウム水溶液130mlおよび炭酸水素ナトリウム
飽和水溶液200mlにて順次中和し、クロロホルム層
を分取した。クロロホルム層を炭酸水素ナトリウム飽和
水溶液および塩化ナトリウム飽和水溶液にて洗浄し、硫
酸マグネシシウム無水塩で乾燥後、減圧溶媒留去し、残
さをエーテル50mlを用いて洗浄(3回繰り返し)し
て、さらにメタノール10mlで洗浄した。結晶性部分
を濾別し、酢酸エチル−クロロホルムから再結晶し、3
−アセトアミド−7−アセトキシクマリンの無色針状結
晶1.44g(収率32.0%)を得た。この化合物の
分析結果は次の通りである。
[2] Synthesis of 3-acetamido-7-acetoxycoumarin 3.84 g of 2,4-diacetoxybenzaldehyde (1
7.3 mmol) was dissolved in 35 ml of acetic anhydride, and 10.12 g (86.5 mmol) of N-acetylglycine and 5.67 g (69.2 mmol) of anhydrous sodium acetate were dissolved.
Was added and stirred at 90 ° C. for 11 hours. The reaction solution was poured into a mixture of ice water and chloroform, stirred for 3 hours, neutralized sequentially with 130 ml of a 30% aqueous potassium hydroxide solution and 200 ml of a saturated aqueous sodium hydrogen carbonate solution, and the chloroform layer was separated. The chloroform layer was washed with a saturated aqueous solution of sodium hydrogencarbonate and a saturated aqueous solution of sodium chloride, dried over anhydrous magnesium sulfate, evaporated under reduced pressure, and the residue was washed with 50 ml of ether (repeated three times). Washed with 10 ml. The crystalline portion was filtered off and recrystallized from ethyl acetate-chloroform to give 3
1.44 g (yield 32.0%) of colorless needle crystals of -acetamide-7-acetoxycoumarin were obtained. The analysis results of this compound are as follows.

【0017】融点:238〜241℃ IR(cm-1,KBr):1761,1721,168
4,1625,1615,15391 H−NMR(δ(ppm),CDCl3):2.24
(3H,s,−Me),2.33(3H,s,−M
e),7.07(1H,d,J=8.0,2.2Hz,
aromatic H),8.04(1H,broad
s,−NH−),8.67(1H,s,olefin
ic H) 高分解能質量分析:理論値261.0635(C1310
NO5),実測値261.0620
Melting point: 238 to 241 ° C. IR (cm −1 , KBr): 1761, 1721, 168
4,1625,1615,1539 1 H-NMR (δ (ppm), CDCl 3 ): 2.24
(3H, s, -M), 2.33 (3H, s, -M)
e), 7.07 (1H, d, J = 8.0, 2.2Hz,
aromatic H), 8.04 (1H, broad)
s, -NH-), 8.67 (1H, s, olefin)
ic H) High resolution mass spectrometry: theoretical 261.0635 (C 13 H 10
NO 5 ), found 261.0620

【0018】[3]3−アセトアミド−7−ヒドロキシ
クマリンの合成 3−アセトアミド−7−アセトキシクマリン1.0g
(3.83mmol)をメタノール40mlに溶かし、
炭酸水素ナトリウム飽和水溶液20mlを加えて70℃
で2時間撹拌した。反応液に氷水を加え10%塩酸水溶
液で酸性とし、析出した結晶性部分をアセトン40ml
で洗浄後、メタノールで再結晶し、3−アセトアミド−
7−ヒドロキシクマリンの無色針状結晶0.82g(収
率97.6%)を得た。この化合物の分析結果は次の通
りである。
[3] Synthesis of 3-acetamido-7-hydroxycoumarin 1.0 g of 3-acetamido-7-acetoxycoumarin
(3.83 mmol) in 40 ml of methanol,
Add 20 ml of a saturated aqueous solution of sodium hydrogen carbonate and add
For 2 hours. Ice water was added to the reaction mixture, and the mixture was acidified with a 10% aqueous hydrochloric acid solution.
And then recrystallized from methanol to give 3-acetamide-
0.82 g (yield 97.6%) of colorless needle crystals of 7-hydroxycoumarin was obtained. The analysis results of this compound are as follows.

【0019】融点:309.8〜311.5℃ IR(cm-1,KBr):3324,1703,165
7,15431 H−NMR(δ(ppm),DMSO):2.13
(3H,s,−Me),6.73(1H,d,J=2.
2Hz,aromatic H),6.78(1H,d
d,J=8.4,2.2Hz,aromatic
H),7.51(1H,d,J=8.4Hz,arom
atic H),8.49(1H,s,olefini
c H),9.55(1H,broad s,−NH
−),10.35(1H,broad s,−OH) 高分解能質量分析:理論値219.0530(C119
NO4),実測値219.0515
Melting point: 309.8-311.5 ° C. IR (cm −1 , KBr): 3324, 1703, 165
7,1543 1 H-NMR (δ (ppm), DMSO): 2.13
(3H, s, -Me), 6.73 (1H, d, J = 2.
2 Hz, aromatic H), 6.78 (1 H, d
d, J = 8.4, 2.2 Hz, aromatic
H), 7.51 (1H, d, J = 8.4 Hz, arom
atic H), 8.49 (1H, s, olefini)
c H), 9.55 (1H, broad s, -NH
−), 10.35 (1H, broads, —OH) High-resolution mass spectrometry: theoretical value of 219.0530 (C 11 H 9
NO 4 ), found 219.0515

