JPH10180048A - Immersion type membrane separator - Google Patents

Immersion type membrane separator

Info

Publication number
JPH10180048A
JPH10180048A JP8350058A JP35005896A JPH10180048A JP H10180048 A JPH10180048 A JP H10180048A JP 8350058 A JP8350058 A JP 8350058A JP 35005896 A JP35005896 A JP 35005896A JP H10180048 A JPH10180048 A JP H10180048A
Authority
JP
Japan
Prior art keywords
hollow tubular
tubular membranes
membranes
hollow
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8350058A
Other languages
Japanese (ja)
Inventor
Kunihiro Iwasaki
Isamu Kato
Masayoshi Oinuma
勇 加藤
邦博 岩崎
正芳 老沼
Original Assignee
Kurita Water Ind Ltd
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Ind Ltd, 栗田工業株式会社 filed Critical Kurita Water Ind Ltd
Priority to JP8350058A priority Critical patent/JPH10180048A/en
Publication of JPH10180048A publication Critical patent/JPH10180048A/en
Application status is Pending legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • Y02W10/15Aerobic processes

Abstract

PROBLEM TO BE SOLVED: To improve the deterioration of the function to separate solid from liquid of hollow tubular membranes by immersing aeration means which are connected to air feed pipes for aeration and eject air bubbles into the water in a treating vessel and enclosing the aeration means by the hollow tubular membranes constituting membrane modules.
SOLUTION: Many pieces of the hollow tubular membranes 11 of a water collecting device 12 consisting of the hollow annular bodies of the membrane modules are bent to a U shape by each piece and both ends are plunged and fixed into the hollow water collecting parts 12' of the annular bodies. These membranes exist in the diametral direction of the annular bodies. The aeration means 20 of a resembling shape having the external shape slightly smaller than the internal shape of the cage shapes formed by interlinkage of the U-shaped parts of the many hollow tubular membranes 11 under the annular bodies are concentrically fitted into the cages to prevent the adhesion of SS by uniformly ejecting the air bubbles to all the hollow tubular membranes 11 and applying vibrations thereto. As a result, the long-term and continuous collecting of the permeated liquid P permeating the hollow tubular membranes 11 is made possible and the occurrence of the deterioration in the function to separate solid from the liquid is eliminated. The attachment and detachment of the membranes are facilitated and the washing of the membranes by taking the deteriorated membranes outside the system is facilitated.
COPYRIGHT: (C)1998,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】この発明は、アルミナセラミック等からなる無機材質や、有機材質からなる逆浸透膜、限外濾過膜、精密濾過膜の多数本の外圧型中空糸膜やチューブラー型膜を有する中空管状の膜モジュールを処理槽の水中に浸漬し、水頭差や吸引ポンプにより生じる負圧作用で各中空管状膜を外側から中空部に透過した透過液を採水する固液分離用の浸漬型膜分離装置に関する。 TECHNICAL FIELD The present invention is an inorganic material and made of alumina ceramics or the like, a reverse osmosis membrane made of an organic material, an ultrafiltration membrane, a large number of external pressure type hollow fiber membrane or tubular membrane microfiltration membranes immersing the membrane module of the hollow tubular water treatment tank having a water head difference and with a negative pressure generated by the suction pump for the solid-liquid separation for water sampling permeate that has passed through the hollow portion of each hollow tubular membranes from the outside about submerged membrane separator.

【0002】 [0002]

