JPH10179716A - Vital prosthetic member - Google Patents

Vital prosthetic member

Info

Publication number
JPH10179716A
JPH10179716A JP8346376A JP34637696A JPH10179716A JP H10179716 A JPH10179716 A JP H10179716A JP 8346376 A JP8346376 A JP 8346376A JP 34637696 A JP34637696 A JP 34637696A JP H10179716 A JPH10179716 A JP H10179716A
Authority
JP
Japan
Prior art keywords
film
awgc
glass
calcium phosphate
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8346376A
Other languages
Japanese (ja)
Inventor
Tsunehiro Ishii
経裕 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP8346376A priority Critical patent/JPH10179716A/en
Publication of JPH10179716A publication Critical patent/JPH10179716A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a vital prosthetic member which has high mechanical strength and good biocompatibility with a living body and is stable in the living body without the occurrence of peeling and dislodging of calcium phosphate from its base body. SOLUTION: A glass film as an intermediate film is formed of apatite wollastonite crystallized glass (AWGC) on the ceramic base body consisting of alumina, zirconia, etc., and the average film thickness thereof is controlled to 10 to 30μm. A film consisting of calcium phosphate, such as hydroxyapatite, is deposited thereon via the AWGC and the average film thickness thereof is controlled to 10 to 30μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は人体における硬組織
を修復するための生体補綴材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bioprosthesis for repairing hard tissue in a human body.

【0002】[0002]

【従来の技術】生体における、特に硬組織を修復する材
料としては親和性に優れたセラミック材が注目され、す
でにアルミナセラミックで形成した各種の人工骨、人工
関節、人工歯根などは実用に供されており、一方、ヒド
ロキシアパタイトで作られた人工歯根も実用化されつつ
ある。このように生体補綴材として利用されるセラミッ
ク材のうちアルミナセラミックは生体内での優れた安定
性と大きな機械的強度をもっている反面、不活性な材料
であるため生体へ埋入した後の天然骨の増生による該天
然骨との癒着固定に至までには、相当長期間を要する。
また、生体活性材料であるヒドロキシアパタイトで人工
骨、人工関節などを構成したものでは生体との結合固定
に要する期間は比較的短いものの、ヒドロキシアパタイ
ト自体の機械的強度が小さいという大きな欠点をもって
いる。
2. Description of the Related Art Ceramic materials having excellent affinity have been attracting attention as materials for repairing hard tissues in a living body, and various artificial bones, artificial joints and artificial roots already formed of alumina ceramic have been put to practical use. On the other hand, artificial dental roots made of hydroxyapatite are also being put to practical use. Of these ceramic materials used as bioprostheses, alumina ceramics have excellent stability and great mechanical strength in vivo, but they are inactive materials and therefore natural bone after being implanted in a living body. It takes a considerably long time to reach an adhesion and fixation to the natural bone due to the growth of the natural bone.
In addition, when an artificial bone, an artificial joint, or the like is formed of hydroxyapatite, which is a bioactive material, the period required for bonding and fixing with a living body is relatively short, but there is a major drawback that hydroxyapatite itself has low mechanical strength.