【0020】[4]3−アセトアミド−7−(1’,
1’−ジメチルプロピニルオキシ)クマリンの合成 3−アセトアミド−7−ヒドロキシクマリン500mg
(2.28mmol)を乾燥アセトン60mlに溶解
し、炭酸カリウム無水塩419.5mg(3.04mm
ol)を加えて24時間環流した。さらに、3−クロロ
−3−メチル−1−ブチン232.6mg(2.28m
mol)を追加し、6日間環流後、溶媒を留去した。残
さに水40mlを加え、ついで10%塩酸水溶液で酸性
とし、酢酸エチルで抽出した。酢酸エチル層を3N水酸
化ナトリウム水溶液、塩化ナトリウム飽和水溶液および
水にて洗浄し、硫酸マグネシウム無水塩で乾燥後、溶媒
を減圧留去した。残さをエーテル2ml用いて洗浄(2
回繰り返し)して更にメタノール5mlで洗浄後、結晶
性部分を濾別してエーテルから再結晶し、3−アセトア
ミド−7−(1’,1’−ジメチルプロピニルオキシ)
クマリンの無色針状結晶460.0mg(収率71.0
%)を得た。この化合物の分析結果は次の通りである。
[4] 3-acetamido-7- (1 ′,
Synthesis of 1'-dimethylpropynyloxy) coumarin 500 mg of 3-acetamido-7-hydroxycoumarin
(2.28 mmol) was dissolved in 60 ml of dry acetone, and 419.5 mg (3.04 mm) of anhydrous potassium carbonate was dissolved.
ol) and refluxed for 24 hours. Further, 232.6 mg of 3-chloro-3-methyl-1-butyne (2.28 m
mol), and after refluxing for 6 days, the solvent was distilled off. 40 ml of water was added to the residue, which was then made acidic with a 10% aqueous hydrochloric acid solution, and extracted with ethyl acetate. The ethyl acetate layer was washed with a 3N aqueous solution of sodium hydroxide, a saturated aqueous solution of sodium chloride and water, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was washed with 2 ml of ether (2
The mixture was washed with 5 ml of methanol, and the crystalline portion was filtered off and recrystallized from ether to give 3-acetamido-7- (1 ′, 1′-dimethylpropynyloxy).
460.0 mg of colorless needle crystals of coumarin (71.0 yield)
%). The analysis results of this compound are as follows.

【0021】融点:161〜164℃ IR(cm-1,KBr):3233,2105,170
7,1680,1613,15341 H−NMR(δ(ppm),CDCl3):1.70
(6H,s,−Me),2.23(3H,s,−M
e),2.65(1H,s,acetylenic
H),7.10(1H,dd,J=8.6,2.2H
z,aromatic H),7.30(1H,d,J
=2.2Hz,aromatic H),7.40(1
H,d,J=8.6Hz,aromatic H),
7.99(1H,broad s,−NH−),8.6
4(1H,s,olefinic H) 高分解能質量分析:理論値285.1002(C1615
NO4),実測値285.1001
Melting point: 161-164 ° C. IR (cm −1 , KBr): 3233,2105,170
7, 1680, 1613, 1534 1 H-NMR (δ (ppm), CDCl 3 ): 1.70
(6H, s, -M), 2.23 (3H, s, -M)
e), 2.65 (1H, s, acetylenic)
H), 7.10 (1H, dd, J = 8.6, 2.2H)
z, aromatic H), 7.30 (1H, d, J
= 2.2 Hz, aromatic H), 7.40 (1
H, d, J = 8.6 Hz, aromatic H),
7.99 (1H, broads, -NH-), 8.6
4 (1H, s, olefinic H) High resolution mass spectrometry: theoretical value 285.1002 (C 16 H 15
NO 4 ), found 285.1001

【0022】[5]3−アセトアミドセセリンの合成 3−アセトアミド−7−(1’,1’−ジメチルプロピ
ニルオキシ)クマリン380.0mg(1.33mmo
l)を蒸留N,N−ジメチルアニリン10mlに溶解
し、30分間環流した。反応液に氷水50mlを加え、
10%塩酸水溶液で酸性とし、クロロホルムで抽出し
た。クロロホルム層を10%塩酸水溶液、炭酸水素ナト
リウム水溶液および塩化ナトリウム飽和水溶液で洗浄
し、硫酸マグネシウム無水塩で乾燥後、減圧下に溶媒を
留去した。残さをエーテルにて洗浄後、酢酸エチルで再
結晶し、3−アセトアミドセセリンの無色針状結晶31
8.6mg(収率83.8%)を得た。この化合物の分
析結果は次の通りである。
[5] Synthesis of 3-acetamidoseserin 3-acetamido-7- (1 ', 1'-dimethylpropynyloxy) coumarin 380.0 mg (1.33 mmol)
l) was dissolved in 10 ml of distilled N, N-dimethylaniline and refluxed for 30 minutes. 50 ml of ice water was added to the reaction solution,
The mixture was acidified with a 10% aqueous hydrochloric acid solution and extracted with chloroform. The chloroform layer was washed with a 10% aqueous solution of hydrochloric acid, an aqueous solution of sodium hydrogen carbonate and a saturated aqueous solution of sodium chloride, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was washed with ether and recrystallized from ethyl acetate to give colorless needle crystals of 3-acetamidoseserin.
8.6 mg (83.8% yield) was obtained. The analysis results of this compound are as follows.

【0023】融点:214〜219℃ IR(cm-1,KBr):1720,1675,164
4,1625,1600,15251 H−NMR(δ(ppm),CDCl3):1.47
(6H,s,−Me),2.23(3H,s,−M
e),5.73(1H,d,J=9.9Hz,olef
inic H),6.75(1H,d,J=8.1H
z,aromatic H),6.85(1H,d,J
=9.9Hz,olefinic H),7.24(1
H,d,J=8.1Hz,aromatic H),
7.97(1H,broad s,−NH−),8.6
0(1H,s,olefinic H) 高分解能質量分析:理論値285.1002(C1615
NO4),実測値285.1025
Melting point: 214 to 219 ° C. IR (cm −1 , KBr): 1720, 1675, 164
4,1625,1600,1525 1 H-NMR (δ (ppm), CDCl 3 ): 1.47
(6H, s, -M), 2.23 (3H, s, -M)
e), 5.73 (1H, d, J = 9.9 Hz, olef)
inic H), 6.75 (1H, d, J = 8.1H)
z, aromatic H), 6.85 (1H, d, J
= 9.9 Hz, olefinic H), 7.24 (1
H, d, J = 8.1 Hz, aromatic H),
7.97 (1H, broads, -NH-), 8.6
0 (1H, s, olefinic H) High-resolution mass spectrometry: theoretical value 285.1002 (C 16 H 15
NO 4 ), found 285.1525