【従来の技術】このような浸漬型膜分離装置では、固液分離を行うに伴い各中空管状膜の表面にSSが細長いスパゲッティ状に付着、生長して膜の表面を閉塞させるため、従来は処理槽内の膜モジュールの下方に曝気装置を設置し、曝気装置から浮上する気泡により中空管状膜を上下、或いは左右に浮遊、振動させて中空管状膜の表面に付着、生長するSSを払い落とし、膜の表面の閉塞を防止している。 BACKGROUND OF THE INVENTION Such submerged membrane separator, for occluding surface adhering to the SS elongated spaghetti of each hollow tubular membranes with the carrying out solid-liquid separation, the surface of the growth to film, the conventional the aerator below the membrane modules in the processing bath is installed, the upper and lower hollow tubular membranes by bubbles floating from the aerator, or floating in the right and left, attached to the surface of the hollow tubular membranes by vibrating flicked out SS for growth , thereby preventing clogging of the surface of the membrane. 特に処理槽の液中に好気微生物を存在させて有機性廃水を生物処理しながら固液分離を行う場合は、曝気した空気が好気性微生物を活性化するため、処理効果が極めて高い。 Especially when the presence of aerobic microorganisms in a liquid treatment tank of organic wastewater by performing solid-liquid separation with biological treatment, since aeration air to activate aerobic microorganisms, treatment effect is very high.

【0003】 [0003]

【発明が解決しようとする課題】しかし、曝気による空気は、膜モジュールを構成する中空管状膜の1本宛に均一に接触しないため、部分的にSSが中空管状膜の表面を閉塞したり、膜の表面に付着、生長するSSの粘着性によって数10本、数100本の規模で中空管状膜が固着するブロック化現象が生じることがあった。 [SUMMARY OF THE INVENTION] However, the air by aeration, because it does not uniformly contact the addressed one of the hollow tubular membranes constituting the membrane module, partially clogged the surface of the SS hollow tubular membranes, attached to the surface of the membrane, several ten by sticky SS to grow, was sometimes blocking phenomenon hollow tubular membrane is fixed by the number 100 of scale occurs. 更に、中空管状膜の1本の外径は0.2〜1.0mm、膜モジュールを構成するための採水装置に対する埋込み密度は数10本/cm 2であるため、曝気による浮遊、振動で1 Furthermore, one outer diameter of the hollow tubular membranes 0.2 to 1.0 mm, for embedding density is several ten / cm 2 for water sampling device for constituting the membrane module, the floating caused by aeration, vibration 1
本宛の中空管状膜に伸縮の差が発生すると、中空管状膜が絡み合い、部分的に張力が加わるとその個所で切断してしまい、固液分離機能が劣化するという事態がたまに生じていた。 When the difference in stretching the hollow tubular membranes of the addressed occurs, entanglement hollow tubular membranes, partially tension is applied when the cause is cut at its point, a situation that the solid-liquid separating function is deteriorated were occasionally occur.

【0004】 [0004]

【課題を解決するための手段】本発明は、上述した問題点を解消するために開発されたもので、処理槽の水中に多数本の外圧型中空管状膜を有する膜モジュールを浸漬し、上記各中空管状膜の膜を透過した透過液を採水する浸漬型膜分離装置において、上記処理槽の水中に、曝気用給気管に接続して気泡を水中に噴出する曝気手段を浸漬し、前記膜モジュールを構成する中空管状膜によって上記曝気手段を囲んだことを特徴とする。 The present invention SUMMARY OF THE INVENTION has been developed to solve the above problems, by immersing the membrane module having a large number of external pressure type hollow tubular membranes in water treatment tank, the in immersion type membrane separation apparatus for membrane water sampling the transmitted permeate of the hollow tubular membranes, the water of the treatment tank, connected to the aeration supply pipe immersed aeration means for jetting bubbles into water, the a hollow tubular membranes constituting the membrane module, characterized in that enclosed the aeration means.

【0005】 [0005]

