JPH10180332A - Shape control method in plate rolling - Google Patents

Shape control method in plate rolling

Info

Publication number
JPH10180332A
JPH10180332A JP8341609A JP34160996A JPH10180332A JP H10180332 A JPH10180332 A JP H10180332A JP 8341609 A JP8341609 A JP 8341609A JP 34160996 A JP34160996 A JP 34160996A JP H10180332 A JPH10180332 A JP H10180332A
Authority
JP
Japan
Prior art keywords
shape
control
deviation
detector
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8341609A
Other languages
Japanese (ja)
Other versions
JP3304796B2 (en
Inventor
Nobutsugu Suzuki
宣嗣 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP34160996A priority Critical patent/JP3304796B2/en
Publication of JPH10180332A publication Critical patent/JPH10180332A/en
Application granted granted Critical
Publication of JP3304796B2 publication Critical patent/JP3304796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a versatile shape control method for plate rolling capable of simultaneously and optimally controlling all shape control mechanisms and moreover easily setting the manipulated variable of a controller difficult to reach an operational limit with a specified control mechanism. SOLUTION: In this control method, shapes of plural places in the width direction of the rolling plate are detected with a shape detector, respective manipulated variables of plural shape control mechanisms are obtained based on the output by the shape detector, respective shape control mechanisms are operated to control the shape of the plate based on the manipulated variable. In this case, a shape deviation of obtained from the difference between the output distribution by the shape detector 7 and a pre-set objective shape distribution with a shape separating device 10, and the shape deviation is separated into plural numbers based on the frequency component. And the manipulated variables of respective shape control mechanisms 13, 14 are obtained based on respective separated shape deviations with optimum manipulated variable arithmetic units 11, 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は板圧延における板形
状制御方法に関し、詳しくは、複数の形状制御機構を有
する圧延設備の形状検出器の出力に基づいた自動形状制
御法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the shape of a sheet in sheet rolling, and more particularly to an automatic shape control method based on the output of a shape detector of a rolling equipment having a plurality of shape control mechanisms.

【0002】[0002]

【従来の技術】従来、板圧延における板形状の自動制御
として、圧延機出側に配置された形状検出器からの出力
に基づいて演算処理を行い、形状制御機構を動作させる
フィードバック制御法が知られている。近年、板圧延形
状に対する要求が一層厳しくなり、このため複数個の形
状制御機構を有する圧延機が開発され、これら複数の形
状制御機構を動作させる自動形状制御演算処理ロジック
が提案されている。
2. Description of the Related Art Conventionally, as automatic control of a sheet shape in sheet rolling, there is known a feedback control method in which arithmetic processing is performed based on an output from a shape detector arranged on the exit side of a rolling mill to operate a shape control mechanism. Have been. In recent years, the requirements for the sheet rolling shape have become more stringent, and a rolling mill having a plurality of shape control mechanisms has been developed, and an automatic shape control arithmetic processing logic for operating the plurality of shape control mechanisms has been proposed.

【0003】上記の形状制御演算処理ロジックとして
は、例えば形状検出器の出力を4次のべき級数に近似又
は4次の直交関数に近似し、その近似式の係数又はその
係数から算出される形状評価変数を用いて、この変数の
個数と同数の制御装置の最適操作量を算出するロジック
が、例えば特開54−151066号公報、特開55−
19401号公報、特開55−42144号公報等に開
示されている。
[0003] The above-mentioned shape control arithmetic processing logic includes, for example, approximating an output of a shape detector to a fourth-order power series or a fourth-order orthogonal function, and calculating a coefficient of the approximate expression or a shape calculated from the coefficient. The logic for calculating the optimal operation amount of the control device having the same number as the number of the evaluation variables by using the evaluation variables is disclosed in, for example, JP-A-54-150066, and
No. 19401, JP-A-55-42144, and the like.