【0024】[6]3−アミノセセリンの合成 3−アセトアミドセセリン1.12g(3.93mmo
l)をメタノール20mlに溶解し、3N塩酸水溶液1
0mlを加えて6.5時間環流した後、反応液に氷水1
0mlを加え、クロロホルムで抽出した。クロロホルム
層を炭酸水素ナトリウム飽和水溶液および水で洗浄し、
硫酸マグネシウム無水塩で乾燥後、減圧下に溶媒を留去
した。残さをカラムクロマトグラフィー(展開溶媒;酢
酸エチル:ヘキサン=1:2)に付し、溶出する結晶性
部分をエーテル−ヘキサン混合液で再結晶し、3−アミ
ノセセリンの淡黄色板状結晶838.2mg(収率8
7.4%)を得た。この化合物の分析結果は次の通りで
ある。
[6] Synthesis of 3-aminoseserin 1.12 g of 3-acetamidoseserin (3.93 mmol)
l) was dissolved in 20 ml of methanol, and a 3N aqueous hydrochloric acid solution 1 was added.
After 0 ml was added and the mixture was refluxed for 6.5 hours, ice water 1 was added to the reaction mixture.
0 ml was added and extracted with chloroform. The chloroform layer is washed with a saturated aqueous solution of sodium hydrogen carbonate and water,
After drying over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure. The residue was subjected to column chromatography (developing solvent; ethyl acetate: hexane = 1: 2), and the eluted crystalline portion was recrystallized from an ether-hexane mixed solution to give 3-aminoseserin as a pale yellow plate crystal (838.2 mg). (Yield 8
7.4%). The analysis results of this compound are as follows.

【0025】融点:139〜141℃ IR(cm-1,KBr):1687,1634,157
1 H−NMR(δ(ppm),CDCl3):1.45
(6H,s,−Me),4.04(1H,broad
s,−NH2),5.71(1H,d,J=10.1H
z,olefinic H),6.67(1H,s,o
lefinic H),6.69(1H,d,J=8.
0Hz,aromatic H),6.88(1H,
d,J=10.1Hz,olefinic H),7.
03(1H,d,J=8.0Hz,aromatic
H) 高分解能質量分析:理論値243.0893(C1413
NO3),実測値243.0867
Melting point: 139 to 141 ° C. IR (cm −1 , KBr): 1687, 1634, 157
8 1 H-NMR (δ ( ppm), CDCl 3): 1.45
(6H, s, -Me), 4.04 (1H, broad)
s, -NH 2), 5.71 ( 1H, d, J = 10.1H
z, olefinic H), 6.67 (1H, s, o)
lefinic H), 6.69 (1H, d, J = 8.
0 Hz, aromatic H), 6.88 (1H,
d, J = 10.1 Hz, olefinic H), 7.
03 (1H, d, J = 8.0 Hz, aromatic
H) High resolution mass analysis: Calculated 243.0893 (C 14 H 13
NO 3 ), found 243.0867

【0026】[7a]3−ヒドロキシセセリンの合成
(a法) 3−アミノセセリン21.9mg(0.077mmo
l)をメタノール0.5mlに溶かし、3N塩酸水溶液
2mlを加えて21時間環流した。反応液に氷水3ml
を加え、クロロホルムで抽出した。クロロホルム層を炭
酸水素ナトリウム飽和水溶液および塩化ナトリウム飽和
水溶液で洗浄し、硫酸マグネシウム無水塩で乾燥後、減
圧下に溶媒を留去した。残さをカラムクロマトグラフィ
ー(展開溶媒;3%メタノール−クロロホルム混合液)
に付し、溶出する結晶性部分を酢酸エチル−ヘキサン混
合液で再結晶し、3−ヒドロキシセセリンの淡黄色プリ
ズム状結晶16.3mg(収率74.1%)を得た。こ
の化合物の分析結果は次の通りである。
[7a] Synthesis of 3-hydroxyseserin (method a) 21.9 mg of 3-aminoseserin (0.077 mmol)
l) was dissolved in 0.5 ml of methanol, 2 ml of a 3N aqueous hydrochloric acid solution was added, and the mixture was refluxed for 21 hours. 3 ml of ice water in the reaction solution
And extracted with chloroform. The chloroform layer was washed with a saturated aqueous solution of sodium hydrogen carbonate and a saturated aqueous solution of sodium chloride, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue is subjected to column chromatography (developing solvent; 3% methanol-chloroform mixture)
The eluted crystalline portion was recrystallized with a mixed solution of ethyl acetate-hexane to obtain 16.3 mg (yield: 74.1%) of 3-hydroxyseserin pale yellow prism-like crystals. The analysis results of this compound are as follows.