【実施例】図示の各実施例において、11は1本宛の外圧型中空管状膜、12は中空集水部12´を有し、多数本の中空管状膜の1本宛の端部を固定し、図1(B)に拡大して示したように、各中空管状膜の中空部が前記中空集水部に連通した採水装置であって、上記採水装置1 In each example of EXAMPLES illustrated, 11 external pressure type hollow tubular membranes destined one, 12 has a hollow water collecting section 12 ', fixed to the ends of the addressed one of the plurality of hollow tubular membranes and, as shown enlarged in FIG. 1 (B), a water sampling apparatus hollow portion of the hollow tubular membranes is communicated with the hollow water collecting part, the water sampling device 1
2と、これに端部を固定された多数本の中空管状膜11 2, hollow large number of fixed ends to the tubular film 11
とによって処理槽1の水中に浸漬した膜モジュール10 Membrane module 10 which is immersed in water treatment tank 1 by a
が構成される。 But composed. そして、採水装置の中空集水部には処理槽の水面上に突出して吸引ポンプPに接続した採水管1 The water sampling tube 1 is a hollow water collecting part of the water sampling device projecting on the water surface of the processing tank is connected to a suction pump P
3が連結し、吸引ポンプの運転により採水装置の中空集水部を経て各1本宛の中空管状膜の中空部に生じる減圧吸引作用で処理槽内の液は中空管状膜の膜を外側から中空部に透過して採水装置の中空集水部12´で合流し、 3 is connected, the liquid in the treatment tank with vacuum suction effect produced in the hollow portion of the through hollow water collecting section hollow tubular membranes destined for one water sampling device by the operation of the suction pump membrane outside of the hollow tubular membranes after transmitting the hollow portion meet at hollow water collecting part 12 'of the water sampling device,
採水管13、吸引ポンプPを経て採水される。 Tomizukan 13, it is water sampling via a suction pump P.

【0006】20は処理槽1の水中に浸漬し、曝気用給気管21に接続して気泡を水中に噴出する曝気手段で、 [0006] 20 in aerating means for blowing immersed in water treatment tank 1, air bubbles and connected to aeration supply pipe 21 into the water,
気泡を均一に噴出できれば曝気手段の壁面を不織布や、 Or non-woven fabric wall surface of the aeration means if uniformly jetting bubbles,
ポーラスな多孔質材料で構成してもよいし、細孔や、スリットを有する金属板で構成してもよく、構造は任意である。 It may be constituted by porous porous material, pores and may be constituted by a metal plate having a slit structure is arbitrary.

【0007】図1の実施例では膜モジュールの採水装置12は中空の環状体からなり、多数本の中空管状膜11 [0007] Dispensing device 12 of the membrane module in the embodiment of FIG. 1 is a hollow annular body, a large number of hollow tubular membranes 11
は1本宛U形に曲がり、その両端部を環状体の中空集水部12´に下から突入して固定され、環状体の直径方向に位置する。 Bends addressed U-shaped one, the both end portions are fixed to rush from the bottom in the hollow collecting portion 12 'of the annular body, located in the diametrical direction of the annular body. これにより環状体の下には多数本の中空管状膜のU形に曲がった折返し部分が交錯して底を形成する籠形になる。 This makes the cage in which the folded portion bent in a U-shaped large number of hollow tubular membranes under the annular body forming the bottom interlaced. そして、この多数本の中空管状膜で構成された籠の内部に、籠の内形よりも外形が少し小さい相似形の曝気手段20が同心状に嵌入し、籠を構成する多数本の中空管状膜の全部に対して均一に気泡を噴出するようになっている。 Then, the inside of the cage which is constituted by a hollow tubular membranes of the large number of, aerating means 20 of similar shape outer shape slightly smaller than the inner shape of the cage is fitted concentrically, a hollow tubular multiplicity of constituting the basket and uniformly so as to eject the air bubbles with respect to all of film.

【0008】曝気手段の上面は上壁20´により閉じ、 [0008] The top surface of the aeration means is closed by the upper wall 20 ',
その中央からは環状体の中心を貫いて、給気管21に上端を接続した連絡管22が起立し、曝気手段の内部は連絡管22で給気管21と連通する。 From the center through the center of the annular body, feed connecting pipe 22 which connects the upper end to the trachea 21 is erected, the inside of the aeration means communicates with the supply pipe 21 connecting pipe 22.

【0009】採水装置12の環状体も、上端を採水管1 [0009] annular body of water sampling device 12 is also water sampling pipe an upper end 1
3に接続した連通管14を有し、この連通管14により環状体の中空集水部12´は採水管13と連通する。 A connecting pipe 14 connected to 3, by the communicating tube 14 hollow water collecting portions of the annular body 12 'communicates with the water sampling pipe 13.