【0004】しかしながら、上記制御法には下記の問題
点があった。 問題点(1):同時に制御できる制御手段の数nが、制
御すべき形状変数の数mに対して同数以下でなければ制
御手段の操作量の最適解を求めることができない。そこ
で、上記の問題点を解決するために、制御変数の数mと
制御手段の数nに制限を受けずに圧延機のもつ全ての制
御手段を同時に有効動作でき、かつ、ある形状制御装置
が操作限界に到達していても、共通の最適操作量演算式
を用いて、制御手段の操作量を算出可能な汎用的な薄板
圧延の板形状制御法を、本出願人は特開平6−523号
公報により提案した。
[0004] However, the above control method has the following problems. Problem (1): Unless the number n of control means that can be controlled simultaneously is equal to or less than the number m of shape variables to be controlled, an optimal solution of the operation amount of the control means cannot be obtained. Therefore, in order to solve the above problem, all the control means of the rolling mill can be simultaneously operated effectively without being limited by the number m of control variables and the number n of control means, and a certain shape control device is required. Even if the operating limit is reached, a general-purpose sheet shape control method for sheet rolling capable of calculating the operation amount of the control means using a common optimum operation amount calculation formula is disclosed in Japanese Patent Application Laid-Open No. 6-523. It was proposed by the official gazette.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
問題点(1)を解決する従来の板形状制御法(特開平6
−523号公報)においても、下記の問題点があった。 問題点(2):個々の形状制御装置の動特性には大きな
差異が有るケースが多く、急峻な形状変動には応答性の
速い制御装置が対応し、緩慢な形状変動にはその他の制
御装置が対応するのが望ましい。ところが、特開平6−
523号公報に提案されている板形状制御方法において
は、動特性に関する考慮がなされていないため、急峻な
形状変動に対して低応答な制御手段が対応し、制御の高
速性が阻害される場合が発生する。すなわち、制御手段
の応答性を含めた最適動作ができない。 問題点(3):特定の制御装置が操作限界に到達しやす
くなることを防止するために、複雑な演算処理を要する
とともに各種パラメータの設定に難解な調整を必要と
し、実用性の面で問題が残る。
However, a conventional plate shape control method for solving the above problem (1) (Japanese Patent Laid-Open No.
-523) also has the following problems. Problem (2): In many cases, there is a large difference in the dynamic characteristics of the individual shape control devices. A control device having a fast response responds to a sharp shape change, and another control device responds to a slow shape change. It is desirable to correspond. However, Japanese Unexamined Patent Publication No.
In the plate shape control method proposed in Japanese Patent Application Publication No. 523, no consideration is given to the dynamic characteristics, so that a low-response control means responds to a steep shape change, and a high-speed control is hindered. Occurs. That is, the optimum operation including the response of the control means cannot be performed. Problem (3): In order to prevent a specific control device from easily reaching the operation limit, complicated arithmetic processing is required, and esoteric adjustment is required for setting various parameters, which is a problem in practicality. Remains.

【0006】本発明は、前記の問題点を解決するために
なされたものであり、全ての形状制御機構を同時に最適
に制御することができ、かつ、特定の制御機構が動作限
界に到達しにくい制御装置操作量を容易に設定可能とす
る汎用的な板圧延の形状制御法を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is possible to optimally control all the shape control mechanisms at the same time, and it is difficult for a specific control mechanism to reach the operation limit. It is an object of the present invention to provide a general-purpose sheet rolling shape control method capable of easily setting a control device operation amount.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