【0027】融点:176〜180℃ IR(cm-1,KBr):3382,1697,163
7,15991 H−NMR(δ(ppm),CDCl3):1.46
(6H,s,−Me),5.74(1H,d,J=1
0.2Hz,olefinic H),6.75(1
H,d,J=8.5Hz,aromatic H),
6.88(1H,d,J=10.2Hz,olefin
ic H),6.99(1H,s,olefinic
H),7.14(1H,d,J=8.5Hz,arom
atic H) 高分解能質量分析:理論値244.0706(C1412
NO4),実測値244.0730
Melting point: 176 to 180 ° C. IR (cm −1 , KBr): 3382, 1697, 163
7,1599 1 H-NMR (δ (ppm), CDCl 3 ): 1.46
(6H, s, -Me), 5.74 (1H, d, J = 1)
0.2 Hz, olefinic H), 6.75 (1
H, d, J = 8.5 Hz, aromatic H),
6.88 (1H, d, J = 10.2 Hz, olefin
ic H), 6.99 (1H, s, olefinic)
H), 7.14 (1H, d, J = 8.5 Hz, arom
atic H) High resolution mass analysis: Calculated 244.0706 (C 14 H 12
NO 4 ), found 244.0730

【0028】[7b]3−ヒドロキシセセリンの合成
(b法) 3−ヒドロキシセセリンは、上記[7a]で行った他
に、次の方法でも合成した。[5]で得た3−アセトア
ミドセセリン750.0mg(2.63mmol)をメ
タノール20mlに溶かし、3N塩酸水溶液60mlを
加えて54時間環流した。反応液に氷水50mlを加え
て酢酸エチルで抽出した。酢酸エチル層を炭酸水素ナト
リウム飽和水溶液および塩化ナトリウム飽和水溶液で洗
浄し、硫酸マグネシウム無水塩で乾燥後、減圧下に溶媒
を留去した。残さをカラムクロマトグラフィー(展開溶
媒;3%メタノール−クロロホルム混合液)に付し、溶
出する結晶性部分を酢酸エチル−ヘキサン混合液で再結
晶し、3−ヒドロキシセセリンの淡黄色プリズム状結晶
529.6mg(収率82.5%)を得た。この化合物
の分析結果は次の通りである。
[7b] Synthesis of 3-hydroxyseserin (method b) 3-Hydroxyseserin was synthesized by the following method in addition to the method described in [7a]. 750.0 mg (2.63 mmol) of 3-acetamidoseserin obtained in [5] was dissolved in 20 ml of methanol, and 60 ml of a 3N hydrochloric acid aqueous solution was added, followed by reflux for 54 hours. 50 ml of ice water was added to the reaction solution, and the mixture was extracted with ethyl acetate. The ethyl acetate layer was washed with a saturated aqueous solution of sodium hydrogen carbonate and a saturated aqueous solution of sodium chloride, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to column chromatography (developing solvent; 3% methanol-chloroform mixture), and the eluted crystalline portion was recrystallized with ethyl acetate-hexane mixture to give 3-hydroxyseserin pale yellow prism-like crystals 529. 0.6 mg (82.5% yield) was obtained. The analysis results of this compound are as follows.

【0029】融点:176〜179℃ IR(cm-1,KBr):3382,1697,163
7,15991 H−NMR(δ(ppm),CDCl3):1.46
(6H,s,−Me),5.74(1H,d,J=1
0.2Hz,olefinic H),6.75(1
H,d,J=8.5Hz,aromatic H),
6.88(1H,d,J=10.2Hz,olefin
ic H),6.99(1H,s,olefinic
H),7.14(1H,d,J=8.5Hz,arom
atic H) 高分解能質量分析:理論値244.0706(C1412
NO4),実測値244.0733
Melting point: 176 to 179 ° C. IR (cm −1 , KBr): 3382, 1697, 163
7,1599 1 H-NMR (δ (ppm), CDCl 3 ): 1.46
(6H, s, -Me), 5.74 (1H, d, J = 1)
0.2 Hz, olefinic H), 6.75 (1
H, d, J = 8.5 Hz, aromatic H),
6.88 (1H, d, J = 10.2 Hz, olefin
ic H), 6.99 (1H, s, olefinic)
H), 7.14 (1H, d, J = 8.5 Hz, arom
atic H) High resolution mass analysis: Calculated 244.0706 (C 14 H 12
NO 4 ), found 244.0733

【0030】[8]3−メトキシセセリンの合成 3−ヒドロキシセセリン200.0mg(0.82mm
ol)を無水化アセトン10mlに溶かし、炭酸カリウ
ム無水塩452.6mg(3.28mmol)を加え1
0分間環流した後、ヨウ化メチル1164.4mg
(8.20mmol)を加え30分間環流した。反応
後、溶媒を留去し、残さに水30mlを加え、ついで1
0%塩酸水溶液で酸性とし、酢酸エチルで抽出した。酢
酸エチル層を炭酸水素ナトリウム飽和水溶液および飽和
塩化ナトリウム水溶液で洗浄し、硫酸マグネシウム無水
塩で乾燥後、減圧下に溶媒を留去した。残さをカラムク
ロマトグラフィー(展開溶媒;酢酸エチル:ヘキサン=
1:2)に付し、溶出する結晶性部分をエーテルで再結
晶し、3−メトキシセセリンの淡黄色板状結晶163.
8mg(収率70.1%)を得た。この化合物の分析結
果は次の通りである。
[8] Synthesis of 3-methoxyseserin 200.0 mg of 3-hydroxyseserin (0.82 mm
ol) was dissolved in 10 ml of dehydrated acetone, and 452.6 mg (3.28 mmol) of anhydrous potassium carbonate was added thereto to give 1
After refluxing for 0 minutes, methyl iodide 1164.4 mg
(8.20 mmol) was added and refluxed for 30 minutes. After the reaction, the solvent was distilled off, and 30 ml of water was added to the residue.
The mixture was acidified with a 0% aqueous hydrochloric acid solution and extracted with ethyl acetate. The ethyl acetate layer was washed with a saturated aqueous solution of sodium hydrogen carbonate and a saturated aqueous solution of sodium chloride, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to column chromatography (developing solvent; ethyl acetate: hexane =
1: 2), and the eluted crystalline portion was recrystallized from ether to give pale yellow plate-like crystals of 3-methoxyseserin.
8 mg (70.1% yield) was obtained. The analysis results of this compound are as follows.