【0003】また、生体材料としてのアパタイト・ウォ
ラストナイト結晶化ガラス(以下、AWGCと略称す
る)は、ガラスを再加熱して結晶化させてつくった陶磁
器状の物質で、ガラスの機械的強度を上げるためガラス
を結晶化させて作られるものであり、力学的特性として
は曲げ強度は皮質骨より強く、また生体内ではガラス層
とウォラストナイト結晶よりカルシウムイオンと硫酸イ
オンが溶出し、このイオンが体液中のカルシウムイオン
とリン酸イオンと反応してアパタイト層を形成し、この
アパタイト層が骨と直接結合したものである。このAW
GCは、皮質骨の機械的強度を上回り、強固に骨と結合
するため人工骨材としても使用でき、人工椎体、腸骨ス
ペーサ、人工椎間板などの人工骨としての応用が考えら
れているが、アルミナやジルコニアより機械的強度がか
なり劣るため関節部分や高荷重部分への適用には機械的
強度が不十分である。
[0003] Apatite-wollastonite crystallized glass (hereinafter abbreviated as AWGC) as a biomaterial is a ceramic-like substance made by reheating and crystallizing glass, and has a mechanical strength of glass. It is made by crystallizing glass in order to increase the mechanical strength, bending strength is stronger than cortical bone, and calcium ions and sulfate ions elute from the glass layer and wollastonite crystals in vivo, The ions react with calcium ions and phosphate ions in the body fluid to form an apatite layer, and the apatite layer is directly bonded to the bone. This AW
GC exceeds the mechanical strength of cortical bone and can be used as an artificial aggregate because it is strongly bonded to bone, and is considered to be used as an artificial bone such as an artificial vertebral body, an iliac spacer, and an artificial disc. However, since the mechanical strength is considerably lower than that of alumina or zirconia, the mechanical strength is insufficient for application to a joint portion or a high load portion.

【0004】そこで、不活性ではあるが強度が大きいア
ルミナと、強度は小さいが、生体活性が大きいヒドロキ
シアパタイトの各々が有する長所を組み合わせることに
よって生体活性を有し、かつ強度の大きな生体材料をも
たらすことが考えられており、例えば特開昭54−50
194号に見られる如く、高強度基体表面にリン酸カル
シウム系材料の表面層を被着したものなどがすでに提案
されている。この場合、高強度基体の表面にはリン酸カ
ルシウ材料をプラズマ溶射したり、いわゆるスラリー中
にドブ漬けするなどの方法によって被着したものである
が、ハイドロキシアパタイトと高強度基体の熱膨張率の
差が大きく、基体への付着力が著しく低いという問題が
あった。
[0004] Therefore, by combining the advantages of each of inert but high strength alumina and low strength but high bioactivity of hydroxyapatite, a biomaterial having bioactivity and high strength is obtained. For example, Japanese Patent Application Laid-Open No. 54-50 / 1979
As disclosed in Japanese Patent No. 194, there has already been proposed one in which a surface layer of a calcium phosphate-based material is applied to the surface of a high-strength substrate. In this case, the surface of the high-strength substrate is applied by a method such as plasma spraying a calcium phosphate material or soaking in a so-called slurry, and the thermal expansion coefficient of hydroxyapatite and the high-strength substrate is reduced. There was a problem that the difference was large and the adhesion to the substrate was extremely low.

【0005】これに対して、基体への接合強度を改善す
る方法として、特開昭59−82849号や特開平3−
32675号の如く、基体にガラス膜をコーティング
し、このガラス層を介してリン酸カルシウム材料の膜を
形成した生体インプラント材が提案されている。
On the other hand, as a method for improving the bonding strength to a substrate, Japanese Patent Laid-Open Publication No.
As disclosed in Japanese Patent No. 32675, a biological implant material in which a substrate is coated with a glass film and a calcium phosphate material film is formed through the glass layer has been proposed.

【0006】[0006]

【従来技術の課題】ところが、上記ガラス層を介してリ
ン酸カルシウム材料の膜を形成した生体インプラント材
は有効な技術ではあるが、実際の使用上、膜強度がさら
に改善されることが望まれていた。すなわち、上記技術
におけるガラス膜にはシリカ系ガラスやリン酸カルシウ
ム系ガラスなどの溶融ガラスでは機械的強度が小さく、
特に従来は膜厚が1mm程度もあったことから高荷重に
対して膜強度が不十分な場合があった。さらに、リン酸
カルシウム材料の膜も膜厚が最小でも50μm はあった
ので膜強度に問題があった。
However, although a bioimplant material formed with a calcium phosphate material film via the glass layer is an effective technique, it has been desired that the film strength be further improved in practical use. . That is, the glass film in the above technology has a small mechanical strength in a molten glass such as silica-based glass or calcium phosphate-based glass,
Particularly, in the past, the film thickness was about 1 mm, so that the film strength was sometimes insufficient for a high load. Further, since the calcium phosphate material film had a minimum thickness of 50 μm, there was a problem in the film strength.