(1)本発明に係る板圧延における板形状制御方法(請
求項1)は、圧延板幅方向の複数箇所の形状を形状検出
器により検出し、その形状検出器の出力に基づいて複数
の形状制御機構の各操作量を求め、その操作量に基づい
て各形状制御機構を操作して板の形状を制御する板圧延
における形状制御方法において、形状検出器の出力分布
と、予め設定された目標形状分布との差により形状偏差
を求め、その形状偏差をその周波数成分により複数に分
離し、分離された個々の形状偏差に基づいて各形状制御
機構の操作量を求める。 (2)本発明に係る板圧延における板形状制御法(請求
項2)は、上記(1)の板形状制御方法において、形状
検出器の出力分布及び目標形状分布をそれぞれ板幅方向
の位置Xの関数として表し、前記形状検出器の出力分布
から前記目標形状分布を減算することにより前記形状偏
差を求める。 (3)本発明に係る板圧延における板形状制御法(請求
項3)は、上記(2)の板形状制御方法において、中間
ロールベンダ及びワークロールベンダを第一群の形状制
御機構とし、複数のバックアップロールクラウン調整機
構を第2群の形状調整機構とし、形状偏差をハイパスフ
ィルタリング処理をして抽出した信号に基づいて第一群
の形状制御機構の操作量を求め、そして、前記の抽出し
た信号を形状偏差から減算した残余の信号に基づいて第
二群の形状制御機構の操作量を求める。
(1) A sheet shape control method in sheet rolling according to the present invention (claim 1) includes detecting a shape at a plurality of positions in a rolled sheet width direction by a shape detector, and detecting a plurality of shapes based on an output of the shape detector. In the shape control method in sheet rolling in which each operation amount of the control mechanism is obtained and the shape of the plate is controlled by operating each shape control mechanism based on the operation amount, an output distribution of the shape detector and a preset target A shape deviation is obtained from a difference from the shape distribution, the shape deviation is separated into a plurality of components by its frequency component, and an operation amount of each shape control mechanism is obtained based on the separated individual shape deviation. (2) The sheet shape control method in the sheet rolling according to the present invention (Claim 2) is the sheet shape control method according to the above (1), wherein the output distribution of the shape detector and the target shape distribution are each set to the position X in the sheet width direction. The shape deviation is obtained by subtracting the target shape distribution from the output distribution of the shape detector. (3) The plate shape control method in the plate rolling according to the present invention (claim 3) is the plate shape control method according to the above (2), wherein the intermediate roll bender and the work roll bender are a first group of shape control mechanisms; The backup roll crown adjustment mechanism is a second group of shape adjustment mechanisms, and the manipulated variable of the first group of shape control mechanisms is obtained based on the signal extracted by performing high-pass filtering on the shape deviation, and the extracted An operation amount of the second group of shape control mechanisms is obtained based on the remaining signal obtained by subtracting the signal from the shape deviation.

【0008】本発明においては、形状検出器の出力分布
と予め設定された目標形状分布との差により形状偏差を
求め、その形状偏差を各形状制御機構の周波数特性に応
じて分離するため、全ての形状制御機構が最適にかつ同
時に有効に動作させることができ、更に、特定の制御機
構が動作限界に到達する確率を低減させることができ
る。
In the present invention, a shape deviation is obtained from a difference between an output distribution of a shape detector and a preset target shape distribution, and the shape deviation is separated according to the frequency characteristics of each shape control mechanism. Can be operated optimally and simultaneously effectively, and the probability that a specific control mechanism reaches the operation limit can be reduced.

【0009】[0009]

【発明を実施するための形態】図1は本発明の一実施形
態に係る板圧延における形状制御方法が適用された制御
装置及びその関連設備の構成を示したブロック図であ
る。同図において、1は圧延機であり、この例では上下
一対のワークロール3、中間ロール4、バックアップロ
ール5及び小径バックアップロール6がクラスタ状に配
置された構造になっている12段クラスタ圧延機であ
る。2は圧延板、7は圧延板2の幅方向の複数箇所の形
状を検出する形状検出器である。この形状検出器7の検
出する物理量としては、例えば張力、歪等がある。8は
形状検出器7の出力分布を関数化する演算を行う関数化
演算装置、9は圧延板2の目標形状分布を設定する目標
形状設定回路、10は形状分離装置、11は最適操作量
演算装置(1)である。この最適操作量演算装置11に
よる演算結果は操作指令信号として、形状制御機構であ
るロールベンディング機構13へ供給される。また、1
2は最適操作量演算装置(2)である。この最適操作量
演算装置12による演算結果は操作指令信号として、形
状制御機構であるバックアップロールクラウン調整機構
14へ供給される。ロールベンディング機構13及びバ
ックアップロール調整機構14は最適操作量演算装置1
1及び12からそれぞれ供給される操作指令信号に基づ
いて圧延機1を個別に制御する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing a configuration of a control device to which a shape control method in sheet rolling according to an embodiment of the present invention is applied and its related equipment. In the figure, reference numeral 1 denotes a rolling mill. In this example, a 12-high cluster rolling mill has a structure in which a pair of upper and lower work rolls 3, an intermediate roll 4, a backup roll 5, and a small-diameter backup roll 6 are arranged in a cluster. It is. Reference numeral 2 denotes a rolled plate, and 7 denotes a shape detector for detecting the shape of the rolled plate 2 at a plurality of positions in the width direction. Physical quantities detected by the shape detector 7 include, for example, tension and strain. Reference numeral 8 denotes a functioning operation device that performs an operation for converting the output distribution of the shape detector 7 into a function. Reference numeral 9 denotes a target shape setting circuit that sets a target shape distribution of the rolled plate 2. Reference numeral 10 denotes a shape separation device. Device (1). The calculation result by the optimum operation amount calculation device 11 is supplied as an operation command signal to a roll bending mechanism 13 which is a shape control mechanism. Also, 1
Reference numeral 2 denotes an optimum operation amount calculation device (2). The calculation result by the optimum operation amount calculation device 12 is supplied as an operation command signal to a backup roll crown adjustment mechanism 14 which is a shape control mechanism. The roll bending mechanism 13 and the backup roll adjusting mechanism 14 are provided with the optimum operation amount calculating device 1.
The rolling mill 1 is individually controlled based on the operation command signals supplied from 1 and 12, respectively.