【0031】融点:161〜163℃ IR(cm-1,KBr):1732,1628,160
5,15721 H−NMR(δ(ppm),CDCl3):1.46
(6H,s,−Me),3.88(3H,s,−OM
e),5.72(1H,d,J=10.1Hz,ole
finic H),6.73(1H,d,J=8.4H
z,aromaticH),6.86(1H,d,J=
10.1Hz,olefinic H) 高分解能質量分析:理論値258.0890(C1514
4),実測値258.0870
Melting point: 161-163 ° C. IR (cm −1 , KBr): 1732, 1628, 160
5,1572 1 H-NMR (δ (ppm), CDCl 3 ): 1.46
(6H, s, -Me), 3.88 (3H, s, -OM)
e), 5.72 (1H, d, J = 10.1 Hz, ole)
finic H), 6.73 (1H, d, J = 8.4H)
z, aromaticH), 6.86 (1H, d, J =
10.1 Hz, olefinic H) High resolution mass spectrometry: theoretical value 258.0890 (C 15 H 14
O 4 ), found 258.0870

【0032】[9]3−メトキシケイラクトンの合成 3−メトキシセセリン122.2mg(0.47mmo
l)を無水化ジオキサン2mlに溶かし四酸化オスミウ
ム143.3mg(0.58mmol)を加え、遮光し
室温にて4日間放置した。反応物に無水化ジオキサン2
mlを加えた後、硫化水素ガスを飽和させ、析出する沈
殿物をセライト濾過した。濾液を減圧下留去し、残さを
カラムクロマトグラフィー(展開溶媒;3%メタノール
−クロロホルム混合液)に付し、溶出する結晶性部分を
酢酸エチル−ヘキサン混合液から再結晶し、3−メトキ
シケイラクトンの無色針状結晶76.8mg(収率5
5.6%)を得た。この化合物の分析結果は次の通りで
ある。
[9] Synthesis of 3-methoxysilicelactone 122.2 mg (0.47 mmol) of 3-methoxyseserin
1) was dissolved in anhydrous dioxane (2 ml), and osmium tetroxide (143.3 mg, 0.58 mmol) was added. The reaction product is dehydrated dioxane 2
After adding ml, the hydrogen sulfide gas was saturated, and the deposited precipitate was filtered through celite. The filtrate was evaporated under reduced pressure, the residue was subjected to column chromatography (developing solvent; 3% methanol-chloroform mixture), and the eluted crystalline portion was recrystallized from ethyl acetate-hexane mixture to give 3-methoxysilica. 76.8 mg of colorless needle-like crystals of lactone (yield 5
5.6%). The analysis results of this compound are as follows.

【0033】融点:204〜206℃ IR(cm-1,KBr):3420,1732,163
0,1609,1580,14901 H−NMR(δ(ppm),CDCl3):1.40
(3H,s,−Me),1.44(3H,s,−M
e),3.24(1H,d,J=6.2Hz,−O
H),3.85(1H,dd,J=4.6,6.2H
z,methine H),3.90(3H,s,−O
Me),4.06(1H,d,J=4.2Hz,−O
H),5.20(1H,dd,J=4.6,4.2H
z,methine H),6.79(1H,d,J=
8.6Hz,aromatic H),6.84(1
H,s,olefinic H),7.26(1H,
d,J=8.6Hz,aromatic H) 高分解能質量分析:理論値292.0945(C1516
6),実測値292.0940
Melting point: 204-206 ° C. IR (cm −1 , KBr): 3420, 1732, 163
0, 1609, 1580, 1490 1 H-NMR (δ (ppm), CDCl 3 ): 1.40
(3H, s, -M), 1.44 (3H, s, -M)
e), 3.24 (1H, d, J = 6.2 Hz, -O
H), 3.85 (1H, dd, J = 4.6, 6.2H)
z, methine H), 3.90 (3H, s, -O
Me), 4.06 (1H, d, J = 4.2 Hz, -O
H), 5.20 (1H, dd, J = 4.6, 4.2H)
z, methine H), 6.79 (1H, d, J =
8.6 Hz, aromatic H), 6.84 (1
H, s, olefinic H), 7.26 (1H,
d, J = 8.6 Hz, aromatic H) High resolution mass spectrometry: theoretical 292.0945 (C 15 H 16
O 6 ), found 292.0940

【0034】[10](±)−cis−3−メトキシ−
3’,4’−ジチグロイルケイラクトンの合成 3−メトキシケイラクトン71.2mg(0.24mm
ol)とチグリン酸無水物349.4mg(1.92m
mol)を無水化ピリジン2mlに溶かし、さらにジメ
チルアミノピリジン29.3mg(0.24mmol)
を加え、100℃にて11時間撹拌した。反応液に氷水
(40ml)を加え、2時間撹拌した後、酢酸エチルで
抽出した。酢酸エチル層を10%塩酸水溶液、炭酸水ナ
トリウム飽和水溶液および塩化ナトリウム飽和水溶液で
洗浄し、硫酸マグネシウム無水塩で乾燥後、減圧下に溶
媒を留去した。残さをカラムクロマトグラフィー(展開
溶媒;酢酸エチル:ヘキサン=1:1)に付し、溶出す
る結晶性部分をエーテル−ヘキサンから再結晶し、
(±)−cis−3−メトキシ−3’,4’−ジチグロ
イルケイラクトンの無色針状結晶81.4mg(収率7
3.2%)を得た。この化合物の分析結果は次の通りで
ある。
[10] (±) -cis-3-methoxy-
Synthesis of 3 ′, 4′-dithigroylsilactone 3-methoxysilactone 71.2 mg (0.24 mm
ol) and 349.4 mg (1.92 m) of tiglic anhydride
mol) was dissolved in 2 ml of anhydrous pyridine, and 29.3 mg (0.24 mmol) of dimethylaminopyridine was further dissolved.
Was added and stirred at 100 ° C. for 11 hours. Ice water (40 ml) was added to the reaction solution, and the mixture was stirred for 2 hours and extracted with ethyl acetate. The ethyl acetate layer was washed with a 10% aqueous hydrochloric acid solution, a saturated aqueous sodium carbonate solution and a saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to column chromatography (developing solvent; ethyl acetate: hexane = 1: 1), and the eluted crystalline portion was recrystallized from ether-hexane.
81.4 mg of colorless needle-like crystals of (±) -cis-3-methoxy-3 ′, 4′-ditigloylsilicactone (yield 7)
3.2%). The analysis results of this compound are as follows.