【0010】給気管21から連絡管22で下がる曝気手段20を、多数本の中空管状膜からなる籠の内部に同心状に位置させ、曝気手段を多数本の中空管状膜で囲むため、採水装置の環状体は複数の上向きの取付部材15によって採水管13に固定されている。 [0010] The aeration means 20 to fall by connecting duct 22 from the air supply pipe 21, is positioned concentrically inside the cage made of hollow tubular membranes of the large number of, to enclose the aerating means with hollow tubular membranes of the large number of, water sampling annulus device is fixed to the water sampling pipe 13 by a plurality of upwardly directed mounting member 15.

【0011】前述したように曝気手段20の外形は、多数本の中空管状膜が構成する籠の内形より少し小さい。 [0011] contour of aeration means 20 as described above is slightly smaller than the inner shape of the basket hollow tubular membranes of many present constitutes.
このため中空管状膜と曝気手段の外面との間には間隙1 Gap 1 between the outer surface of this end hollow tubular film and aerating means
6が保たれている。 6 is maintained. 従って、固液分離を行うため吸引ポンプPを運転し、且つ給気管21にブロワーなどから空気を給気すると、曝気手段20は上壁20´を除く外面全体から空気を噴出し、籠を構成している多数本の中空管状膜の1本宛の全長に気泡を均一に浴びせ、振動させる。 Thus, operating the suction pump P for performing solid-liquid separation, and when supply of air from the blower etc. to supply pipe 21, aeration unit 20 is ejecting air from the entire outer surface except the top wall 20 ', constituting the basket to uniformly showered bubbles the entire length of the addressed one of the plurality of hollow tubular membranes have to vibrate. これにより、SSが中空管状膜の膜の表面に付着しようとしても振動によって払い落とされ、付着できない。 Thus, SS is also brushed off by vibrations in an attempt to adhere to the surface of the membrane of the hollow tubular membranes, it can not be attached. こうして、吸引ポンプの吸引作用で処理槽中の液の、中空管状膜を透過できた透過液を環状体、連通管1 Thus, the liquid in the processing tank in a suction action of the suction pump, permeate the annular body capable of transmitting hollow tubular membranes, communication pipe 1
4、採水管13を経て長時間、連続的に採水できる。 4, a long time through the Tomizukan 13, can be continuously water sampling. そして、SSが中空管状膜の表面に付着しないので中空管状膜同志が固着するブロック化現象が生じないと共に、 Then, the not occur blocking phenomenon hollow tubular membranes each other to stick because SS does not adhere to the surface of the hollow tubular membranes,
1本宛の中空管状膜は一様に振動するため絡み合いによる切断も生じない。 First hollow tubular membranes destined present does not occur even cut by entanglement for uniformly vibrate.

【0012】図1の実施例では多数本の中空管状膜の1 [0012] 1 of a number of hollow tubular membranes in the embodiment of FIG. 1
本宛をU字形に曲げ、その両端を環状体に固定して膜モジュールを底を有する籠形にしたが、多数本の中空管状膜を平らなメッシュ状に編み、これを袋状に変形させて中空管状膜の1本宛の両端を環状体に固定して膜モジュールにしても同じ作用効果を有する。 The present addressed bent in U-shape, but the both ends was cage having a bottom membrane module is fixed to the annular body, knitted hollow tubular membranes of the large number of flat mesh shape, deforming it into a bag shape also both ends of the addressed one of the hollow tubular membranes in the membrane module is fixed to the annular body Te has the same functions and effects.

【0013】図2の実施例は、採水装置12として2つの中空の環状体を上下に配置し、上下の環状体に対して多数本の中空管状膜11の1本宛が上端部と下端部を突入して固定され、上下の環状体と、これに上端部と下端部を固定された直線状の多数本の中空管状膜により膜モジュール10を円筒形の底が無い籠形にした場合のものである。 [0013] embodiment of FIG. 2, two hollow annular body is disposed above and below the water sampling device 12, one destined upper and lower ends of the large number of hollow tubular membranes 11 to the upper and lower annular bodies parts are fixed to rush to the top and bottom of the annular body, when the membrane module 10 on the cage bottom of cylindrical not by this fixing the upper and lower ends were straight a large number of hollow tubular membranes belongs to. この籠の内部に、多数本の中空管状膜が囲む内径よりも外径が少し小さい円筒形で、上面と底が塞がれた曝気手段20を同心状に嵌入し、曝気手段の外周面の全体から均一に気泡を噴出するようにしてある。 Inside the basket, with slightly smaller cylindrical outer diameter than the inner diameter of the hollow tubular membranes of the large number of surrounding, fitted aeration means 20 for top and bottom is blocked concentrically, the outer peripheral surface of the aerating means from whole uniformly it is to be ejected bubbles.