【0010】図2は圧延機のロール部及び形状制御機構
を示す図である。同図において、2〜5は図1に示され
たものと同一のものである。15、16、17はそれぞ
れバックアップロールクラウン調整機構(a)(b)
(c)であり、これらは図1のバックアップロールクラ
ウン調整機構14に相当する。また、18は中間ロール
ベンダー、19はワークロールベンダーであり、これら
は図1のロールベンディング機構13に相当する。図2
において、バックアップロール5は7分割されており、
固定されているセンタ部に対して、その他の分割ロール
が中間ロール方向に独立に偏心可能な構造であり、任意
のクラウンパターンの設定が可能な構造になっており、
対称な形状制御手段として中間ロールベンダ18、ワー
クロールベンダ19とバックアップロールクラウン調整
機構(a)(b)(c)15〜17の計5個を有してい
る。
FIG. 2 is a diagram showing a roll portion and a shape control mechanism of a rolling mill. In the figure, reference numerals 2 to 5 are the same as those shown in FIG. 15, 16, and 17 are backup roll crown adjustment mechanisms (a) and (b), respectively.
(C), which correspond to the backup roll crown adjusting mechanism 14 in FIG. Reference numeral 18 denotes an intermediate roll bender and reference numeral 19 denotes a work roll bender, which correspond to the roll bending mechanism 13 in FIG. FIG.
, The backup roll 5 is divided into seven,
With respect to the fixed center portion, the other split rolls have a structure that can be independently eccentric in the direction of the intermediate roll, so that any crown pattern can be set,
As symmetrical shape control means, there are a total of five intermediate roll benders 18, work roll benders 19, and backup roll crown adjusting mechanisms (a), (b), (c) 15 to 17.

【0011】図2に示される5個の形状制御手段の特性
を大別すると、高速な応答が可能である、中間ロールベ
ンダ18及びワークロールベンダ19(以後、第一群と
称する)と、応答が低速であるバックアップロールクラ
ウン調整機構(a)(b)(c)(以後、第二群と称す
る)15〜17とに分類される。第一群の制御手段は油
圧により駆動されるため、高速な動作が可能である一方
で、操作範囲が比較的限定される。また、第二群の制御
手段は電動機により駆動されるため、動作は第一群と比
べて低速となるが、その操作範囲は広く大きな形状修正
能力を有する。この両者の特性を考慮せずに同時に使用
すると以下のような問題が発生する。
The characteristics of the five shape control means shown in FIG. 2 can be roughly classified into an intermediate roll bender 18 and a work roll bender 19 (hereinafter, referred to as a first group) capable of high-speed response. Are low-speed backup roll crown adjustment mechanisms (a), (b), (c) (hereinafter, referred to as a second group) 15 to 17. Since the first group of control means is driven by hydraulic pressure, high-speed operation is possible, but the operation range is relatively limited. Further, since the second group of control means is driven by an electric motor, the operation is slower than that of the first group, but the operation range is wide and the shape correction capability is large. If they are used at the same time without considering their characteristics, the following problems occur.