【0035】融点:81〜86℃ IR(cm-1,KBr):1732,1651,163
4,1612,1584,14951 H−NMR(δ(ppm),CDCl3):1.41
(3H,s,−Me),1.47(3H,s,−M
e),1.75(6H,d,J=7.0Hz,−M
e),1.79(6H,s,−Me),3.85(3
H,s,−OMe),5.40(1H,d,J=4.9
Hz,methine H),6.65(1H,d,J
=4.9Hz,methine H),6.76(1
H,s,olefinicH),6.81(1H,d,
J=8.6Hz,aromatic H),7.29
(1H,d,J=8.6Hz,aromatic H) 高分解能質量分析:理論値456.1784(C2528
8),実測値456.1807
Melting point: 81 to 86 ° C. IR (cm −1 , KBr): 1732, 1651, 163
4,1612, 1584, 1495 1 H-NMR (δ (ppm), CDCl 3 ): 1.41
(3H, s, -M), 1.47 (3H, s, -M)
e), 1.75 (6H, d, J = 7.0 Hz, -M
e), 1.79 (6H, s, -Me), 3.85 (3
H, s, -OMe), 5.40 (1H, d, J = 4.9).
Hz, methyl H), 6.65 (1H, d, J)
= 4.9 Hz, methine H), 6.76 (1
H, s, olefinic H), 6.81 (1H, d,
J = 8.6 Hz, aromatic H), 7.29
(1H, d, J = 8.6 Hz, aromatic H) High-resolution mass spectrometry: theoretical value 456.1784 (C 25 H 28
O 8 ), found 456.1807

【0036】上記結果から、下記式(4)で表される
(±)−cis−3−メトキシ−3’,4’−ジチグロ
イルケイラクトンが得られたことを確認した。
From the above results, it was confirmed that (±) -cis-3-methoxy-3 ′, 4′-ditigloylsilicactone represented by the following formula (4) was obtained.

【化7】 Embedded image

【0037】実施例2 (±)−cis−3−メトキシ−3’,4’−ジチグロ
イルケイラクトンの血小板凝集抑制試験 血小板凝集惹起物質誘発性の血小板凝集に対する50%
抑制効果(IC50)を指標に、血小板凝集物質への
(±)−cis−3−メトキシ−3’,4’−ジチグロ
イルケイラクトンの阻害作用を評価する目的で、血小板
凝集抑制試験を次のように行った。ペントバルビタール
ナトリウム麻酔下に4ヶ月齢のJ.W.系雄性ウサギの
総頚動脈にカニューレを施した。カニューレより採取し
た血液9容に3.8w/v%クエン酸ナトリウム1容を
混合し、4℃で1000rpm×10分間遠心分離して
多血小板血漿(以下PRP)を採取した。次いで下層を
3000rpm×15分間遠心分離して上層の貧血小板
血漿(以下PPP)を採取した。PRPおよびPPP画
分の血小板を多項目自動血球計測装置(E−2000、
東亜医用電子(株)製)を用いて測定した後、PRP画
分にPPP画分を加えて血小板数を約30×104ce
lls/μlに調整した。これを専用キュベットに0.
178ml取り、2分間プレインキュベーションした。
これに血小板凝集抑制剤として(±)−cis−3−メ
トキシ−3’,4’−ジチグロイルケイラクトンの10
%DMSO溶液を0.022ml加えた。1分後に血小
板凝集惹起物質を0.022ml添加し、血小板凝集測
定装置(NBSヘマトレーサー601、二光バイオサイ
エンス(株)製)を用いて血小板凝集率を測定した。
Example 2 Platelet Aggregation Inhibition Test of (±) -cis-3-Methoxy-3 ′, 4′-Ditigloylsilicactone 50% against platelet aggregation-induced substance-induced platelet aggregation
In order to evaluate the inhibitory effect of (±) -cis-3-methoxy-3 ′, 4′-ditigloylsilicactone on the platelet aggregation substance, a platelet aggregation inhibition test was performed using the inhibitory effect (IC 50 ) as an index. The procedure was as follows. 4 months old J.P. under sodium pentobarbital anesthesia W. The common carotid artery of a male rabbit was cannulated. 9 volumes of blood collected from the cannula were mixed with 1 volume of 3.8 w / v% sodium citrate, and centrifuged at 4 ° C. at 1000 rpm for 10 minutes to collect platelet-rich plasma (PRP). Next, the lower layer was centrifuged at 3000 rpm for 15 minutes to collect the upper layer of platelet poor plasma (hereinafter referred to as PPP). Platelet of PRP and PPP fractions was measured using a multi-item automatic blood cell counter (E-2000,
After the measurement using Toa Medical Electronics Co., Ltd.), the PPP fraction was added to the PRP fraction to obtain a platelet count of about 30 × 104 ce.
It was adjusted to 11 ls / μl. Put this in a special cuvette.
178 ml were taken and preincubated for 2 minutes.
In addition, (±) -cis-3-methoxy-3 ′, 4′-ditigloylsilicactone was used as a platelet aggregation inhibitor.
0.022 ml of a% DMSO solution was added. One minute later, 0.022 ml of a platelet aggregation-inducing substance was added, and the platelet aggregation rate was measured using a platelet aggregation measurement device (NBS Hema Tracer 601 manufactured by Nikko Biosciences).

【0038】この試験で、(±)−cis−3−メトキ
シ−3’,4’−ジチグロイルケイラクトン溶液の濃度
を変化させて、血小板凝集率を測定することで、血小板
凝集を50%抑制(IC50)する(±)−cis−3−
メトキシ−3’,4’−ジチグロイルケイラクトンの濃
度を決定した。
In this test, the platelet aggregation was measured by changing the concentration of the (±) -cis-3-methoxy-3 ′, 4′-ditigloylsilicactone solution, and the platelet aggregation was measured. Suppress (IC 50 ) (±) -cis-3-
The concentration of methoxy-3 ', 4'-ditigloylsilicactone was determined.