【0007】[0007]

【課題を解決するための手段】そこで本発明者は、上記
従来技術の課題を解決すべく、鋭意検討の結果、ガラス
膜をAWGCガラスで構成し且つその平均膜厚を10〜
30μm に制御し、またハイドロキシアパタイトなどの
リン酸カルシウム材料よりなる膜を平均膜厚10〜30
μm に制御することにより付着強度が大きく膜強度も大
きくすることができることを見出した。
In order to solve the above-mentioned problems of the prior art, the present inventors have made intensive studies and found that the glass film was made of AWGC glass and the average film thickness was 10 to 10.
The thickness is controlled to 30 μm, and the film made of a calcium phosphate material such as hydroxyapatite is
It has been found that by controlling the thickness to μm, the adhesion strength can be increased and the film strength can be increased.

【0008】すなわち、本発明の生体補綴部材はアルミ
ナ、ジルコニアなどのセラミック基体の表面にアパタイ
ト・ウォラストナイト結晶化ガラスから構成される平均
膜厚10〜30μm の膜を介してリン酸カルシウム材料
からなる平均膜厚10〜30μm のコーティング膜を形
成してなることを特徴とするものである。
That is, the bioprosthesis member of the present invention comprises a ceramic substrate such as alumina, zirconia, or the like, and a calcium phosphate material formed on the surface of an apatite / wollastonite crystallized glass with an average film thickness of 10 to 30 μm. It is characterized in that a coating film having a thickness of 10 to 30 μm is formed.

【0009】なお、AWGC膜の平均膜厚が10μm 以
下の場合、薄すぎてところどころ膜が形成されないとこ
ろが出来る恐れがあり、他方、30μm を越えると強度
が小さくなってしまう恐れがある。また、リン酸カルシ
ウム材料からなる膜の平均膜厚が10μm 以下の場合、
薄すぎてところどころ膜が形成されないところが出来る
恐れがある。
When the average film thickness of the AWGC film is less than 10 μm, there is a possibility that the film is too thin to form a portion where no film is formed. On the other hand, if the average film thickness exceeds 30 μm, the strength may be reduced. When the average thickness of the film made of the calcium phosphate material is 10 μm or less,
There is a possibility that a film may not be formed in some places because it is too thin.

【0010】また、これらコーティング膜を形成する方
法としては、材料粉末を含むスラリーに基材を浸漬する
方法が好ましい。この方法によれば、膜厚を小さく制御
することが可能である他、基材に設けた空孔内にコーテ
ィング膜を形成することも容易であるからである。しか
し、本発明はこのようなコーティング方法に限定される
ものでなく、他のコーティング方法により膜を形成して
も構わない。
As a method of forming these coating films, a method of immersing a substrate in a slurry containing a material powder is preferable. According to this method, the film thickness can be controlled to be small, and it is also easy to form the coating film in the holes provided in the base material. However, the present invention is not limited to such a coating method, and a film may be formed by another coating method.

【0011】[0011]

【実施例】Al2 O 3 へリン酸カルシウム系材料をコーテ
ィングする為に、AWGCガラスを結合材として、ハイ
ドロキシアパタイト(以下、HAPと略称する)をAl2
O3 基板に塗布、焼成後、その物性値を測定した。なお
AWGCガラス膜の平均厚みは20μm 、HAP膜の平
均厚みは20μm であった。
To EXAMPLES Coating of calcium phosphate-based material to the Al 2 O 3, as a binder a AWGC glass, hydroxyapatite (hereinafter, abbreviated as HAP) and Al 2
After coating and firing on an O 3 substrate, its physical properties were measured. The average thickness of the AWGC glass film was 20 μm, and the average thickness of the HAP film was 20 μm.

【0012】実施方法 (a)Al2 O 3 基板 高純度Al2 O 3 (Af−1)の焼成板(as−fire
面) (b)AWGCガラス CaCO3 44.56wt% SiO2 27.29wt% Ca2 2 7 23.48wt% MgO 3.53wt% CaF2 0.39wt% CeO2 0.09wt% 室温〜1000℃ 2Hr昇温 1000℃×2H
r 1000℃〜1480℃ 5Hr昇温 粉砕 分
級(63μm pass) (c)HAP 購入原料→900℃×1Hr焼成→湿式粉砕(〜48H
r)→乾燥、整粒(平均粒径数μm ) (d)コーティング方法 ・コーティング方法(1) AWGC(10wt%)溶液にAl2 O 3 基板を浸漬、乾燥 ↓ HAP(10wt%)溶液にAWGCコーティングサンプ
ルを浸漬、乾燥後900℃×4Hr焼成 ・コーティング方法(2) AWGC(10wt%)溶液にAl2 O 3 基板を浸漬 乾燥後900℃×4Hr焼成 ↓ HAP(10wt%)溶液にAWGCコーティングサンプ
ルを浸漬、乾燥後900℃×4Hr焼成 上記コーティング方法(1)(2)による試験片につい
て、表面の結晶構造をX線回析装置にて測定し、また表
面をSEMにより観察し、かつEPMAによりAl,Ca,Si
の分布を観察した。さらに、試験片の垂直断面をSEM
により観察し、かつEPMAによりAl,Ca,Siの分布を観
察した。それらの結果は以下のとおりであった。
Implementation method (a) Al 2 O 3 substrate High-purity Al 2 O 3 (Af-1) fired plate (as-fire)
(B) AWGC glass CaCO 3 44.56 wt% SiO 2 27.29 wt% Ca 2 P 2 O 7 23.48 wt% MgO 3.53 wt% CaF 2 0.39 wt% CeO 2 0.09 wt% Room temperature to 1000 ° C. 2Hr heating 1000 ℃ × 2H
r 1000 ° C to 1480 ° C 5Hr temperature rise Pulverization Classification (63μm pass) (c) HAP purchased raw material → 900 ° C × 1Hr firing → wet pulverization (~ 48H
r) → Drying and sizing (average particle size: several μm) (d) Coating method ・ Coating method (1) Immerse Al 2 O 3 substrate in AWGC (10 wt%) solution and dry ↓ AWGC in HAP (10 wt%) solution Dip the coated sample, dry and bake at 900 ° C for 4 hours. ・ Coating method (2) Immerse Al 2 O 3 substrate in AWGC (10wt%) solution. Dry and bake at 900 ° C for 4Hr. ↓ AWGC coated sample on HAP (10wt%) solution. After immersion, drying and baking at 900 ° C. for 4 hours, the crystal structure of the surface of the test piece obtained by the above-mentioned coating method (1) or (2) was measured by an X-ray diffraction apparatus, the surface was observed by SEM, and EPMA was performed. Al, Ca, Si
Was observed. Further, the vertical section of the test piece was
And the distribution of Al, Ca and Si was observed by EPMA. The results were as follows.

【0013】(a)表面の結晶構造 コーティング方法(1)(2)ともHAP,Al2 O 3
TCPのピークが見られ、HAP−AWGCガラス混合
体をコーティングした場合よりHAPのピークがシャー
プであることから、表面にはHAPが多く存在している
ことが判った。
(A) Crystal Structure of Surface Both coating methods (1) and (2) are HAP, Al 2 O 3 ,
A TCP peak was observed, and the peak of the HAP was sharper than when the HAP-AWGC glass mixture was coated, indicating that a large amount of HAP was present on the surface.

【0014】(b)表面の観察 コーティング方法(1)ではコート膜表面にSiの分布
が見られることから、AWGCがコート層表面に存在し
ていることが判った。
(B) Observation of Surface In the coating method (1), distribution of Si was observed on the surface of the coat film, indicating that AWGC was present on the surface of the coat layer.

【0015】また、コーティング方法(2)ではコート
膜表面にSiの分布が見られないことから、AWGCが
コート膜表面に存在していないことが判った。
In the coating method (2), no Si distribution was observed on the surface of the coat film, indicating that AWGC was not present on the surface of the coat film.

【0016】(c)断面観察 コーティング方法(1)ではAl2 O 3 基板とAWGC膜
との間に隙間が見られたが、コーティング方法(2)で
はそのような隙間が見られなかった。他方、両コーティ
ング方法ともにAWGC膜とHAP膜との間に僅かに隙
間が存在した。
(C) Observation of cross section In the coating method (1), a gap was observed between the Al 2 O 3 substrate and the AWGC film, but in the coating method (2), such a gap was not observed. On the other hand, in both coating methods, there was a slight gap between the AWGC film and the HAP film.

【0017】実験例1 上記実施方法におけるコーティング方法(2)につい
て、スラリーへの浸漬時間をコントロールすることによ
り平均膜厚を、上記実施例品(AWGC膜=20μm 、
HAP膜=20μm )とA品:AWGC膜=30μm /
HAP膜=20μm 、B品:AWGC膜=35μm /H
AP膜=20μm 、C品:AWGC膜=10μm /HA
P膜=30μm 、D品:AWGC膜=20μm /HAP
膜=35μm 、E品:AWGC膜=30μm /HAP膜
=20μm 、F品:AWGC膜=35μm /HAP膜=
20μm を作製した。
EXPERIMENTAL EXAMPLE 1 With respect to the coating method (2) in the above method, the average film thickness was controlled by controlling the dipping time in the slurry (AWGC film = 20 μm,
HAP film = 20 μm) and product A: AWGC film = 30 μm /
HAP film = 20 μm, B product: AWGC film = 35 μm / H
AP film = 20 μm, C product: AWGC film = 10 μm / HA
P film = 30 μm, D product: AWGC film = 20 μm / HAP
Film = 35 μm, E product: AWGC film = 30 μm / HAP film = 20 μm, F product: AWGC film = 35 μm / HAP film =
20 μm was prepared.

【0018】これらのサンプルについて、ステンレスピ
ンでコーティング面を引っ掻き、膜の剥がれや膜破壊に
ついて観察した。その結果、上記実施例品、A品、C
品、E品については、剥がれや膜破壊がなかったが、残
りの、B品、D品、F品については剥がれや膜破壊が確
認された。
With respect to these samples, the coating surface was scratched with a stainless steel pin, and the peeling of the film and the destruction of the film were observed. As a result, the above-mentioned example product, product A, product C
No peeling or film destruction was observed for the product and E product, but peeling and film destruction were confirmed for the remaining B product, D product and F product.

【0019】この結果から、AWGC膜およびHAP膜
はそれぞれ30μm 以下であることが好ましいことが判
った。
From these results, it was found that each of the AWGC film and the HAP film was preferably 30 μm or less.

【0020】[0020]

【発明の効果】叙上のように、本発明の生体補綴部材は
中間膜としてのガラス膜をAWGCガラスで構成し且つ
その平均膜厚を10〜30μm に制御し、またハイドロ
キシアパタイトなどのリン酸カルシウム材料よりなる膜
を平均膜厚10〜30μm に制御したことにより、アル
ミナ、ジルコニアなどのセラミック基体に対する付着強
度も膜強度も大きい骨親和性のあるものである。
As described above, in the bioprosthesis member of the present invention, the glass film as the intermediate film is made of AWGC glass, the average film thickness is controlled to 10 to 30 μm, and the calcium phosphate material such as hydroxyapatite is used. By controlling the film thickness to an average film thickness of 10 to 30 μm, both the adhesion strength to the ceramic substrate such as alumina and zirconia and the film strength are high and have bone affinity.