【0012】例えば、低周波な形状偏差が発生した際
に、第一群の制御手段を使用しその操作限界に到達した
場合を想定する。この時にさらに、第二群の制御手段で
は対応不可能な高周波な形状偏差が発生すると、当然の
ことながら、その形状偏差の大部分或いは全てが残存し
てしまうことになる。本実施形態の場合、初めに発生し
た、低周波な形状偏差に対しては第二群の制御手段で対
応しておけば、次に発生した高周波な形状偏差に対して
も第一群の制御手段で修正が可能となる。一般に、第二
群に相当する制御手段は前述のように操作範囲が広大で
あり、特殊な場合を除いて、その操作限界に到達する確
率は極めて低いのに対し、第一群の制御手段は操作範囲
が限定され操作限界に到達する場合が多い。また、圧延
現象としても、大きな形状偏差が高周波で発生すること
は希であり、高周波で発生する形状偏差は微少なものが
多い。以上示したように、第一群の制御手段の特性と第
二群の制御手段の特性とは大きく異なり、形状偏差の特
性に応じて選択する事が望ましい。なお、本実施形態に
おいては、第一群の制御手段の応答性が第二群の制御手
段の応答性に対して例えば10〜500倍速いものを前
提にしている。
For example, it is assumed that, when a low-frequency shape deviation occurs, the first group of control means is used and the operation limit is reached. At this time, if a high-frequency shape deviation that cannot be dealt with by the second group of control means further occurs, naturally, most or all of the shape deviation remains. In the case of the present embodiment, if the low-frequency shape deviation generated first is dealt with by the second group of control means, the first group of control is performed also on the next high-frequency shape deviation. Correction is possible by means. Generally, the control means corresponding to the second group has a wide operation range as described above, and except for special cases, the probability of reaching the operation limit is extremely low. The operation range is limited and often reaches the operation limit. Also, as a rolling phenomenon, a large shape deviation rarely occurs at a high frequency, and the shape deviation generated at a high frequency is often very small. As described above, the characteristics of the first group of control means and the characteristics of the second group of control means are significantly different, and it is desirable to select according to the shape deviation characteristics. In this embodiment, it is assumed that the responsiveness of the first group of control means is, for example, 10 to 500 times faster than the responsiveness of the second group of control means.

【0013】このような理由から、本発明の形状分離装
置10においては、形状関数化演算装置8の出力から目
標形状設定装置9の出力を減算することによって形状偏
差を求め、その形状偏差に対し、その周波数特性に注目
し、第二群の制御手段でしか対応不能な形状偏差量のみ
を、図3に示される処理回路のフィルタ30等によって
ハイパスフィルタリング処理を施して抽出して、最適操
作量演算装置11へ出力する。一方、全形状偏差量より
最適操作量演算装置11へ出力した分を差し引いて残っ
た分を最適操作量演算装置12へ出力する。なお、本実
施形態においては、ハイパスフィルタリング処理とし
て、全形状偏差からフィルタ30により抽出された低周
波成分を差し引くことにより高周波成分を得る処理を行
っている。このようにして形状分離装置10により分離
された各形状偏差量を入力した最適操作量演算装置1
1,12はそれぞれ各制御手段の操作量を演算し、ロー
ルベンディング機構13及びバックアップロールクラウ
ン調整機構14の各制御手段に対し操作指令を与える。
For this reason, in the shape separating device 10 of the present invention, a shape deviation is obtained by subtracting the output of the target shape setting device 9 from the output of the shape functioning operation device 8, and the shape deviation is calculated. By paying attention to the frequency characteristics, only the shape deviation amount that can be dealt with only by the second group of control means is subjected to high-pass filtering by the filter 30 of the processing circuit shown in FIG. Output to the arithmetic unit 11. On the other hand, the amount output to the optimal manipulated variable computing device 11 is subtracted from the total shape deviation amount, and the remaining amount is output to the optimal manipulated variable computing device 12. In the present embodiment, as the high-pass filtering process, a process of obtaining a high-frequency component by subtracting the low-frequency component extracted by the filter 30 from the entire shape deviation is performed. The optimal manipulated variable computing device 1 which has input the respective shape deviation amounts separated by the shape separating device 10 in this way.
1 and 12 calculate the operation amounts of the respective control means, and give operation commands to the respective control means of the roll bending mechanism 13 and the backup roll crown adjusting mechanism 14.

【0014】なお、上記の形状関数化演算器8、目標形
状設定装置9及び最適操作量演算装置11,12の処理
内容は、従来技術として挙げた特開平6−523号公報
において開示されているものと同じであり、その概要は
次のとおりである。
The processing contents of the shape-function-forming calculator 8, the target shape setting device 9, and the optimum manipulated variable calculators 11 and 12 are disclosed in JP-A-6-523 cited as a prior art. The outline is as follows.