【0039】前述の血小板凝集惹起物質には、PAF、
アラキドン酸ナトリウム、アデノシン5’−ジホスフェ
ート、コラーゲンの4種を用いた。それぞれの試薬は次
の条件のものを用いた。 PAF;0.2%牛血清アルブミンに溶解して0.01
μg/mlの濃度にしたものを用いた。 アラキドン酸ナトリウム;Na2CO3を100%エタノ
ールに6mM溶解したものと、2.5mMのトリス緩衝
液とを1:1混合した溶媒に溶解して32.6μg/m
lの濃度にしたものを用いた。 アデノシン5’−ジホスフェート;生理食塩水に溶解し
て4.3μg/mlの濃度にしたものを用いた。 コラーゲン;SKF緩衝液に溶解して30μg/mlの
濃度にしたものを用いた。それぞれの血小板凝集惹起物
質に対するIC50を求めた。結果は表1に示した。
The above-mentioned platelet aggregation-inducing substances include PAF,
Four kinds of sodium arachidonic acid, adenosine 5'-diphosphate, and collagen were used. Each reagent was used under the following conditions. PAF: 0.01% dissolved in 0.2% bovine serum albumin
A solution having a concentration of μg / ml was used. Sodium arachidonic acid; 32.6 μg / m 2 dissolved in a 1: 1 mixture of 6 mM Na 2 CO 3 dissolved in 100% ethanol and 2.5 mM Tris buffer
1 was used. Adenosine 5'-diphosphate; used was dissolved in physiological saline to a concentration of 4.3 µg / ml. Collagen: used was dissolved in SKF buffer to a concentration of 30 μg / ml. The IC 50 for each platelet aggregation-inducing substance was determined. The results are shown in Table 1.

【0040】[0040]

【表1】 [Table 1]

【0041】表1より、血小板凝集惹起物質に対するI
50を確認した結果、(±)−cis−3−メトキシ−
3’,4’−ジチグロイルケイラクトンは血小板凝集を
抑制でき、血小板凝集抑制剤として有効である事を確認
した。特にPAFによる血小板凝集を特異的に阻害した
ことから、(±)−cis−3−メトキシ−3’,4’
−ジチグロイルケイラクトンはPAFアンタゴニストと
して働き、またPAF由来の血小板凝集に対する血小板
凝集抑制剤として有効であることを確認した。
From Table 1, it can be seen that I with respect to the platelet aggregation-inducing substance
As a result of confirming C 50 , (±) -cis-3-methoxy-
It was confirmed that 3 ′, 4′-ditigloylsilicactone can suppress platelet aggregation and is effective as a platelet aggregation inhibitor. In particular, since it specifically inhibited platelet aggregation by PAF, (±) -cis-3-methoxy-3 ′, 4 ′
-It was confirmed that dithigloylsilicactone acts as a PAF antagonist and is effective as a platelet aggregation inhibitor for platelet aggregation derived from PAF.

【0042】比較例 実施例2の(±)−cis−3−メトキシ−3’,4’
−ジチグロイルケイラクトンのかわりに、下記式(5)
で表されるプラエルプトリンAおよび下記式(6)で表
されるプラエルプトリンBを用いて、実施例2と同様の
方法でプラエルプトリンAおよびプラエルプトリンBの
血小板凝集抑制能を、IC50を指標に評価した。結果は
表1に示した。
Comparative Example The (±) -cis-3-methoxy-3 ′, 4 ′ of Example 2
-Instead of dithigroyl silicactone, the following formula (5)
Was evaluated in the same manner as in Example 2 using praelputrin A represented by the following formula and praelputrin B represented by the following formula (6), using the IC 50 as an index. The results are shown in Table 1.

【化8】 Embedded image

【化9】 Embedded image

【0043】表1より、PAFに対するプラエルプトリ
ンAおよびプラエルプトリンBのIC50を、(±)−c
is−3−メトキシ−3’,4’−ジチグロイルケイラ
クトンのIC50と比較した結果、(±)−cis−3−
メトキシ−3’,4’−ジチグロイルケイラクトンのP
AFアンタゴニストとしての効力は、天然のケイラクト
ン化合物であるプラエルプトリンAの5.6倍、プラエ
ルプトリンBの3.1倍であった。本発明のケイラクト
ン誘導体は、天然のケイラクトン化合物に比較してPA
Fアンタゴニストまたは血小板凝集抑制剤として優れて
いることを確認した。
From Table 1, the IC 50 of praelputrin A and praelputrin B for PAF was calculated as (±) -c
As a result of comparison with IC 50 of is-3-methoxy-3 ′, 4′-ditigloylsilicactone, (±) -cis-3-
P of methoxy-3 ', 4'-ditigloylsilicactone
The potency as an AF antagonist was 5.6 times that of the natural silactone compound praelputrin A and 3.1 times that of praelputrin B. The silactone derivative of the present invention has a PA
It was confirmed to be excellent as an F antagonist or a platelet aggregation inhibitor.

【0044】[0044]

【発明の効果】本発明のケイラクトン誘導体は、血小板
活性化因子(PAF)アンタゴニストであり、また血小
板凝集惹起物質を原因とする血小板凝集を抑制する効果
を持つ他、喘息をはじめ、成人性呼吸窮迫症候群、関節
炎、心・血管系の種々の疾患、糸球体腎炎、虚血性腸管
壊死、膵炎、潰瘍、心筋虚血、脳虚血、移植に対する拒
絶反応、寒冷蕁麻疹、アナフィラキシーや敗血症による
ショックなど、PAFが直接的あるいは間接的に関与す
る種々の疾患を予防または治療できる。
Industrial Applicability The silactone derivative of the present invention is a platelet activating factor (PAF) antagonist, has an effect of inhibiting platelet aggregation caused by a platelet aggregation-inducing substance, and has an adult respiratory distress including asthma. Syndrome, arthritis, various diseases of the cardiovascular system, glomerulonephritis, ischemic intestinal necrosis, pancreatitis, ulcer, myocardial ischemia, cerebral ischemia, rejection to transplantation, cold urticaria, anaphylaxis and shock due to sepsis, Various diseases in which PAF is directly or indirectly involved can be prevented or treated.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】下記一般式(1)で表されるケイラクトン
誘導体。 【化1】 [式中、R1は炭素数1〜22の脂肪族炭化水素基。
2、R3のいずれか一方は水素原子であり他方は下記一
般式(2) 【化2】 (式中、R6、R7のいずれか一方は水素原子であり他方
はメチル基である。)で表される基である。R4、R5
いずれか一方は水素原子であり他方は下記一般式(3) 【化3】 (式中、R8、R9のいずれか一方は水素原子であり他方
はメチル基である。)で表される基である。]
1. A silactone derivative represented by the following general formula (1). Embedded image [Wherein, R 1 is an aliphatic hydrocarbon group having 1 to 22 carbon atoms.
One of R 2 and R 3 is a hydrogen atom and the other is a compound represented by the following general formula (2): (In the formula, one of R 6 and R 7 is a hydrogen atom and the other is a methyl group.) One of R 4 and R 5 is a hydrogen atom and the other is a compound represented by the following general formula (3): (In the formula, one of R 8 and R 9 is a hydrogen atom and the other is a methyl group.) ]
【請求項2】請求項1記載のケイラクトン誘導体を有効
成分とする血小板活性化因子アンタゴニスト。
2. A platelet activating factor antagonist comprising the silicate derivative of claim 1 as an active ingredient.
【請求項3】請求項1記載のケイラクトン誘導体を有効
成分とする血小板凝集抑制剤。
(3) A platelet aggregation inhibitor comprising the silicate derivative according to (1) as an active ingredient.
JP8347676A 1996-12-26 1996-12-26 Khellactone derivative and platelet aggregation inhibitor Pending JPH10182647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8347676A JPH10182647A (en) 1996-12-26 1996-12-26 Khellactone derivative and platelet aggregation inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8347676A JPH10182647A (en) 1996-12-26 1996-12-26 Khellactone derivative and platelet aggregation inhibitor

Publications (1)

Publication Number Publication Date
JPH10182647A true JPH10182647A (en) 1998-07-07

Family

ID=18391830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8347676A Pending JPH10182647A (en) 1996-12-26 1996-12-26 Khellactone derivative and platelet aggregation inhibitor

Country Status (1)

Country Link
JP (1) JPH10182647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003024950A1 (en) * 2001-09-12 2003-03-27 Institute Of Medicinal Molecular Design. Inc. Coumarin derivative

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003024950A1 (en) * 2001-09-12 2003-03-27 Institute Of Medicinal Molecular Design. Inc. Coumarin derivative
GB2397817A (en) * 2001-09-12 2004-08-04 Inst Med Molecular Design Inc Coumarin derivative
GB2397817B (en) * 2001-09-12 2005-05-25 Inst Med Molecular Design Inc Coumarin derivatives
US7411076B2 (en) 2001-09-12 2008-08-12 Institute Of Medicinal Molecular Design, Inc. Coumarin derivative

Similar Documents

Publication Publication Date Title
KR100191774B1 (en) Pyrazolo(1,5-alpha)pyrimidine derivatives and anti-inflammatory agent containing them
US4877776A (en) K-252 compounds
US5104890A (en) Benzopyran derivatives and processes for preparation thereof
JPH07188165A (en) 5,6-bicyclic glycoprotein iib/iiia antagonist
CZ302792A3 (en) Intima atherosclerotic concretion inhibitor
UA46821C2 (en) SUBSTITUTED N - [(AMINOMINOMETHYL OR AMINOMETHYL) PHENYL] PROPYLAMIDES, PHARMACEUTICAL COMPOSITION, TREATMENT METHODS AND INTERMEDIATES
KR960009570B1 (en) Imidazoline derivative and preparation thereof
US20080234258A1 (en) Dihydroxyanthraquinones and Their Use
JPH01265100A (en) 2-substituted adenosine derivative
US20090076077A1 (en) Methods and Compositions for Selectin Inhibition
CZ324292A3 (en) Quinoline derivatives, process of their preparation and pharmaceutical compositions in which said derivatives are comprised
US4619917A (en) Substituted 2-furanyl- or 5-oxo-2-furanyl methoxy phosphoryl alkyl cyclimmonium salts
US5137914A (en) Sulfonylamino substituted bicyclo [2.2.1]heptane hydroxamic acid derivatives useful as pharmaceuticals
EP0149419B1 (en) Acylindole derivatives and pharmaceutical compositions containing them
US5177069A (en) Naphthysulfonylalkanoic acid compounds and pharmaceutical compositions thereof
EP0093945B1 (en) 1,4-dihydropyridine derivatives
US4874773A (en) 3-Aminocarbonyl-1,4-dihydropyridine-5-carboxylic acid compounds, and pharmaceutical composition containing the same
EP0266980B1 (en) Pharmaceutical compositions, comprising a 2,4-diphenyl-1,3-dioxane derivative and an inhibitor of thromboxane a2 synthesis
JPH10182647A (en) Khellactone derivative and platelet aggregation inhibitor
JPS6212773A (en) Hexenic acid, its productin and pharmaceutical composition containing the same
US5116985A (en) Isoquinoline derivatives and salts thereof
CZ282473B6 (en) Bis(phenyl)ethane derivative, process of its preparation, the derivative as a medicament and pharmaceutical composition in which said derivative is comprised
HU197737B (en) Process for producing 1,3-oxathian derivatives and pharmaceutical compositions containing them
US4500708A (en) Benzothiazine derivatives
EP0435235A1 (en) Isoquinoline derivatives and salts thereof as protease inhibitors.