JPH10179742A - Portable nitrogen monoxide-gaseous oxygen supply device and its operation - Google Patents

Portable nitrogen monoxide-gaseous oxygen supply device and its operation

Info

Publication number
JPH10179742A
JPH10179742A JP34505896A JP34505896A JPH10179742A JP H10179742 A JPH10179742 A JP H10179742A JP 34505896 A JP34505896 A JP 34505896A JP 34505896 A JP34505896 A JP 34505896A JP H10179742 A JPH10179742 A JP H10179742A
Authority
JP
Japan
Prior art keywords
oxygen
nitric oxide
control valve
supply device
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34505896A
Other languages
Japanese (ja)
Inventor
Hiroki Ninomiya
浩樹 二宮
Shizuo Hasegawa
鎮雄 長谷川
Koichi Saga
孝一 嵯峨
Ryuichi Nakanishi
隆一 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP34505896A priority Critical patent/JPH10179742A/en
Publication of JPH10179742A publication Critical patent/JPH10179742A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a movable patient which can make spontaneous respiration to receive a nitrogen monoxide inhalation treatment method at home while having a comfortable daily life by controlling the supply rates of nitrogen monoxide and oxygen by a microcomputer in such a manner that the supply rates are equaled to preset gas supply rates. SOLUTION: A lightweight nitrogen monoxide cylinder 1 supplies the nitrogen monoxide to a nasal fossa cannula 3 via a nitrogen monoxide flow passages 10 and a control valve 5. A lightweight oxygen cylinder 2 supplies the oxygen to this nasal fossa cannula 3 via an oxygen flow passages 11 and a control valve 6. A pressure sensor 7 senses the negative pressure (or positive pressure) and pressure change generated in the nasal fossa by the inhalation (or expiration) of the patient's spontaneous respiration and transmits sensing signals to the microcomputer 8. The microcomputer 8 controls the timing to open and close the control valves 5, 6 (to tune the valves with the spontaneous respiration) in accordance with the preset conditions and the signals from the pressure sensor 7, thereby regulating the flow rates of the nitrogen monoxide and the oxygen to the desired rates.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自発呼吸が可能な
在宅患者や移動できる軽症患者に一酸化窒素と酸素とを
供給する携帯用一酸化窒素−酸素ガス供給装置およびそ
の操作方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a portable nitric oxide-oxygen gas supply device for supplying nitric oxide and oxygen to a home patient who can breathe spontaneously or a mobile patient who is mild, and a method of operating the same.

【0002】[0002]

【従来の技術】従来の一酸化窒素吸入療法の対象疾患
は、一週間以内の短期的投与で治療が可能な急性疾患が
主であったが、一酸化窒素吸入療法の効果が確認される
につれ、自発呼吸が可能な慢性の呼吸器疾患の治療に利
用したいという要望がでてきている。例えば、在宅酸素
療法を行っている慢性呼吸不全の患者の中には、肺高血
圧症を併発している患者も多い。在宅酸素療法は、慢性
呼吸不全患者の動脈血酸素濃度を高めることにより肺高
血圧症を改善できる効果を有し、肺高血圧の改善の有無
が慢性呼吸不全治療の予後に大きく影響する。このよう
な患者には、一酸化窒素吸入療法を併用することによ
り、肺高血圧の改善による効果的な治療が期待できる。
さらに、一酸化窒素吸入により供給酸素濃度を低くして
活性酸素による肺損傷を回避することも期待できる。従
来、一酸化窒素吸入方法には、気管内挿管を要する短期
投与患者用に考案された人工呼吸器を介した吸入回路を
用い、気管内挿入管の代わりに密閉マスクを使用してい
た。
BACKGROUND OF THE INVENTION Conventional nitric oxide inhalation therapy mainly targets acute diseases that can be treated by short-term administration within one week, but as the effects of nitric oxide inhalation therapy are confirmed. There is an increasing demand for use in the treatment of chronic respiratory diseases that allow spontaneous breathing. For example, among patients with chronic respiratory failure who are undergoing home oxygen therapy, many patients also have pulmonary hypertension. Home oxygen therapy has the effect of improving pulmonary hypertension by increasing arterial oxygen concentration in patients with chronic respiratory failure, and the presence or absence of improvement in pulmonary hypertension greatly affects the prognosis of treatment for chronic respiratory failure. Such a patient can be expected to be effectively treated by improving pulmonary hypertension by using the nitric oxide inhalation therapy together.
Furthermore, it can be expected that the supply oxygen concentration is lowered by inhaling nitric oxide to avoid lung injury due to active oxygen. Conventionally, the nitric oxide inhalation method uses an inhalation circuit via a ventilator designed for a short-term administration patient who needs endotracheal intubation, and uses a closed mask instead of the endotracheal tube.

【0003】[0003]

【発明が解決しようとする課題】しかし、人工呼吸器を
用いた一酸化窒素吸入療法は、呼吸回路に一酸化窒素の
酸化により生じた有害な二酸化窒素の除去装置を接続す
るため、自発呼吸の可能な動ける患者であっても、長期
間ベッドに横たわり息苦しい密閉マスクを装着しなけれ
ばならない苦痛をともない、食事のたびにマスクを外さ
なければならない煩わしさがあった。本発明は、前記の
問題に鑑み、自発呼吸が可能な動ける患者が、快適な日
常生活を送りながら在宅で一酸化窒素吸入療法を受ける
ことができる、携帯用一酸化窒素−酸素ガス供給装置お
よびその操作方法を提供することを目的とする。
However, in the case of inhaled nitric oxide therapy using a ventilator, a device for removing harmful nitrogen dioxide generated by oxidation of nitric oxide is connected to a respiratory circuit. Patients who are able to move, even with the pain of having to lie on the bed for a long time and wear a tight breathing mask, have had to remove the mask every meal. In view of the above problems, the present invention provides a portable nitric oxide-oxygen gas supply device, in which a movable patient capable of spontaneous breathing can receive nitric oxide inhalation therapy at home while living a comfortable daily life. It is intended to provide an operation method thereof.

【0004】[0004]

【課題を解決するための手段】本発明は、鼻腔カヌーラ
3と、一酸化窒素流路10および制御弁5を介して鼻腔
カヌーラに一酸化窒素を供給する軽量一酸化窒素ボンベ
1と、酸素流路11および制御弁6を介して鼻腔カヌー
ラに酸素を供給する軽量酸素ボンベ2と、鼻腔カヌーラ
を取付けた患者の自発呼吸を感知するセンサー7と、あ
らかじめ設定された条件とセンサーからの信号とにより
制御弁の開閉を制御する手段8とからなり、かつ患者が
携帯して使用できることを特徴とする、携帯用一酸化窒
素−酸素ガス供給装置を提供する。
SUMMARY OF THE INVENTION The present invention comprises a nasal cannula 3, a lightweight nitric oxide cylinder 1 for supplying nitric oxide to the nasal cannula via a nitric oxide channel 10 and a control valve 5, and an oxygen flow. A light oxygen cylinder 2 for supplying oxygen to the nasal cannula via the tract 11 and the control valve 6, a sensor 7 for detecting spontaneous breathing of a patient having the nasal cannula attached thereto, and a preset condition and a signal from the sensor A portable nitric oxide-oxygen gas supply device, comprising means 8 for controlling the opening and closing of a control valve, and which can be carried and used by a patient.

【0005】前記の携帯用一酸化窒素−酸素ガス供給装
置において、センサー7に静電容量式微差圧計を用いる
と、自発呼吸の感知に好適である。また、一酸化窒素流
路10と酸素流路11とを鼻腔カヌーラ3の直前で一流
路にまとめることにより、二酸化窒素の発生を最小限に
することができる。同様の理由から、状況に応じて同時
に装着できる複数の鼻腔カヌーラを用い、一酸化窒素流
路10と酸素流路11とをそれぞれ別個の鼻腔カヌーラ
に接続するのも好ましい。
In the portable nitrogen monoxide-oxygen gas supply device described above, if a capacitance type differential pressure gauge is used as the sensor 7, it is suitable for detecting spontaneous breathing. Also, by combining the nitric oxide channel 10 and the oxygen channel 11 into one channel immediately before the nasal cannula 3, the generation of nitrogen dioxide can be minimized. For the same reason, it is also preferable to use a plurality of nasal cannulas that can be worn simultaneously depending on the situation, and to connect the nitric oxide channel 10 and the oxygen channel 11 to separate nasal cannulas, respectively.

【0006】また、本発明は、前記の携帯用一酸化窒素
−酸素ガス供給装置の操作方法であって、一酸化窒素と
して窒素で希釈した一酸化窒素を用いることを特徴とす
る、携帯用一酸化窒素−酸素ガス供給装置の操作方法を
提供する。センサー7からの自発呼吸の感知信号により
制御弁5および/または制御弁6を開き、所定時間後に
開いた制御弁を閉じ、一酸化窒素および/または酸素を
自発呼吸の吸気時間内にパルス的に送気するように制御
弁5,6を制御すると、ガスの使用量を最小限に抑える
ことができる。
The present invention also relates to a method for operating the above portable nitrogen monoxide-oxygen gas supply device, characterized in that nitrogen monoxide diluted with nitrogen is used as nitrogen monoxide. A method for operating a nitrogen oxide-oxygen gas supply device is provided. The control valve 5 and / or the control valve 6 is opened by a spontaneous breathing detection signal from the sensor 7, the control valve opened after a predetermined time is closed, and nitric oxide and / or oxygen is pulsed within the inspiratory time of spontaneous breathing. When the control valves 5 and 6 are controlled to supply air, the amount of gas used can be minimized.

【0007】さらに、前記の携帯用一酸化窒素−酸素ガ
ス供給装置の操作方法であって、センサー7からの自発
呼吸の感知信号により、制御弁5および/または制御弁
6を開き、一酸化窒素および酸素の流量が予め設定した
流量になるように、かつ、制御弁5および/または制御
弁6の開閉が自発呼吸に同調するように制御し、一酸化
窒素および/または酸素を自発呼吸の吸気時間内にパル
ス的に送気する操作方法は、供給ガスの無駄を極力抑
え、且つ必要十分な気体量を患者に供給することができ
る。
Further, in the method of operating the portable nitric oxide-oxygen gas supply device, the control valve 5 and / or the control valve 6 are opened by a spontaneous respiration detection signal from the sensor 7, and the nitric oxide is supplied. And the flow rate of oxygen is controlled so as to be a preset flow rate, and the opening and closing of the control valve 5 and / or the control valve 6 is synchronized with spontaneous breathing, so that nitric oxide and / or oxygen is inspired by spontaneous breathing. The operation method in which the gas is supplied in a pulsed manner within a time can minimize waste of the supply gas and supply a necessary and sufficient gas amount to the patient.

【0008】[0008]

【発明の実施の形態】以下、本発明の携帯用一酸化窒素
−酸素ガス供給装置およびその操作方法を、図面を参照
しつつさらに詳しく具体的に説明する。図1は、本発明
の携帯用一酸化窒素−酸素ガス供給装置の一実施形態例
であり、鼻腔カヌーラ3と、軽量一酸化窒素ボンベ1
と、軽量酸素ボンベ2と、患者の自発呼吸を感知する圧
力センサー7と、制御弁5,6の開閉の制御手段8とし
てのマイクロコンピュータとからなる、患者が携帯して
使用することのできる装置である。本実施形態例におい
ては、制御弁5,6、圧力センサー7およびマイクロコ
ンピュータ8は、一酸化窒素流路10および酸素流路1
1に取り付けられた呼吸同調ガス供給調節器4に内蔵さ
れている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The portable nitrogen monoxide-oxygen gas supply apparatus of the present invention and its operation method will be described in more detail with reference to the drawings. FIG. 1 shows an embodiment of a portable nitric oxide-oxygen gas supply apparatus according to the present invention, in which a nasal cannula 3 and a lightweight nitric oxide cylinder 1 are provided.
A device which can be carried and used by a patient, comprising a lightweight oxygen cylinder 2, a pressure sensor 7 for sensing spontaneous breathing of the patient, and a microcomputer as control means 8 for opening and closing the control valves 5 and 6. It is. In the present embodiment, the control valves 5, 6, the pressure sensor 7 and the microcomputer 8 are composed of a nitric oxide channel 10 and an oxygen channel 1.
It is incorporated in a respiratory-tuned gas supply controller 4 attached to 1.

【0009】軽量一酸化窒素ボンベ1は、一酸化窒素流
路10および制御弁5を介して鼻腔カヌーラ3に一酸化
窒素を供給する。軽量酸素ボンベ2は、酸素流路11お
よび制御弁6を介して鼻腔カヌーラ3に酸素を供給す
る。一酸化窒素ボンベや酸素ボンベは、在宅療法および
携帯用としてかさ張らず軽量であるほど好ましい。通
常、ガスの持続時間や安全性などを考慮して、充填状態
で2〜3kg程度、容量3〜4リットル程度のボンベを
用いる。また、それぞれのボンベには、圧力調整弁や流
量調整器を取り付け、ガスの供給量を調節しやすくする
とよい。
The lightweight nitric oxide cylinder 1 supplies nitric oxide to the nasal cannula 3 via the nitric oxide channel 10 and the control valve 5. The lightweight oxygen cylinder 2 supplies oxygen to the nasal cannula 3 via the oxygen flow path 11 and the control valve 6. Nitric oxide cylinders and oxygen cylinders are preferred to be bulky and lightweight for home therapy and portable use. Usually, in consideration of the duration of gas and safety, a cylinder having a capacity of about 2 to 3 kg and a capacity of about 3 to 4 liters is used. Further, it is preferable that a pressure regulating valve and a flow regulator are attached to each cylinder so that the gas supply amount can be easily adjusted.

【0010】圧力センサー7は、患者の自発呼吸の吸気
(または呼気)により鼻腔内に生じる負圧力(または正
圧力)や圧力変化を感知し、感知信号をマイクロコンピ
ュータ8に送信する。なかでも静電容量式微差圧計は、
吸気(または呼気)により鼻腔内に生じる負圧力(また
は正圧力)の感知に優れているので好ましく用られる。
ただし、患者の呼吸サイクルを感知できるものであれ
ば、圧力センサーに限らずに用いることができる。図1
においては、圧力センサーを一酸化窒素流路10に取り
付けているが、患者の自発呼吸を感知しやすければ酸素
流路11や鼻腔カヌーラ3に取り付けてもよい。
The pressure sensor 7 detects a negative pressure (or a positive pressure) or a change in pressure generated in the nasal cavity due to inspiration (or expiration) of a patient's spontaneous breathing, and transmits a sensing signal to the microcomputer 8. Above all, the capacitance type differential pressure gauge
It is preferably used because it excels in sensing negative pressure (or positive pressure) generated in the nasal cavity by inhalation (or expiration).
However, as long as it can sense the respiratory cycle of the patient, it can be used without being limited to the pressure sensor. FIG.
In, the pressure sensor is attached to the nitric oxide channel 10, but may be attached to the oxygen channel 11 or the nasal cannula 3 if the patient's spontaneous breathing can be easily detected.

【0011】マイクロコンピュータ8は、あらかじめ設
定された条件と圧力センサー7からの信号とに基づいて
制御弁5,6が開閉するタイミングを制御し、ガスの流
量を所望の量に調整する。すなわち、マイクロコンピュ
ータ8は、圧力センサー7からの信号により制御弁5お
よび6を開放して一酸化窒素および酸素をそれぞれの流
路に流す。予め設定されたごく短い所定時間経過後、制
御弁5,6を閉じてガスの供給を停止する。同様にガス
の供給と停止とを繰り返し、毎吸気時間ごとにパルス的
にガスを送気する。また、マイクロコンピュータによ
り、予め設定された処方流量に相当するガス量を吸気時
間中に流すために必要となる制御弁の開放時間を、信号
の持続時間として制御弁5,6に送るのもよい。この場
合も、制御弁5,6が吸気時間中のみパルス的に開放さ
れ、呼気時間中は閉鎖されるように、制御弁の開閉を自
発呼吸に同調させることが好ましい。さらに、例えば数
サイクルに渡る呼気と吸気との時間間隔の平均値を圧力
センサーおよびマイクロコンピュータにより求め、ガス
の供給の開始と停止とを自動制御することもできる。な
お、ガスを供給するタイミングを吸気サイクルの前半な
いし中盤に設定しておけば、一般的にガスの吸入効率が
良い。図2に、ガスの供給パターンの一例を示す。当然
ガスと共に吸気に伴って空気も吸入される。
The microcomputer 8 controls the timing of opening and closing the control valves 5 and 6 based on a preset condition and a signal from the pressure sensor 7 to adjust the flow rate of gas to a desired amount. That is, the microcomputer 8 opens the control valves 5 and 6 according to the signal from the pressure sensor 7 to flow nitric oxide and oxygen through the respective flow paths. After a lapse of a predetermined very short time, the control valves 5 and 6 are closed to stop the gas supply. Similarly, the supply and stop of the gas are repeated, and the gas is supplied in a pulsed manner at every intake time. Alternatively, the microcomputer may send the control valve opening time required for flowing a gas amount corresponding to a preset prescription flow rate during the inhalation time to the control valves 5 and 6 as a signal duration. . Also in this case, it is preferable to synchronize the opening and closing of the control valves with spontaneous breathing so that the control valves 5 and 6 are opened in a pulsed manner only during the inspiration time and closed during the expiration time. Further, for example, the average value of the time interval between expiration and inspiration over several cycles is obtained by a pressure sensor and a microcomputer, and the start and stop of gas supply can be automatically controlled. If the gas supply timing is set in the first half or the middle of the intake cycle, the gas intake efficiency is generally good. FIG. 2 shows an example of a gas supply pattern. Naturally, air is also sucked in along with the gas.

【0012】いずれにしても、一酸化窒素および酸素の
供給量は、予め設定されたガス供給量(通常、持続的に
一酸化窒素または酸素を供給したと仮定した場合の流量
として表示する)と等量になるように、マイクロコンピ
ュータ8により制御する。ガスの供給量を予め設定する
には、例えば、マイクロコンピュータ8を内蔵する呼吸
同調ガス供給調節器4に供給流量設定目盛り9を設けて
おくと便利である。一酸化窒素および酸素は、例えば、
各呼吸サイクルの吸気時間ごとに供給してもいいし、一
酸化窒素と酸素とを毎吸気時間ごとに交互に供給するこ
ともでき、マイクロコンピュータ制御により自在に選択
設定可能である。図2は、前者の供給パターンの一例で
ある。
In any case, the supply amounts of nitric oxide and oxygen are represented by a preset gas supply amount (usually expressed as a flow rate assuming that nitric oxide or oxygen is supplied continuously). It is controlled by the microcomputer 8 so as to be equal. In order to set the gas supply amount in advance, for example, it is convenient to provide a supply flow rate setting scale 9 in the respiratory synchronization gas supply controller 4 incorporating the microcomputer 8. Nitric oxide and oxygen are, for example,
It may be supplied every inspiration time of each respiratory cycle, or nitric oxide and oxygen may be supplied alternately every inspiration time, and can be freely selected and set by microcomputer control. FIG. 2 is an example of the former supply pattern.

【0013】本発明の携帯用一酸化窒素−酸素ガス供給
装置においては、一酸化窒素流路10と酸素流路11と
をひとつのカヌーラに合流させてもよいし、また、複数
のカヌーラを用い、それぞれ別個の鼻腔カヌーラに接続
して同時に患者に取り付けてもよい。前者の場合は二酸
化窒素の発生を防止するため、一酸化窒素流路10と酸
素流路11とを、鼻腔カヌーラ3の可能な限り直前で一
流路に合流させなければならない。鼻腔カヌーラは、臨
床現場で一般的に用いられている、使い捨て可能なもの
で足りる。
In the portable nitrogen monoxide-oxygen gas supply apparatus of the present invention, the nitric oxide channel 10 and the oxygen channel 11 may be combined into one cannula, or a plurality of cannulas may be used. , Each connected to a separate nasal cannula and simultaneously attached to the patient. In the former case, in order to prevent the generation of nitrogen dioxide, the nitric oxide channel 10 and the oxygen channel 11 must be merged into one channel as short as possible to the nasal cannula 3. The nasal cannula need only be a disposable, commonly used in clinical practice.

【0014】本発明の携帯用一酸化窒素−酸素ガス供給
装置に用いる一酸化窒素源は、一酸化窒素純ガスでも、
また、一酸化窒素純ガスを酸素を含まない不活性ガス、
例えば窒素やヘリウムなどで適当な濃度、例えば100
0ppmに希釈して用いてもよい。酸素源は、在宅酸素
療法で通常用いられている高純度酸素でも、また、高分
子膜や吸着剤などにより空気から分離濃縮された酸素を
用いることもできる。
The nitric oxide source used in the portable nitric oxide-oxygen gas supply apparatus of the present invention may be a pure nitric oxide gas.
In addition, nitrogen monoxide pure gas is converted into an inert gas containing no oxygen,
For example, an appropriate concentration such as nitrogen or helium, for example, 100
It may be used after being diluted to 0 ppm. As the oxygen source, high-purity oxygen generally used in home oxygen therapy or oxygen separated and concentrated from air by a polymer membrane, an adsorbent, or the like can be used.

【0015】[0015]

【実施例】次に試験例および比較試験例により本発明を
さらに具体的に説明する。まず、試験例1〜4および比
較試験例1,3に用いた携帯用一酸化窒素−酸素ガス供
給装置(以下単に携帯用ガス供給装置という)を、下記
の条件に調節した。一酸化窒素(以下単にNOという)
源として、NOを窒素で希釈したNO混合ガスを、アル
ミニウム製の3.4リットル容の高圧容器に圧力120
Kg/cm 2 で充填し、1.4Kg/cm2 に減圧し
て、0.5〜2リットル/minの流量でNO流路に流
れるように容器付設の圧力調整弁および流量調整器を調
整した。
EXAMPLES Next, the present invention will be described based on test examples and comparative test examples.
This will be described more specifically. First, Test Examples 1 to 4 and the ratio
The portable nitric oxide-oxygen gas supply used in Comparative Test Examples 1 and 3
Supply device (hereinafter simply referred to as a portable gas supply device)
The condition was adjusted to Nitric oxide (hereinafter simply referred to as NO)
As a source, an NO mixed gas obtained by diluting NO with nitrogen
Pressure of 120 in a 3.4 liter high pressure vessel made of minium
Kg / cm TwoFilled with 1.4Kg / cmTwo Pressure
Flow through the NO flow path at a flow rate of 0.5 to 2 liters / min.
Adjust the pressure regulating valve and flow regulator attached to the container so that
It was adjusted.

【0016】酸素源として、医療用酸素ガス(酸素10
0%)をアルミニウム製の3.4リットル容の高圧容器
に圧力120Kg/cm2 で充填し、1.4Kg/cm
2 に減圧して、0.5〜5リットル/minの流量で酸
素流路に流れるように容器付設の圧力調整弁および流量
調整器を調整した。吸気圧センサーは、呼吸同調ガス供
給調節器内のNO流路上に、かつ、NO制御弁よりも下
流に設置し、患者の呼吸の強弱に応じて負圧力変化の検
知感度を1〜5Pa/10msecに設定できるように
した。
As an oxygen source, medical oxygen gas (oxygen 10
0%) into a 3.4 liter aluminum high pressure vessel at a pressure of 120 kg / cm 2 , and 1.4 kg / cm 2
The pressure was reduced to 2 , and the pressure regulating valve and the flow regulator provided in the container were adjusted so that the pressure was reduced to flow at a flow rate of 0.5 to 5 liter / min into the oxygen flow path. The inspiratory pressure sensor is installed on the NO flow path in the respiratory tuning gas supply controller and downstream of the NO control valve, and detects the negative pressure change detection sensitivity in the range of 1 to 5 Pa / 10 msec according to the strength of the patient's breathing. Can be set to.

【0017】NOおよび酸素の制御弁は、呼吸同調ガス
供給調節器内のそれぞれの流路に取り付けた。両制御弁
は、吸気開始0.1秒後に開放し、呼吸同調ガス供給調
節器に設けた供給流量設定ダイヤルで指示されたそれぞ
れの供給量(連続的にNOや酸素を供給すると仮定した
場合の流量表示である)に従い、0.02〜0.03秒
間開放するように、呼吸同調ガス供給調節器に内蔵した
マイクロコンピュータで電磁弁の開閉を制御し、NOお
よび酸素をパルス的に供給した。携帯用ガス供給装置の
総重量は、携帯用の付属物を含めてもほぼ6〜7kgで
あった。
[0017] NO and oxygen control valves were installed in each flow path in the respiratory tuned gas supply regulator. Both control valves are opened 0.1 seconds after the start of inspiration, and the respective supply amounts (when assuming that NO and oxygen are continuously supplied) indicated by the supply flow rate setting dial provided in the respiratory synchronization gas supply controller. According to the flow rate display), the microcomputer was controlled to open and close the solenoid valve so as to open for 0.02 to 0.03 seconds, and NO and oxygen were supplied in a pulsed manner. The total weight of the portable gas supply, including the portable accessories, was approximately 6-7 kg.

【0018】試験例1 前記の携帯用ガス供給装置を図3に示すモデル肺を用い
た実験系に用い、モデル肺の吸気に同調させてNOと酸
素とをモデル肺12に吸入させた。モデル肺の出口側に
はジルコニア酸素濃度計13(ミナト医科学株式会社製
エアロモニターAE−280)および化学発光式窒素酸
化物分析計14(島津製作所株式会社製CLM−50
0)を接続し、モデル肺中のNO濃度および酸素濃度の
測定に用いた。各種濃度のNO混合ガスの入った高圧容
器を用い、NO混合ガスの流量を0.5リットル/mi
nで一定とし、NO濃度を0〜400ppmの範囲で変
化させ、一定量の酸素供給下で、前記の調節条件に従い
パルス的にモデル肺にNO混合ガスと酸素とを吸入させ
た。その時の各種NO吸入濃度とモデル肺中のNO濃度
の関係を図4に示す。
Test Example 1 The portable gas supply device described above was used in an experimental system using a model lung shown in FIG. 3, and NO and oxygen were inhaled into the model lung 12 in synchronization with inspiration of the model lung. At the exit side of the model lung, a zirconia oximeter 13 (Aero Monitor AE-280 manufactured by Minato Medical Science Co., Ltd.) and a chemiluminescent nitrogen oxide analyzer 14 (CLM-50 manufactured by Shimadzu Corporation)
0) was connected and used for measurement of NO concentration and oxygen concentration in the model lung. Using a high-pressure vessel containing various concentrations of NO mixed gas, the flow rate of the NO mixed gas was 0.5 liter / mi.
n, the NO concentration was varied in the range of 0 to 400 ppm, and the NO mixed gas and oxygen were inhaled into the model lungs in a pulsed manner under the above-mentioned adjustment conditions under a constant amount of oxygen supply. FIG. 4 shows the relationship between the various NO inhalation concentrations and the NO concentration in the model lung at that time.

【0019】NO濃度93ppmとしたNO混合ガス
を、流量を0〜2リットル/minの範囲で変化させ、
一定量の酸素供給下で、前記の調節条件に従いパルス的
にモデル肺にNO混合ガスと酸素とを吸入させた。NO
混合ガスの流量変化に対するモデル肺中のNO濃度の測
定結果を図5に示す。医療用酸素ガスを、流量を0〜5
リットル/minの範囲で変化させ、一定量のNO混合
ガス供給下で、前記の調節条件に従いパルス的にモデル
肺に酸素とNO混合ガスとを吸入させた。酸素ガスの流
量変化に対するモデル肺中の酸素濃度の測定結果を図6
に示す。吸入酸素流量が0の時のモデル肺中の酸素濃度
は当然、空気中の酸素濃度を示す。
The flow rate of the NO mixed gas having a NO concentration of 93 ppm is changed in the range of 0 to 2 liter / min.
Under a fixed amount of oxygen supply, the NO mixed gas and oxygen were inhaled into the model lungs in a pulsed manner under the above-mentioned adjustment conditions. NO
FIG. 5 shows the measurement results of the NO concentration in the model lung with respect to the change in the flow rate of the mixed gas. Medical oxygen gas, flow rate 0-5
Oxygen and NO mixed gas were inhaled into the model lung in a pulsed manner under the above-mentioned adjustment conditions while supplying a fixed amount of NO mixed gas while changing the rate in the range of liter / min. FIG. 6 shows the measurement results of the oxygen concentration in the model lung with respect to the change in the flow rate of oxygen gas.
Shown in The oxygen concentration in the model lung when the inhaled oxygen flow rate is 0 naturally indicates the oxygen concentration in the air.

【0020】比較試験例1 NOと酸素とを連続的に吸入させたほかは試験例1と同
様に実験および測定を行った。図4、5および6に、モ
デル肺中のNO濃度および酸素濃度の測定結果を示す。
試験例1および比較試験例1から、モデル肺中のNO濃
度および酸素濃度は吸入ガスの濃度および流量に比例し
て増加し、パルス的なガスの吸入においても連続的な吸
入と同程度のNO濃度および酸素濃度が得られていた。
Comparative Test Example 1 The experiment and measurement were carried out in the same manner as in Test Example 1 except that NO and oxygen were continuously inhaled. FIGS. 4, 5 and 6 show the measurement results of the NO concentration and the oxygen concentration in the model lung.
From Test Example 1 and Comparative Test Example 1, the NO concentration and oxygen concentration in the model lung increased in proportion to the concentration and flow rate of the inhaled gas. The concentration and oxygen concentration were obtained.

【0021】試験例2 前記の携帯用ガス供給装置を健常人9人に用い、一定量
の酸素供給下、NO濃度400ppm、流量1リットル
/minとしたNO混合ガスを、前記の調節条件でパル
ス的に被験者に吸入させた。30分、60分、90分吸
入後に採血し、血中メトヘモグロビン濃度を測定した。
その結果を図7に示す。
Test Example 2 The above portable gas supply device was used for nine healthy persons, and a NO mixed gas with a NO concentration of 400 ppm and a flow rate of 1 liter / min was supplied under a constant amount of oxygen supply under the above-mentioned adjustment conditions. Subject was inhaled. Blood was collected after inhalation for 30, 60, and 90 minutes, and the blood methemoglobin concentration was measured.
FIG. 7 shows the result.

【0022】比較試験例2 成人用呼吸回路を装着した人工呼吸器(サーボ900
C)の空気供給流路に窒素希釈NO混合ガス流路が接続
され、加湿器を経由した空気と窒素希釈NO混合ガスが
エアタイトフェースマスクを介して被験者の吸気に同調
して供給され、呼気はNO2 除去装置を経由して室外に
排出される装置を作成し、フェースマスク呼吸同調ガス
供給装置とした。試験例2の実験終了10日後に、同じ
健常人9人に対し前記のフェースマスク呼吸同調ガス供
給装置を用いて、40ppmのNOを含む空気を10リ
ットル/minで吸入させた。試験例2と同様にして3
0、60、90分吸入後に採血し、血中メトヘモグロビ
ン濃度を測定した。その結果を図7に示す。
Comparative Test Example 2 An artificial respirator equipped with an adult breathing circuit (servo 900
A nitrogen-diluted NO mixed gas flow path is connected to the air supply flow path C), and the air and the nitrogen-diluted NO mixed gas that have passed through the humidifier are supplied in synchronism with the subject's inhalation via an airtight face mask. A device that was discharged to the outside of the room via a NO 2 removal device was created and used as a face mask respiratory synchronization gas supply device. Ten days after the end of the experiment in Test Example 2, air containing 40 ppm NO was inhaled at 10 liters / min using the above-mentioned face mask respiratory synchronization gas supply device to the same nine healthy persons. 3 in the same manner as in Test Example 2
Blood was collected after inhalation for 0, 60 and 90 minutes, and the blood methemoglobin concentration was measured. FIG. 7 shows the result.

【0023】試験例2の携帯用ガス供給装置を用いてN
O濃度400ppmのNO混合ガスを1リットル/mi
nで吸入させる本発明の供給法と、現在広範に実施され
ているフェースマスク呼吸同調ガス供給装置を用いて4
0ppmのNOを含む空気を10リットル/minで吸
入させる上記の供給法とでは体内に吸収されたNOが同
等であることが明らかであった。すなわち、携帯用ガス
供給装置を用いたNO吸入効果は従来のフェースマスク
呼吸同調ガス供給装置を用いた場合の効果と何等遜色な
かった。
Using the portable gas supply device of Test Example 2, N
1 liter / mi of NO mixed gas with O concentration of 400 ppm
n using the delivery method of the present invention for inhalation at n and a face mask respiratory synchronization gas supply device which is currently widely practiced.
It was clear that NO absorbed in the body was equivalent to the above-described supply method in which air containing 0 ppm NO was inhaled at 10 liter / min. That is, the effect of inhaling NO using the portable gas supply device was not inferior to the effect of using the conventional face mask respiratory synchronization gas supply device.

【0024】試験例3 前記の携帯用ガス供給装置を健常人15人に用い、NO
濃度93ppmとしたNO混合ガスを、流量を0〜2リ
ットル/minの範囲で変化させ、前記の調節条件でパ
ルス的に被験者に吸入させた。被験者の口と鼻腔カヌー
ラを装着した鼻とをエアタイトフェースマスクで覆い、
被験者から排出される呼気ガスとカヌーラから漏出する
ガスとを10リットルのゴム袋で採取し、化学発光式窒
素酸化物分析計14を用いてNO濃度を測定した。図8
に排出されたガス中のNO濃度の被験者1人当たりの平
均値を示す。
Test Example 3 The above portable gas supply device was used for 15 healthy persons,
The flow rate of the NO mixed gas having a concentration of 93 ppm was changed in the range of 0 to 2 liter / min, and the subject was inhaled in a pulsed manner under the above-mentioned adjustment conditions. Cover the subject's mouth and nose with a nasal cannula with an airtight face mask,
Exhaled gas discharged from the subject and gas leaked from the cannula were collected in a 10-liter rubber bag, and the NO concentration was measured using a chemiluminescent nitrogen oxide analyzer 14. FIG.
Shows the average value of the NO concentration in the exhausted gas per subject.

【0025】比較試験例3 試験例3において、NOを連続的に吸入させたほかは試
験例3と同様にして、実験および測定を行った。図8に
排出されたガス中のNO濃度の被験者1人当たりの平均
値を示す。試験例3において被験者から排出されたガス
中のNO濃度は、NOの流量が1リットル/minまで
は0.1ppm以下であり、比較試験例3におけるNO
濃度の1/5以下に抑えられていた。
Comparative Test Example 3 The experiment and measurement were performed in the same manner as in Test Example 3 except that NO was continuously inhaled. FIG. 8 shows the average value of the NO concentration in the discharged gas per subject. The NO concentration in the gas discharged from the subject in Test Example 3 was 0.1 ppm or less until the flow rate of NO was 1 liter / min.
The concentration was suppressed to 1/5 or less.

【0026】試験例4 前記の携帯用ガス供給装置を容積3000m3 の室内で
健常人15人に用い、NO混合ガスを、流量を2リット
ル/minで一定とし、NO濃度を0〜400ppmの
範囲で変化させ、前記の調節条件でパルス的に1時間被
験者に吸入させた。吸入終了後、化学発光式窒素酸化物
分析計14を用いて室内のNO濃度および二酸化窒素
(以下単にNO2 という)濃度を測定した。その結果を
図9に示す。室内のNO濃度およびNO2 濃度はそれぞ
れ20ppbおよび5ppbに抑えられており、NO2
の発生が極めて少かった。
Test Example 4 The above portable gas supply apparatus was used for 15 healthy persons in a room having a capacity of 3000 m 3 , and the NO mixed gas was kept at a constant flow rate of 2 liter / min and the NO concentration was in the range of 0 to 400 ppm. , And the subject was inhaled for 1 hour in a pulsed manner under the above-mentioned adjustment conditions. After the inhalation was completed, the indoor NO concentration and nitrogen dioxide (hereinafter simply referred to as NO 2 ) concentration were measured using a chemiluminescent nitrogen oxide analyzer 14. FIG. 9 shows the result. NO concentration and NO 2 concentration in the chamber is suppressed to 20ppb and 5ppb respectively, NO 2
The occurrence of the occurrence was extremely small.

【0027】[0027]

【発明の効果】本発明の携帯用一酸化窒素−酸素ガス供
給装置およびその操作方法を利用すれば、二酸化窒素除
去装置が不要になり、装置全体を小型化かつ軽量化でき
るので、患者が在宅で日常生活を送りながら快適に一酸
化窒素吸入療法を受けることができる。患者の状態に応
じた必要最小限の一酸化窒素および酸素の供給量で治療
効果を得ることができ、ガスの節約と患者および周辺環
境への二酸化窒素汚染の防止とを期待できる。
According to the portable nitrogen monoxide-oxygen gas supply apparatus of the present invention and the operation method thereof, a nitrogen dioxide removing apparatus becomes unnecessary, and the whole apparatus can be reduced in size and weight, so that the patient can be at home. You can comfortably receive nitric oxide inhalation therapy while living your daily life. The therapeutic effect can be obtained with the minimum supply amounts of nitric oxide and oxygen according to the patient's condition, and it can be expected to save gas and prevent nitrogen dioxide contamination to the patient and the surrounding environment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の携帯用一酸化窒素−酸素ガス供給装
置の一実施形態例
FIG. 1 shows a portable nitric oxide-oxygen gas supply apparatus according to an embodiment of the present invention.

【図2】 本発明におけるNOと酸素との供給パターン
の一例
FIG. 2 shows an example of a supply pattern of NO and oxygen in the present invention.

【図3】 モデル肺を用いた実験系の概略図FIG. 3 is a schematic diagram of an experimental system using a model lung.

【図4】 吸入NO濃度とモデル肺中のNO濃度との関
係を示す図
FIG. 4 is a diagram showing a relationship between an inhaled NO concentration and a NO concentration in a model lung.

【図5】 吸入NO混合ガス流量とモデル肺中のNO濃
度との関係を示す図
FIG. 5 is a diagram showing the relationship between the flow rate of an inhaled NO mixed gas and the NO concentration in a model lung;

【図6】 吸入酸素流量とモデル肺中の酸素濃度との関
係を示す図
FIG. 6 is a diagram showing a relationship between inhaled oxygen flow rate and oxygen concentration in a model lung.

【図7】 NO混合ガス吸入時間と血中メトヘモグロビ
ン濃度との関係を示す図
FIG. 7 is a graph showing the relationship between the inhalation time of NO mixed gas and the concentration of methemoglobin in blood.

【図8】 吸入NO混合ガス流量と排出されたNO濃度
との関係を示す図
FIG. 8 is a diagram showing the relationship between the flow rate of the intake NO mixed gas and the exhausted NO concentration;

【図9】 吸入NO濃度と室内のNO濃度およびNO2
濃度との関係を示す図
FIG. 9: Intake NO concentration, indoor NO concentration, and NO 2
Diagram showing relationship with concentration

【符号の説明】[Explanation of symbols]

1;一酸化窒素ボンベ 2;酸素ボンベ 3;鼻腔カヌーラ 4;呼吸同調ガス
供給調節器 5,6;制御弁 7;センサー 8;制御弁開閉制御手段 9;供給流量設定
ダイヤル 10;一酸化窒素流路 11;酸素流路 12;モデル肺 13;ジルコニア
酸素濃度計 14;化学発光式窒素酸化物分析計 15;一方向弁
Reference Signs List 1; nitric oxide cylinder 2: oxygen cylinder 3: nasal cannula 4: respiratory synchronization gas supply controller 5, 6; control valve 7; sensor 8; control valve opening / closing control means 9; supply flow rate setting dial 10; nitric oxide flow Road 11; oxygen flow path 12; model lung 13; zirconia oximeter 14; chemiluminescent nitrogen oxide analyzer 15; one-way valve

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】鼻腔カヌーラ(3)と、一酸化窒素流路
(10)および制御弁(5)を介して鼻腔カヌーラに一
酸化窒素を供給する軽量一酸化窒素ボンベ(1)と、酸
素流路(11)および制御弁(6)を介して鼻腔カヌー
ラに酸素を供給する軽量酸素ボンベ(2)と、鼻腔カヌ
ーラを取付けた患者の自発呼吸を感知するセンサー
(7)と、あらかじめ設定された条件とセンサーからの
信号とにより制御弁の開閉を制御する手段(8)とから
なり、かつ患者が携帯して使用できる、ことを特徴とす
る携帯用一酸化窒素−酸素ガス供給装置。
1. A nasal cannula (3); a lightweight nitric oxide cylinder (1) for supplying nitric oxide to the nasal cannula via a nitric oxide flow path (10) and a control valve (5); A light oxygen cylinder (2) for supplying oxygen to the nasal cannula via the tract (11) and the control valve (6), and a sensor (7) for sensing spontaneous breathing of the patient with the nasal cannula, preset A portable nitrogen monoxide-oxygen gas supply device comprising: means (8) for controlling the opening and closing of a control valve according to conditions and a signal from a sensor, and which can be carried and used by a patient.
【請求項2】センサー(7)に静電容量式微差圧計を用
いる、ことを特徴とする請求項1に記載の携帯用一酸化
窒素−酸素ガス供給装置。
2. The portable nitric oxide-oxygen gas supply device according to claim 1, wherein a capacitance type differential pressure gauge is used as the sensor (7).
【請求項3】一酸化窒素流路(10)と酸素流路(1
1)とが、鼻腔カヌーラ(3)の直前で一流路にまとめ
られている、ことを特徴とする請求項1または2記載の
携帯用一酸化窒素−酸素供給装置。
3. A nitric oxide channel (10) and an oxygen channel (1).
3. The portable nitric oxide-oxygen supply device according to claim 1, wherein 1) and 1) are combined in one flow path immediately before the nasal cannula (3).
【請求項4】同時に装着できる別個の鼻腔カヌーラに、
一酸化窒素流路(10)と酸素流路(11)とがそれぞ
れ接続されている、ことを特徴とする請求項1または2
記載の携帯用一酸化窒素−酸素供給装置。
4. A separate nasal cannula that can be worn simultaneously,
3. The method according to claim 1, wherein the nitric oxide flow path and the oxygen flow path are connected to each other.
A portable nitric oxide-oxygen supply device as described.
【請求項5】請求項1ないし4のいずれかに記載の携帯
用一酸化窒素−酸素ガス供給装置の操作方法であって、
一酸化窒素として窒素で希釈した一酸化窒素を用いる、
ことを特徴とする携帯用一酸化窒素−酸素ガス供給装置
の操作方法。
5. A method for operating a portable nitric oxide-oxygen gas supply device according to claim 1, wherein
Using nitric oxide diluted with nitrogen as nitric oxide,
A method for operating a portable nitric oxide-oxygen gas supply device, characterized in that:
【請求項6】請求項1ないし4のいずれかに記載の携帯
用一酸化窒素−酸素ガス供給装置の操作方法であって、
センサー(7)からの自発呼吸の感知信号により制御弁
(5)および/または制御弁(6)を開き、所定時間後
に開いた制御弁を閉じ、一酸化窒素および/または酸素
を自発呼吸の吸気時間内にパルス的に送気する、ことを
特徴とする携帯用一酸化窒素−酸素ガス供給装置の操作
方法。
6. A method for operating a portable nitric oxide-oxygen gas supply device according to claim 1, wherein:
The control valve (5) and / or the control valve (6) are opened according to a spontaneous breathing detection signal from the sensor (7), and the control valve opened after a predetermined time is closed, and nitric oxide and / or oxygen is inhaled during spontaneous breathing. A method for operating a portable nitric oxide-oxygen gas supply device, wherein air is supplied in a pulsed manner within a period of time.
【請求項7】請求項1ないし4のいずれかに記載の携帯
用一酸化窒素−酸素ガス供給装置の操作方法であって、
センサー(7)からの自発呼吸の感知信号により、制御
弁(5)および/または制御弁(6)を開き、一酸化窒
素および酸素の流量が予め設定した流量になるように、
かつ、制御弁(5)および/または制御弁(6)の開閉
が自発呼吸に同調するように制御し、一酸化窒素および
/または酸素を自発呼吸の吸気時間内にパルス的に送気
する、ことを特徴とする携帯用一酸化窒素−酸素ガス供
給装置の操作方法。
7. A method for operating a portable nitric oxide-oxygen gas supply device according to claim 1, wherein:
The control valve (5) and / or the control valve (6) are opened by the spontaneous breathing detection signal from the sensor (7), and the flow rates of nitric oxide and oxygen are set to a preset flow rate.
And controlling the opening and closing of the control valve (5) and / or the control valve (6) so as to be synchronized with spontaneous breathing, and delivering nitric oxide and / or oxygen in a pulsed manner during the inspiratory time of spontaneous breathing. A method for operating a portable nitric oxide-oxygen gas supply device, characterized in that:
JP34505896A 1996-12-25 1996-12-25 Portable nitrogen monoxide-gaseous oxygen supply device and its operation Pending JPH10179742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34505896A JPH10179742A (en) 1996-12-25 1996-12-25 Portable nitrogen monoxide-gaseous oxygen supply device and its operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34505896A JPH10179742A (en) 1996-12-25 1996-12-25 Portable nitrogen monoxide-gaseous oxygen supply device and its operation

Publications (1)

Publication Number Publication Date
JPH10179742A true JPH10179742A (en) 1998-07-07

Family

ID=18374010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34505896A Pending JPH10179742A (en) 1996-12-25 1996-12-25 Portable nitrogen monoxide-gaseous oxygen supply device and its operation

Country Status (1)

Country Link
JP (1) JPH10179742A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001079083A (en) * 1999-09-14 2001-03-27 Jms Co Ltd Artificial lung device
JP2009508637A (en) * 2005-09-21 2009-03-05 イノ セラピューティックス リミテッド ライアビリティ カンパニー System and method for administering pharmaceutical gas to a patient
JP2010522130A (en) * 2007-03-23 2010-07-01 ゲノ エルエルシー Conversion from nitrogen dioxide (NO2) to nitrogen oxide (NO)
JP2010220711A (en) * 2009-03-23 2010-10-07 Air Water Inc Medicinal gas administration device
JP2010240235A (en) * 2009-04-08 2010-10-28 Yamatake Corp Respiration-synchronization type gas supply system and respiration-synchronization type gas supply method
JP2012500092A (en) * 2008-08-21 2012-01-05 ゲノ エルエルシー Delivery of high concentrations of nitric oxide
US8893717B2 (en) 2005-09-21 2014-11-25 Ino Therapeutics Llc Systems and methods of administering a pharmaceutical gas to a patient
JP2014221204A (en) * 2008-01-28 2014-11-27 ゲノ エルエルシー Transformation from nitrogen dioxide (no2) to nitric monoxide (no)
CN110872714A (en) * 2018-10-22 2020-03-10 南京诺全生物医疗科技有限公司 Portable nitric oxide manufacturing machine
US10589053B2 (en) * 2010-12-21 2020-03-17 Koninklijke Philips N.V. Active valve for ventilators
US11202880B2 (en) 2004-08-18 2021-12-21 Vero Biotech LLC Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11554241B2 (en) 2004-08-18 2023-01-17 Vero Biotech Inc. Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11744978B2 (en) 2008-08-21 2023-09-05 Vero Biotech Inc. Systems and devices for generating nitric oxide
US11925764B2 (en) 2009-06-22 2024-03-12 Vero Biotech Inc. Nitric oxide therapies

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001079083A (en) * 1999-09-14 2001-03-27 Jms Co Ltd Artificial lung device
US11554241B2 (en) 2004-08-18 2023-01-17 Vero Biotech Inc. Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11383059B2 (en) 2004-08-18 2022-07-12 Vero Biotech Inc. Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11291793B2 (en) 2004-08-18 2022-04-05 Vero Biotech Inc. Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11202880B2 (en) 2004-08-18 2021-12-21 Vero Biotech LLC Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US8408206B2 (en) 2005-09-21 2013-04-02 Ino Therapeutics Llc System and method of administering a pharmaceutical gas to a patient
US10099029B2 (en) 2005-09-21 2018-10-16 Mallinckrodt Hospital Products IP Limited Systems and methods of administering a pharmaceutical gas to a patient
US8397721B2 (en) 2005-09-21 2013-03-19 Ino Therapeutics Llc System and method of administering a pharmaceutical gas to a patient
JP2009508637A (en) * 2005-09-21 2009-03-05 イノ セラピューティックス リミテッド ライアビリティ カンパニー System and method for administering pharmaceutical gas to a patient
US8517015B2 (en) 2005-09-21 2013-08-27 Ino Therapeutics Llc System and method of administering a pharmaceutical gas to a patient
US8607792B2 (en) 2005-09-21 2013-12-17 Ino Therapeutics Llc System and method of administering a pharmaceutical gas to a patient
US8616204B2 (en) 2005-09-21 2013-12-31 Ino Therapeutics Llc System and method of administering a pharmaceutical gas to a patient
US8720440B2 (en) 2005-09-21 2014-05-13 Ino Therapeutics Llc System and method of administering a pharmaceutical gas to a patient
US8893717B2 (en) 2005-09-21 2014-11-25 Ino Therapeutics Llc Systems and methods of administering a pharmaceutical gas to a patient
US10548920B2 (en) 2005-09-21 2020-02-04 Mallinckrodt Hospital Products IP Limited System and method of administering a pharmaceutical gas to a patient
US8091549B2 (en) 2005-09-21 2012-01-10 Ino Therapeutics Llc System and method of administering a pharmaceutical gas to a patient
US9351994B2 (en) 2005-09-21 2016-05-31 Mallinckrodt Hospital Products IP Limited System and method of administering a pharmaceutical gas to a patient
JP2010522130A (en) * 2007-03-23 2010-07-01 ゲノ エルエルシー Conversion from nitrogen dioxide (NO2) to nitrogen oxide (NO)
JP2014221204A (en) * 2008-01-28 2014-11-27 ゲノ エルエルシー Transformation from nitrogen dioxide (no2) to nitric monoxide (no)
US11884541B2 (en) 2008-01-28 2024-01-30 Vero Biotech Inc. Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11312626B2 (en) 2008-01-28 2022-04-26 Vero Biotech Inc. Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
JP2012500092A (en) * 2008-08-21 2012-01-05 ゲノ エルエルシー Delivery of high concentrations of nitric oxide
JP2015091334A (en) * 2008-08-21 2015-05-14 ゲノ エルエルシー Delivery of high concentration nitric oxide
US11744978B2 (en) 2008-08-21 2023-09-05 Vero Biotech Inc. Systems and devices for generating nitric oxide
US10960168B2 (en) 2008-08-21 2021-03-30 Vero Biotech LLC Delivery of high concentration nitric oxide
JP2017136423A (en) * 2008-08-21 2017-08-10 ゲノ エルエルシー Delivery of high-concentration nitric oxide
JP2010220711A (en) * 2009-03-23 2010-10-07 Air Water Inc Medicinal gas administration device
JP2010240235A (en) * 2009-04-08 2010-10-28 Yamatake Corp Respiration-synchronization type gas supply system and respiration-synchronization type gas supply method
US11925764B2 (en) 2009-06-22 2024-03-12 Vero Biotech Inc. Nitric oxide therapies
US10589053B2 (en) * 2010-12-21 2020-03-17 Koninklijke Philips N.V. Active valve for ventilators
CN110872714A (en) * 2018-10-22 2020-03-10 南京诺全生物医疗科技有限公司 Portable nitric oxide manufacturing machine
CN110872714B (en) * 2018-10-22 2024-05-14 南京诺令生物科技有限公司 Portable nitric oxide manufacturing machine

Similar Documents

Publication Publication Date Title
US10946159B2 (en) System for providing flow-targeted ventilation synchronized to a patient's breathing cycle
Greenbaum et al. Continuous positive airway pressure without tracheal intubation in spontaneously breathing patients
US9295795B2 (en) System for providing flow-targeted ventilation synchronized to a patients breathing cycle
AU2006295150B2 (en) System and method of administering a pharmaceutical gas to a patient
JP2011502547A (en) Portable life support device
US10773036B2 (en) Respiratory tubing set
US11504490B1 (en) Methods and devices for carbon dioxide-based sleep disorder therapy
CN114733024B (en) Breathing device with carbon dioxide compensation function
CN110404145B (en) Oxygen therapy device with accurately adjustable inhaled oxygen concentration and without carbon dioxide retention
JPH10179742A (en) Portable nitrogen monoxide-gaseous oxygen supply device and its operation
US11904096B2 (en) Nasal interface apparatus and systems for use with a respiratory assist device
EP1409054B1 (en) Device for isolating bias flow
WO2020135062A1 (en) Gas inhalation device enabling constant concentration of gas entering respiratory tract without respiratory resistance
JP4606655B2 (en) Breathing gas supply device
JPH07299144A (en) Method and apparatus for supplying nitrogen monoxide to respirator
Lewarski et al. Administering medical gases
WO2023247944A1 (en) Apparatus for administering gas to patients
CN118076288A (en) Method and system for monitoring oxygen
JP2994172B2 (en) Breathing aid
RU2352362C2 (en) System of automatic control of oxygen supply at inhalation narcosis
Atkinson et al. Oxygen therapy
MX2008003829A (en) System and method of administering a pharmaceutical gas to a patient
JP2003000714A (en) Air supply device for breathing

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060317

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060718

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060912

A02 Decision of refusal

Effective date: 20061205

Free format text: JAPANESE INTERMEDIATE CODE: A02