【0015】形状関数化演算装置8は形状検出器7の出
力分布を板幅方向の位置Xの関数として表すものであ
り、目標形状設定装置9においてもその目標形状分布を
板幅方向の位置の関数として表している。最適操作量演
算装置11,12においては、上記のように形状分離装
置10により、形状偏差をハイパスフィルタリング処理
を施して抽出された信号又はその全形状偏差量より最適
操作量演算装置11へ出力した残分が入力されると、そ
れぞれの形状偏差量に基づいて次の(a)〜(d)の演
算処理を行うことにより、薄板圧延の制御が形状変数の
個数及び形状制御装置の個数に制限を受けたり、複雑な
複数個の制御装置の選択機能を付加したり、また、各制
御ステップ毎の制御量決定のための複雑なゲイン設定ロ
ジックを必要とする等の問題が避けられ、製品の形状品
質の向上が期待できる。
The shape functioning operation device 8 expresses the output distribution of the shape detector 7 as a function of the position X in the plate width direction, and the target shape setting device 9 converts the target shape distribution to the position in the plate width direction. Expressed as a function. In the optimum manipulated variable computing devices 11 and 12, as described above, the shape deviation is output to the optimal manipulated variable computing device 11 from the signal extracted by performing the high-pass filtering process on the shape deviation or the total shape deviation thereof. When the residue is input, the following calculation processes (a) to (d) are performed based on the respective shape deviation amounts, so that the control of sheet rolling is limited to the number of shape variables and the number of shape control devices. And the need to add complex multiple control device selection functions and require complex gain setting logic to determine the control amount for each control step. An improvement in shape quality can be expected.

【0016】(a)形状分離装置10からの形状偏差量
から、複数の形状制御機構の単位操作量に対する形状検
出器の出力変化(板幅方向の位置Xの関数として表され
ている)を減算し、その減算値の2乗値を板幅方向の位
置xで積分して第1の評価関数を作成する。 (b)複数の各形状制御機構の制御ステップ毎の操作量
に、各制御機構による形状変化の度合いを考慮した係数
及びそれぞれの重み係数の総和が1となるように設定さ
れた各重み係数をそれぞれ乗算して得られた、係数付き
操作量の2乗和で表わされる第2の評価関数を作成す
る。 (c)第1の評価関数と第2の評価関数の任意の比率を
決める第1の重み係数と第2の重み係数とをそれぞれ設
定し、前記第1の評価関数と第1の重み係数とを乗算し
た積と、前記第2の評価関数と第2の重み係数とを乗算
した積との和である形状評価関数を作成する。そして、 (d)その積和の形状評価関数を最小とするように、複
数の各形状制御機構の操作量を演算する。
(A) A change in the output of the shape detector (expressed as a function of the position X in the plate width direction) with respect to a unit operation amount of a plurality of shape control mechanisms is subtracted from the shape deviation amount from the shape separating device 10. Then, the first evaluation function is created by integrating the square value of the subtraction value at the position x in the plate width direction. (B) The amount of operation for each control step of each of the plurality of shape control mechanisms includes a coefficient in consideration of the degree of shape change by each control mechanism and each weight coefficient set so that the sum of the respective weight coefficients becomes 1. A second evaluation function is created, which is obtained by multiplying each of them and expressed by the sum of squares of the manipulated variable with a coefficient. (C) setting a first weighting factor and a second weighting factor for determining an arbitrary ratio between the first evaluation function and the second evaluation function, respectively, and setting the first evaluation function, the first weighting factor, And a product obtained by multiplying the second evaluation function by the second weighting coefficient is created. And (d) calculating the operation amounts of the plurality of shape control mechanisms so as to minimize the shape evaluation function of the sum of products.