【0021】したがって、リン酸カルシウム材料が基体
から剥離、脱落することなく、機械的強度の大きく生体
との適合性のよい、生体内において安定したすぐれた生
体補綴材をもたらすことができる。
[0021] Therefore, it is possible to provide a living body prosthetic material which has high mechanical strength, is highly compatible with the living body, and is stable and excellent in the living body without the calcium phosphate material peeling off and falling off from the substrate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アルミナ、ジルコニアなどのセラミック基
体の表面にアパタイト・ウォラストナイト結晶化ガラス
から構成される平均膜厚10〜30μm の膜を介してリ
ン酸カルシウム材からなる平均膜厚10〜30μm のコ
ーティング膜を形成してなる生体補綴部材。
1. A coating having an average thickness of 10 to 30 .mu.m made of a calcium phosphate material via a film of an average thickness of 10 to 30 .mu.m made of apatite / wollastonite crystallized glass on the surface of a ceramic substrate such as alumina or zirconia. A bioprosthesis member formed with a membrane.
JP8346376A 1996-12-25 1996-12-25 Vital prosthetic member Pending JPH10179716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8346376A JPH10179716A (en) 1996-12-25 1996-12-25 Vital prosthetic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8346376A JPH10179716A (en) 1996-12-25 1996-12-25 Vital prosthetic member

Publications (1)

Publication Number Publication Date
JPH10179716A true JPH10179716A (en) 1998-07-07

Family

ID=18383009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8346376A Pending JPH10179716A (en) 1996-12-25 1996-12-25 Vital prosthetic member

Country Status (1)

Country Link
JP (1) JPH10179716A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100465985B1 (en) * 2002-07-30 2005-01-15 재단법인서울대학교산학협력재단 Bioactive Biphasic Ceramic Compositions for Artificial Bone and Method for Making the Same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100465985B1 (en) * 2002-07-30 2005-01-15 재단법인서울대학교산학협력재단 Bioactive Biphasic Ceramic Compositions for Artificial Bone and Method for Making the Same

Similar Documents

Publication Publication Date Title
Zafar et al. Bioactive surface coatings for enhancing osseointegration of dental implants
Neacşu et al. Inorganic micro-and nanostructured implants for tissue engineering
Yang et al. A review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying
Kim et al. Bonding strength of bonelike apatite layer to Ti metal substrate
Kweh et al. An in vitro investigation of plasma sprayed hydroxyapatite (HA) coatings produced with flame-spheroidized feedstock
KR900006891B1 (en) Biocompatibel composite material and its method
JP2858126B2 (en) Biological implant material and its manufacturing method
Jiang et al. Coating of hydroxyapatite on highly porous Al2O3 substrate for bone substitutes
JPH0575428B2 (en)
Hahn et al. Preparation and in vitro characterization of aerosol-deposited hydroxyapatite coatings with different surface roughnesses
Ding et al. Structure and immersion behavior of plasma-sprayed apatite-matrix coatings
Rohr et al. Influence of bioactive glass-coating of zirconia implant surfaces on human osteoblast behavior in vitro
EP2211920B1 (en) Biocompatible material and uses thereof
US5482731A (en) Method for bonding a calcium phosphate coating to stainless steels and cobalt base alloys for bioactive fixation of artificial implants
Ozeki et al. Bone bonding strength of sputtered hydroxyapatite films subjected to a low temperature hydrothermal treatment
JPH0763503B2 (en) Calcium phosphate coating forming method and bioimplant
Clemens et al. Fatigue behavior of calcium phosphate coatings with different stability under dry and wet conditions
Sampathkumaran et al. Hyrdoxyapatite Coatings on Titanium
Liu et al. Nanostructured ceramic coating biomaterials
Saravanan et al. Bioactive diopside (CaMgSi2O6) as a drug delivery carrier–a review
JPS5945384B2 (en) Manufacturing method for high-strength biological components
Kasuga Coatings for metallic biomaterials
Lin et al. Characterization of immersed hydroxyapatite-bioactive glass coatings in Hank’s solution
JPH10179716A (en) Vital prosthetic member
Hasirci et al. Ceramics