【0014】膜モジュールの上の環状体の採水管13に対する配管、固定、及び曝気手段20の給気管21に対する配管は図1の実施例と同様で、同じ部材には同じ符号を付して説明を省略する。 [0014] pipe for water sampling pipe 13 of the annular body on the membrane modules, fixed, and a pipe for supply pipe 21 of the aeration unit 20 is the same as in Example 1, the same members are designated by the same reference numerals omitted. この図2の実施例では採水装置として下にも環状体を有するので、下の環状体からの採水管13´を設け、下の採水管13´と上の採水管13を連結して、1台の吸水ポンプPに接続する。 Since this embodiment of FIG. 2 with an annular member even under a water sampling device, provided with a water sampling pipe 13 'from the annulus below, by connecting the water sampling pipe 13 of the upper and water sampling tube 13' below, connect to a single water pump P.

【0015】この実施例でも円筒形の曝気手段20の外径は、多数本の中空管状膜が囲む内径より少し小さい。 [0015] In the outer diameter of the cylindrical aeration means 20 also this embodiment, slightly smaller than the inner diameter of the hollow tubular membranes of the large number of surrounding.
このため中空管状膜と曝気手段の外周面との間には間隙16が保たれている。 Gap 16 is maintained between the outer peripheral surface of this end hollow tubular membranes and aerating means. 従って、固液分離を行うため吸引ポンプPを運転し、且つ給気管21にブロワーなどから空気を給気すると、曝気手段20は外周面全体から空気を噴出し、籠を構成している直線状の多数本の中空管状膜の1本宛の全長に気泡を均一に浴びせ、振動させる。 Thus, operating the suction pump P for performing solid-liquid separation, and when supply of air from the blower etc. to supply pipe 21, aeration unit 20 is ejecting air from the entire outer peripheral surface, like the straight line constituting the basket uniformly poured bubbles the entire length of the addressed one of the plurality of hollow tubular membranes, vibrating.
これにより、SSが中空管状膜の膜の表面に付着しようとしても振動によって払い落とされ、付着できない。 Thus, SS is also brushed off by vibrations in an attempt to adhere to the surface of the membrane of the hollow tubular membranes, it can not be attached. こうして、吸引ポンプの吸引作用で処理槽中の液の、中空管状膜を透過できた透過液を上下の環状体、連通管1 Thus, the liquid in the processing tank in a suction action of the suction pump, the annular body of the permeate was passed through the hollow tubular membranes vertically communicating pipe 1
4、採水管13,13´を経て長時間、連続的に採水できる。 4, a long period of time through the Tomizukan 13 and 13 ', can be continuously water sampling. そして、SSが中空管状膜の表面に付着しないので中空管状膜同志が固着するブロック化現象が生じないと共に、1本宛の中空管状膜は一様に振動するため絡み合いによる切断も生じない。 Since SS does not adhere to the surface of the hollow tubular membranes with not occur blocking phenomenon hollow tubular membranes each other is fixed, hollow tubular membranes destined one does not occur cleavage by entanglement for uniformly vibrate.

【0016】図3の実施例は、採水装置12が左右2本の横置き筒体からなり、多数本の中空管状膜11の1本宛をアーチ形に曲げ、その下向きの左右各端部を上記左右の横置き筒体12,12に上から突入して固定し、一列のトンネル状に膜モジュールを構成した場合を示す。 The embodiment of FIG. 3, water sampling device 12 consists of two right and left horizontal cylinder, bending destined one of a number of hollow tubular membranes 11 arched its downward right and left end portions were fixed by rush from above horizontal cylinder 12, 12 of the left and right, shows a case where the membrane module in the tunnel-shaped line.
そして、曝気手段20は左右の横置き筒体の間に入り、 The aeration unit 20 enters between the left and right horizontal cylinder,
一列のトンネル状に配列されている多数本の中空管状膜11との間に間隙16を保った中空のかまぼこ形で、底と両端を除くアーチ形の表面から均一に気泡を噴出するようにしてある。 So as to jet a hollow semicylindrical keeping the gap 16, the uniform air bubbles from the surface of the arcuate except bottom and opposite ends between the plurality of hollow tubular membranes 11 are arranged in a single line of the tunnel-like is there.

【0017】膜モジュールの採水装置12である左右2 [0017] a water sampling apparatus 12 of the membrane module left 2
本の横置き筒体は、例えば処理槽1の底面上に設置し、 Horizontal cylinder of the book, is placed, for example treatment vessel 1 on the bottom surface,
曝気手段20は横置き筒体の間で、多数本の中空管状膜が構成する一列のトンネルの下に位置するように処理槽の底面上に設置する。 Aeration means 20 between the horizontal cylinder, hollow tubular membranes of the large number is placed on the bottom of the processing tank so as to be positioned under a row of tunnel construction. そして、2本の横置き筒体の端面に夫々採水管13,13を接続し、この2本の採水管を連結して1本にし、吸引ポンプに接続する。 Then, connect the respective water sampling pipe 13 to the end face of the two horizontal cylinder, and in one by connecting the water sampling pipe of the two, is connected to the suction pump. 又、曝気手段の端面には給気管21を接続する。 Further, the end surface of the aerating means for connecting the air supply pipe 21.

【0018】この状態で多数本の中空管状膜が構成するトンネルと、曝気手段のアーチ形の表面との間には間隙16が保たれる。 The gap 16 is maintained between the tunnel constituting a large number of hollow tubular membranes in this state, the arcuate surface of the aeration unit. 従って、固液分離を行うため吸引ポンプPを運転し、且つ給気管21にブロワーなどから空気を給気すると、曝気手段20はアーチ形の表面全体から空気を噴出し、トンネルを構成している多数本の中空管状膜の1本宛の全長に気泡を均一に浴びせて振動させる。 Thus, operating the suction pump P for performing solid-liquid separation, and when supply of air from the blower etc. to supply pipe 21, aeration unit 20 is ejecting air from the entire surface of the arcuate constitute a tunnel number is vibrated uniformly showered bubbles the entire length of the addressed one of the hollow tubular membranes. これにより、SSが中空管状膜の膜の表面に付着しようとしても振動によって払い落とされ、付着できない。 Thus, SS is also brushed off by vibrations in an attempt to adhere to the surface of the membrane of the hollow tubular membranes, it can not be attached. こうして、吸引ポンプの吸引作用で処理槽中の液の、中空管状膜を透過できた透過液を横置き筒体、採水管13,13を経て長時間、連続的に採水できる。 Thus, the liquid in the processing tank in a suction action of the suction pump, horizontal tubular body permeate capable of transmitting hollow tubular membranes, a long time through the Tomizukan 13, can be continuously water sampling. そして、SSが中空管状膜の表面に付着しないので中空管状膜同志が固着するブロック化現象が生じないと共に、1 Then, the not occur blocking phenomenon hollow tubular membranes each other to stick because SS does not adhere to the surface of the hollow tubular membranes, 1
本宛の中空管状膜は一様に振動するため絡み合いによる切断も生じない。 The hollow tubular membranes of the present addressed does not occur even cut by entanglement for uniformly vibrate.

【0019】図1,2の実施例では膜モジュールと曝気手段を処理槽内に上下方向に設置し、図3の実施例では膜モジュールと曝気手段を処理槽内に横方向に設置したが、設置する向き、ないし方向は上記に限定されず任意である。 [0019] established a membrane module and an aeration means in the processing bath in the embodiment of FIGS. 1 and 2 in the vertical direction, has been placed in the transverse direction of the membrane module and an aeration means in the processing bath in the embodiment of FIG. 3, installation orientations, or directions is arbitrary without being limited to the above.

【0020】 [0020]

【発明の効果】以上で明らかなように、本発明によれば膜モジュールを構成している多数本の中空管状膜の1本宛の全長に気泡を均一に浴びせて振動させ、中空管状膜の膜の表面に付着しようとするSSを振動によって払い落とし、付着を防止する。 As is evident from the above, according to the present invention, uniformly showered by vibrating bubbles the entire length of the addressed one of the plurality of hollow tubular membranes constituting the membrane module according to the present invention, the hollow tubular membranes the SS to try to adhere to the surface of the membrane flicked by vibration, to prevent adhesion. 従って、吸引ポンプの吸引作用で処理槽中の液の、中空管状膜を透過できた透過液を長時間、連続的に採水できる。 Thus, the liquid in the processing tank in a suction action of the suction pump, the permeate was passed through the hollow tubular membranes long, it can be continuously water sampling. そして、SSが中空管状膜の表面に付着しないので中空管状膜同志が固着するブロック化現象が生じないと共に、1本宛の中空管状膜は一様に振動するため、固液分離機能の劣化を来す絡み合いによる切断も生じない。 Since SS does not adhere to the surface of the hollow tubular membranes with not occur blocking phenomenon hollow tubular membranes each other is fixed, since the hollow tubular membranes destined one is for uniformly vibrating, the deterioration of the solid-liquid separating function It does not occur cleavage by entanglement cause. 又、脱着が容易なため、膜の交換や劣化した膜を系外に取り出しての洗浄が容易になる。 Further, since desorption is easy, it is easy to clean the removed replaced or deteriorated film membrane to the outside of the system.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】(A)はこの発明の第1実施例の膜モジュールと、曝気手段の分解斜視図、(B)は上記膜モジュールと、曝気手段によって構成した浸漬型膜分離装置の断面図である。 1 (A) is a membrane module of the first embodiment of the present invention, exploded perspective view of the aeration unit, (B) is a sectional view of a submerged membrane separator configured with the membrane module by the aeration means is there.

【図2】(A)はこの発明の第2実施例の膜モジュールと、曝気手段の分解斜視図、(B)は上記膜モジュールと、曝気手段によって構成した浸漬型膜分離装置の断面図である。 Figure 2 (A) is a membrane module of the second embodiment of the present invention, exploded perspective view of the aeration unit, (B) is a sectional view of a submerged membrane separator configured with the membrane module by the aeration means is there.

【図3】(A)はこの発明の第3実施例の膜モジュールと、曝気手段の斜視図、(B)は上記膜モジュールと、 3 (A) is a membrane module of a third embodiment of the present invention, a perspective view of the aeration unit, and (B) is the membrane module,
曝気手段によって構成した浸漬型膜分離装置の断面図である。 It is a cross-sectional view of a submerged membrane separator constructed in accordance with the aeration unit.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 処理槽 10 膜モジュール 11 膜モジュールの中空管状膜 12 膜モジュールの採水装置 13 採水管 20 曝気手段 21 曝気手段への給気管 The air supply pipe into the hollow tubular membranes 12 membrane module water sampling device 13 Tomizukan 20 aerating means 21 aerating means of one processing tank 10 membrane modules 11 membrane module

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 6識別記号 FI C02F 3/12 C02F 3/12 S ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 6 identifications FI C02F 3/12 C02F 3/12 S

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 処理槽の水中に多数本の外圧型中空管状膜を有する膜モジュールを浸漬し、上記各中空管状膜の膜を透過した透過液を採水する浸漬型膜分離装置において、上記処理槽の水中に、曝気用給気管に接続して気泡を水中に噴出する曝気手段を浸漬し、前記膜モジュールを構成する中空管状膜によって上記曝気手段を囲んだことを特徴とする浸漬型膜分離装置。 1. A dipping the membrane module having a large number of external pressure type hollow tubular membranes in water treatment tank, the immersion type membrane separation apparatus for water sampling the transmitted permeate the membrane of each hollow tubular membranes, said in water treatment tank, connected to the aeration supply pipe immersed aeration means for jetting bubbles into water, the immersion type membrane, characterized in that it surrounds the aeration means by a hollow tubular membranes constituting the membrane module separation device.
JP8350058A 1996-12-27 1996-12-27 Immersion type membrane separator Pending JPH10180048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8350058A JPH10180048A (en) 1996-12-27 1996-12-27 Immersion type membrane separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8350058A JPH10180048A (en) 1996-12-27 1996-12-27 Immersion type membrane separator

Publications (1)

Publication Number Publication Date
JPH10180048A true JPH10180048A (en) 1998-07-07

Family

ID=18407947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8350058A Pending JPH10180048A (en) 1996-12-27 1996-12-27 Immersion type membrane separator

Country Status (1)

Country Link
JP (1) JPH10180048A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002022244A1 (en) * 2000-09-13 2002-03-21 Puron Ag Membrane filter for water treatment
US7481933B2 (en) * 2006-04-11 2009-01-27 Siemens Water Technologies Corporation Process to improve the efficiency of a membrane filter activated sludge system
US7510655B2 (en) * 2006-04-11 2009-03-31 Siemens Water Technologies Corp. Process to improve the efficiency of a membrane filter activated sludge system
US7713413B2 (en) * 2006-04-11 2010-05-11 Siemens Water Technologies Corp. Aerated anoxic membrane bioreactor
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9873088B2 (en) 2011-05-17 2018-01-23 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296123C (en) * 2000-09-13 2007-01-24 科赫薄膜系统有限公司 Membrane filter for water treatment
WO2002022244A1 (en) * 2000-09-13 2002-03-21 Puron Ag Membrane filter for water treatment
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US7481933B2 (en) * 2006-04-11 2009-01-27 Siemens Water Technologies Corporation Process to improve the efficiency of a membrane filter activated sludge system
US7510655B2 (en) * 2006-04-11 2009-03-31 Siemens Water Technologies Corp. Process to improve the efficiency of a membrane filter activated sludge system
US7713413B2 (en) * 2006-04-11 2010-05-11 Siemens Water Technologies Corp. Aerated anoxic membrane bioreactor
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9873088B2 (en) 2011-05-17 2018-01-23 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Similar Documents

Publication Publication Date Title
US5639373A (en) Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate
US6685832B2 (en) Method of potting hollow fiber membranes
EP0669851B1 (en) Frameless array of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate
US6620319B2 (en) Apparatus for withdrawing permeate using an immersed vertical skein of hollow fibre membranes
CN100354032C (en) Hollow fiber membrane module, hollow fiber membrane module unit, membrane filtration device using the same and method of operating the same
AU2003291835B2 (en) Mixing chamber
DE2815866C2 (en)
CN101790411B (en) Membrane cleaning with pulsed airlift pump
EP0510328B1 (en) Apparatus for treating activated sludge
US6821420B2 (en) Apparatus and method for cleaning membrane filtration modules
CA2501628C (en) A filtration and backwashing arrangement for membrane modules
JP4901347B2 (en) Cleaning method
CA2493315C (en) Aeration method and apparatus for filtration
US6524481B2 (en) Apparatus and method for cleaning membrane filtration modules
JP2013056346A (en) Filtration apparatus
CA2312735C (en) Water treatment apparatus and water treatment method
JP3302992B2 (en) Concentration of solids in suspension using a hollow fiber membrane
US7988855B2 (en) Membrane bioreactor having single header membrane module
JP3486451B2 (en) Hollow fiber membrane module
US20040232076A1 (en) Scouring method
JP3248611B2 (en) Solid-liquid separator
US7128837B2 (en) Hollow fiber membrane module
KR20010083894A (en) Cyclic aeration system for submerged membrane modules
HU224463B1 (en) immersion tank process water membrane modules are kept clean and aeration system
JPH04110023A (en) Method for scrubbing filtration tower using hollow-fiber membrane