【0017】ところで、本実施形態においては、制御手
段を2群に分類した例について説明したが、制御手段の
動特性が3種類以上に分類される場合にも、本発明を適
用することができることは言うまでもない。例えば3種
類の場合には、図4に示されるように、2個のフィルタ
30,31によって各群毎に遮断周波数を設定できる。
また、本実施形態おいては、板幅方向に対称成分の形状
偏差のみに言及したが、非対称成分の形状偏差に対して
も、本発明は適用できる。なお、各群の制御手段が一つ
のみの場合は、該当群の最適操作量演算装置は不要とな
る。
In this embodiment, an example in which the control means are classified into two groups has been described. However, the present invention can be applied to a case where the dynamic characteristics of the control means are classified into three or more types. Needless to say. For example, in the case of three types, as shown in FIG. 4, a cutoff frequency can be set for each group by two filters 30 and 31.
In this embodiment, only the shape deviation of the symmetric component in the plate width direction has been described, but the present invention can be applied to the shape deviation of the asymmetric component. When only one control unit is provided for each group, the optimal operation amount calculation device for the group is not required.

【0018】[0018]

【発明の効果】以上のように本発明によれば、形状検出
器の出力分布と予め設定された目標形状分布との差によ
り形状偏差を求め、その形状偏差をその周波数成分によ
り複数に分離し、分離された個々の形状偏差に基づい
て、各形状制御機構の操作量を求めて制御するようにし
たので、全ての形状制御機構が同時に有効動作でき、且
つ、特定の制御機構が動作限界に到達する確率が低減す
る、という優れた効果が得られる。そして、本発明によ
る形状制御方法を各種圧延機に適用することにより、製
品の形状品質の一層の向上が期待できる。
As described above, according to the present invention, a shape deviation is obtained from a difference between an output distribution of a shape detector and a preset target shape distribution, and the shape deviation is separated into a plurality of parts by its frequency component. Based on the separated individual shape deviations, the amount of operation of each shape control mechanism is determined and controlled, so that all the shape control mechanisms can operate effectively at the same time, and the specific control mechanism is limited to the operation limit. An excellent effect that the probability of reaching is reduced is obtained. Further, by applying the shape control method according to the present invention to various rolling mills, it is expected that the shape quality of a product is further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に板形状制御法が適用され
た制御装置及びその関連設備を示した構成図である。
FIG. 1 is a configuration diagram showing a control device to which a plate shape control method is applied to an embodiment of the present invention and related equipment.

【図2】図1の圧延機のロール部及び形状制御機構の詳
細を示した図である。
FIG. 2 is a diagram showing details of a roll section and a shape control mechanism of the rolling mill of FIG. 1;

【図3】図1の形状分離装置に内蔵した処理回路の一例
を示すブロック図である。
FIG. 3 is a block diagram showing an example of a processing circuit built in the shape separation device of FIG.

【図4】図1の形状分離装置に内蔵した処理回路の他の
例を示すブロック図である。
FIG. 4 is a block diagram showing another example of a processing circuit built in the shape separation device of FIG. 1;

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧延板幅方向の複数箇所の形状を形状検
出器により検出し、その形状検出器の出力に基づいて複
数の形状制御機構の各操作量を求め、その操作量に基づ
いて各形状制御機構を操作して板の形状を制御する板圧
延における形状制御方法において、 前記形状検出器の出力分布と、予め設定された目標形状
分布との差により形状偏差を求め、該形状偏差をその周
波数成分により複数に分離し、分離された個々の形状偏
差に基づいて、各形状制御機構の操作量を演算して制御
することを特徴とする板圧延における板形状制御法。
1. A shape detector for detecting a shape at a plurality of positions in a width direction of a rolled sheet by a shape detector, obtaining respective operation amounts of a plurality of shape control mechanisms based on an output of the shape detector, and obtaining respective operation amounts based on the operation amounts. In a shape control method in strip rolling in which a shape control mechanism is operated to control a shape of a sheet, an output distribution of the shape detector and a shape deviation are obtained from a difference between a preset target shape distribution and the shape deviation. A sheet shape control method in sheet rolling, characterized in that the shape components are separated into a plurality of components by the frequency component, and an operation amount of each shape control mechanism is calculated and controlled based on each separated shape deviation.
【請求項2】 前記形状検出器の出力分布及び目標形状
分布をそれぞれ板幅方向の位置xの関数として表し、前
記形状検出器の出力分布から前記目標形状分布を減算す
ることにより前記形状偏差を求めることを特徴とする請
求項1記載の板圧延における板形状制御法。
2. An output distribution and a target shape distribution of the shape detector are respectively expressed as functions of a position x in a plate width direction, and the shape deviation is obtained by subtracting the target shape distribution from the output distribution of the shape detector. 2. The method according to claim 1, wherein the shape is controlled.
【請求項3】 中間ロールベンダ及びワークロールベン
ダを第一群の形状制御機構とし、複数のバックアップロ
ールクラウン調整機構を第2群の形状調整機構とし、前
記形状偏差をハイパスフィルタリング処理をして抽出し
た信号に基づいて前記第一群の形状制御機構の操作量を
求め、前記の抽出した信号を形状偏差から減算した残余
の信号に基づいて第二群の形状制御機構の操作量を求め
ることを特徴とする請求項2記載の板圧延における板形
状制御法。
3. An intermediate roll bender and a work roll bender are a first group of shape control mechanisms, a plurality of backup roll crown adjustment mechanisms are a second group of shape adjustment mechanisms, and the shape deviation is extracted by high-pass filtering. Calculating an operation amount of the first group of shape control mechanisms based on the obtained signal, and obtaining an operation amount of the second group of shape control mechanisms based on a remaining signal obtained by subtracting the extracted signal from the shape deviation. 3. The method of controlling the shape of a sheet in sheet rolling according to claim 2, wherein
JP34160996A 1996-12-20 1996-12-20 Shape control method in sheet rolling Expired - Fee Related JP3304796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34160996A JP3304796B2 (en) 1996-12-20 1996-12-20 Shape control method in sheet rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34160996A JP3304796B2 (en) 1996-12-20 1996-12-20 Shape control method in sheet rolling

Publications (2)

Publication Number Publication Date
JPH10180332A true JPH10180332A (en) 1998-07-07
JP3304796B2 JP3304796B2 (en) 2002-07-22

Family

ID=18347412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34160996A Expired - Fee Related JP3304796B2 (en) 1996-12-20 1996-12-20 Shape control method in sheet rolling

Country Status (1)

Country Link
JP (1) JP3304796B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104801549A (en) * 2015-04-27 2015-07-29 燕山大学 Cold rolling strip steel plate shape instrument signal distortion channel data processing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102527742B (en) * 2012-01-16 2014-05-07 中冶南方工程技术有限公司 Plate shape signal compensation method for failure measurement channel of plate shape gauge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104801549A (en) * 2015-04-27 2015-07-29 燕山大学 Cold rolling strip steel plate shape instrument signal distortion channel data processing method

Also Published As

Publication number Publication date
JP3304796B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
US7797974B2 (en) Method and device for measuring and adjusting the evenness and/or tension of a stainless steel strip or stainless steel film during cold rolling in a 4-roll stand, particularly in a 20-roll sendzimir roll stand
KR101149927B1 (en) Rolling load prediction learning method for hot plate rolling
KR101214348B1 (en) Strip rolling mill and its control method
JPS61132213A (en) Shape controlling method of rolling stock
KR20150067718A (en) Rolling control apparatus, rolling control method and rolling control program
JPH05200420A (en) Plate thickness controller for rolling mat roll
JP3304796B2 (en) Shape control method in sheet rolling
JPH0246283B2 (en)
JP3275802B2 (en) Shape control method in sheet rolling
JP3331191B2 (en) Rolling equipment shape control device and method
JP4324563B2 (en) Tandem rolling mill shape control method and apparatus
JP2001269707A (en) Method for controlling elongation percentage in temper rolling mill
JPH06134508A (en) Device for setting manipulated variable of sheet shape in rolling mill
JPS5815201B2 (en) Method for controlling the shape of metal strips
JP2845077B2 (en) Sheet shape control method for sheet rolling
JP2680252B2 (en) Shape control method for multi-high rolling mill
JPH08190401A (en) Control method for plural control elements
JPH1043806A (en) Controller for shape of rolling mill
JPH02258108A (en) Method and apparatus for controlling shape of rolling mill
JPH0687011A (en) Method for rolling thick plate
JPS59218206A (en) Shape controlling method in thin sheet rolling
JPS623605A (en) Method for recognizing shape in breadthwise direction of rolling material
JPS6134885B2 (en)
JPH04294811A (en) Method for controlling meandering in rolling mill
JP3438871B2 (en) Rolling mill shape control method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees