JPH10176908A - Apparatus and method for detecting grain size - Google Patents
Apparatus and method for detecting grain sizeInfo
- Publication number
- JPH10176908A JPH10176908A JP33655396A JP33655396A JPH10176908A JP H10176908 A JPH10176908 A JP H10176908A JP 33655396 A JP33655396 A JP 33655396A JP 33655396 A JP33655396 A JP 33655396A JP H10176908 A JPH10176908 A JP H10176908A
- Authority
- JP
- Japan
- Prior art keywords
- light
- measured
- reference length
- angle
- laser beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高炉炉頂面におけ
る粒度偏析を測定する粒度検出装置及び方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for measuring particle size segregation at the top of a blast furnace.
【0002】[0002]
【従来の技術】鉄鉱石を溶解する高炉では、通常、炉の
上部からコークスと鉄鉱石を交互に装入し、その後攪拌
機により炉頂面のプロファイルが断面V字形となるよう
に設定する。炉頂プロファイルを所望のV字形にするこ
とは高炉の燃費を節約する上で非常に重要な意味をもっ
ており、従って炉頂プロファイルを正確に測定する手段
が要求される。2. Description of the Related Art In a blast furnace for dissolving iron ore, coke and iron ore are usually charged alternately from the upper part of the furnace, and then the profile of the furnace top surface is set to have a V-shaped cross section by a stirrer. The desired V-shape of the top profile is very important in saving fuel consumption of the blast furnace, and therefore a means for accurately measuring the top profile is required.
【0003】この要求を満たすために、特公昭56−9
644号公報、特開昭54−65059号公報等が提案
され出願されている。特公昭56−9644号公報の
「表面形状検出方法」は、図4に模式的に示すように、
光切断用光線としてレーザー光線1を使用し、このレー
ザー光線を走査用ミラー2で偏向して被測定物体の表面
3に投射し、この投射により加熱された表面部分Pから
放出される長波長の放射光により被測定物の被加熱部分
Pを撮像し、該被加熱部分の軌跡から被測定物体の表面
形状を検出するものである。In order to satisfy this demand, Japanese Patent Publication No. 56-9 / 1981
No. 644 and Japanese Patent Application Laid-Open No. 54-65059 have been proposed and filed. Japanese Patent Publication No. 56-9644 discloses a "surface shape detection method", as schematically shown in FIG.
A laser beam 1 is used as a light cutting beam, and the laser beam is deflected by a scanning mirror 2 and projected on a surface 3 of an object to be measured, and a long-wavelength radiation beam emitted from a surface portion P heated by the projection. Captures an image of the heated portion P of the measured object, and detects the surface shape of the measured object from the trajectory of the heated portion.
【0004】また、特開昭54−65059号公報の
「プロファイル測定装置」は、図5に模式的に示すよう
に、繰返し発振するパルスレーザを光源としてレーザビ
ーム5で被測定面3を走査し、被測定面3からの散乱光
6を所定の開口径をもつ受光光学系7で集光し、その受
光光学系7の焦点面上に描かれる像の軌跡から被測定面
3のプロファイルを求めるものである。A profile measuring apparatus disclosed in Japanese Patent Laid-Open Publication No. Sho 54-65059 scans a surface 3 to be measured with a laser beam 5 using a pulsed laser that repeatedly oscillates as a light source, as schematically shown in FIG. The scattered light 6 from the measured surface 3 is condensed by a light receiving optical system 7 having a predetermined aperture diameter, and the profile of the measured surface 3 is obtained from the locus of an image drawn on the focal plane of the light receiving optical system 7. Things.
【0005】[0005]
【発明が解決しようとする課題】一方、高炉炉頂での原
料装入にともなって起こる基本的な物理現象は、装入
物粒子の集合体としての運動と、粒度構成に起因して
起こる粒度偏析とからなる。の集合体としての運動
は、上述した炉頂プロファイルの測定により間接的に把
握できるが、の粒度偏析は従来測定手段がなく、その
ため経験と感に頼って高炉を操業せざるを得ない問題点
があった。On the other hand, the basic physical phenomena that occur with the charging of raw materials at the blast furnace top are the movement of the charged particles as an aggregate and the particle size caused by the particle size composition. And segregation. The movement of the aggregate can be grasped indirectly by the above-mentioned measurement of the furnace top profile, but the particle size segregation has no conventional measurement means, so that the blast furnace must be operated based on experience and feeling. was there.
【0006】すなわち、高炉炉頂面のように、高温下で
操業されかつ内部に多くの光散乱媒体があり、通常のカ
メラ等で内部を臨めない場合において、内部に積層する
粒子(鉱石やコークス)の粒度(粒径)を計測する適当
な手段がなく、かかる手段の開発が従来から強く要望さ
れていた。That is, when operating at a high temperature and having many light scattering media inside such as the top surface of a blast furnace and the interior cannot be seen by a normal camera or the like, the particles (ore or coke There is no suitable means for measuring the particle size (particle size), and the development of such means has been strongly demanded.
【0007】本発明はかかる要望を満たすために創案さ
れたものである。すなわち、本発明の目的は、高炉炉頂
面のように、高温下で操業されかつ内部に多くの光散乱
媒体がある環境下で、粒度偏析が測定でき、操業へのフ
ィードバックがかけられる粒度検出装置及び方法を提供
することにある。[0007] The present invention has been devised to satisfy such a demand. That is, an object of the present invention is to measure the particle size segregation in an environment operated at a high temperature and having many light scattering media inside, such as the top surface of a blast furnace, and to detect the particle size segregated to give feedback to the operation. It is to provide an apparatus and a method.
【0008】[0008]
【課題を解決するための手段】本発明によれば、被測定
面にレーザビームを投光するビーム投光装置と、被測定
面の投光位置からのレーザビームの散乱光を受光するビ
ーム受光装置と、を備え、前記ビーム投光装置の投光点
とビーム受光装置の受光点は、一定の基準長Lを隔てて
おり、更に被測定面演算装置を備え、該被測定面演算装
置により、基準長Lに対する投光角αと受光角βとから
被測定面の基準長Lからの垂直高さHと投光位置からの
水平距離Cとを演算し、更に、投光角αを変化させて被
測定面を走査して散乱光の強度が低下する死角ピッチΔ
αを検出し、該死角ピッチΔαから粒子の粒径Dを演算
する、ことを特徴とする粒度検出装置が提供される。本
発明の好ましい実施形態によれば、前記被測定面演算装
置により、粒径Dを(H2+C2 )0.5 ×Δαの式で算
出する。According to the present invention, there is provided a beam projecting device for projecting a laser beam onto a surface to be measured, and a beam receiving device for receiving scattered light of the laser beam from a projecting position on the surface to be measured. A light projecting point of the beam projecting device and a light receiving point of the beam light receiving device are separated from each other by a fixed reference length L. The device further includes a measured surface calculating device. The vertical height H of the surface to be measured from the reference length L and the horizontal distance C from the light projection position are calculated from the projection angle α and the light reception angle β with respect to the reference length L, and the projection angle α is further changed. Blind spot pitch Δ at which the intensity of the scattered light is reduced by scanning the surface to be measured
α is detected, and the particle diameter D of the particles is calculated from the blind spot pitch Δα. According to a preferred embodiment of the present invention, the particle size D is calculated by the above-mentioned measured surface computing device by the formula of (H 2 + C 2 ) 0.5 × Δα.
【0009】また、本発明によれば、一定の基準長Lを
隔てた投光点と受光点からレーザビームを投光/受光
し、基準長Lに対する投光角αと受光角βとから被測定
面の基準長Lからの垂直高さHと投光位置からの水平距
離Cとを演算し、更に、投光角αを変化させて被測定面
を走査して散乱光の強度が低下する死角ピッチΔαを検
出し、該死角ピッチΔαから粒子の粒径Dを演算する、
ことを特徴とする粒度検出方法が提供される。Further, according to the present invention, a laser beam is projected / received from a light projecting point and a light receiving point separated by a fixed reference length L, and the laser beam is received from the light projecting angle α and the light receiving angle β with respect to the reference length L. The vertical height H from the reference length L of the measurement surface and the horizontal distance C from the light projecting position are calculated, and the surface to be measured is scanned by changing the light projection angle α to reduce the intensity of the scattered light. Detecting the blind spot pitch Δα and calculating the particle diameter D of the particles from the blind spot pitch Δα;
A method for detecting particle size is provided.
【0010】上述した本発明の装置及び方法によれば、
ビーム投光装置、ビーム受光装置、及び被測定面演算装
置を備え、一定の基準長Lを隔てた投光点と受光点から
レーザビームを投光/受光することにより、三角測量技
術(レーザスキャニング等)により基準長Lに対する投
光角αと受光角βとから被測定面の基準長Lからの垂直
高さHと投光位置からの水平距離Cとを演算することが
できる。この場合、超高感度光検出技術(ホトン・カウ
ンティング相当)を組み合わせることにより、光散乱媒
体が多い場所でも、微弱光信号を正確に検知することが
できる。According to the above-described apparatus and method of the present invention,
It is equipped with a beam projector, a beam receiver, and a device to be measured, and emits / receives a laser beam from a projecting point and a receiving point separated by a fixed reference length L, thereby forming a triangulation technology (laser scanning). Etc.), the vertical height H of the measured surface from the reference length L and the horizontal distance C from the light projection position can be calculated from the projection angle α and the light reception angle β with respect to the reference length L. In this case, by combining an ultra-high sensitivity light detection technology (equivalent to photon counting), a weak light signal can be accurately detected even in a place where there are many light scattering media.
【0011】更にこの技術を応用し、投光角αを変化さ
せて被測定面を走査する際の散乱光の強度が低下する死
角ピッチΔαを検出することにより、この死角ピッチΔ
αから粒子の粒径Dとその位置(垂直高さHと水平距離
C)を演算することができる。Further, by applying this technique and detecting the blind spot pitch Δα at which the intensity of the scattered light decreases when scanning the surface to be measured by changing the projection angle α, this blind spot pitch Δα is detected.
The particle diameter D of the particle and its position (vertical height H and horizontal distance C) can be calculated from α.
【0012】[0012]
【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において共通す
る部分には同一の符号を付して使用する。図1は、本発
明による粒度検出装置の全体構成図である。この図にお
いて、本発明の粒度検出装置10は、被測定面3にレー
ザビーム5(レーザ光)を投光するビーム投光装置12
(投光部)と、被測定面3の投光位置からのレーザビー
ム5の散乱光6を受光するビーム受光装置14(受光
部)と、を備えている。被測定面3は、この図では高炉
に装入されたコークスと鉄鉱石の積層面であるが、本発
明はこれに限定されず、その他の被測定面にも適用する
ことができる。DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In the drawings, common parts are denoted by the same reference numerals. FIG. 1 is an overall configuration diagram of a particle size detection device according to the present invention. In this figure, a particle size detecting device 10 of the present invention includes a beam projecting device 12 for projecting a laser beam 5 (laser light) onto a surface 3 to be measured.
(Light projecting unit) and a beam receiving device 14 (light receiving unit) that receives the scattered light 6 of the laser beam 5 from the projecting position of the surface 3 to be measured. Although the measured surface 3 is a lamination surface of coke and iron ore charged in the blast furnace in this figure, the present invention is not limited to this, and can be applied to other measured surfaces.
【0013】図1において、ビーム投光装置12(投光
部)は、レーザコントローラ12a、レーザ電源12
b、レーザ発振器12cおよびミラースキャナ13から
なる。ミラースキャナ13は、レーザ発振器から出射さ
れたレーザビームの軸を中心に回転可能な反射ミラーで
あり、レーザ発振器12cから出射されたレーザビーム
5を被測定面3に向けて反射し、かつミラーの揺動によ
り被測定面3を走査するようになっている。In FIG. 1, a beam projecting device 12 (projecting section) includes a laser controller 12a, a laser power source 12
b, a laser oscillator 12c and a mirror scanner 13. The mirror scanner 13 is a reflection mirror that is rotatable about the axis of the laser beam emitted from the laser oscillator, reflects the laser beam 5 emitted from the laser oscillator 12c toward the surface 3 to be measured, and The surface to be measured 3 is scanned by swinging.
【0014】ビーム受光装置14(受光部)は、ミラー
スキャナ14a、レンズ14b、回転式光減衰器14
c、フアイバアレイ14dおよび受光制御盤15からな
る。ミラースキャナ14aは、反射面に平行な軸を中心
に揺動可能な反射ミラーである。ビーム投光装置12で
投光される被測定面3の位置に応じてミラーを揺動さ
せ、被測定面3の投光位置からのレーザビーム5の散乱
光6を常に安定して受光器アレイ14dに向けて反射さ
せるようになっている。レンズ14bは、ミラースキャ
ナ14aと受光器アレイ14dの中間に位置し、受光器
アレイ14dの検出面上に散乱光6を集光する。The beam receiving device 14 (light receiving unit) includes a mirror scanner 14a, a lens 14b, a rotary optical attenuator 14,
c, a fiber array 14d and a light receiving control panel 15. The mirror scanner 14a is a reflection mirror that can swing about an axis parallel to the reflection surface. The mirror is swung in accordance with the position of the measured surface 3 projected by the beam projecting device 12, and the scattered light 6 of the laser beam 5 from the projected position of the measured surface 3 is constantly stabilized. The light is reflected toward 14d. The lens 14b is located between the mirror scanner 14a and the light receiver array 14d, and collects the scattered light 6 on the detection surface of the light receiver array 14d.
【0015】更に、本発明の粒度検出装置10は、被測
定面演算装置16(システム制御部)を備えている。こ
の被測定面演算装置16(システム制御部)は、システ
ム制御盤16aとディスプレイ16bとからなる。Further, the grain size detecting device 10 of the present invention includes a measured surface computing device 16 (system control unit). The measured surface calculation device 16 (system control unit) includes a system control panel 16a and a display 16b.
【0016】図2は、図1の装置による炉頂プロファイ
ルの測定原理を示す図である。この図に示すように、ビ
ーム投光装置12の投光点Aとビーム受光装置14の受
光点Bは、一定の基準長Lを隔てて設置されている。ま
た、上述の被測定面演算装置16により、基準長Lに対
する投光角αと受光角βとから被測定面3の基準長Lか
らの垂直高さHと投光位置Bからの水平距離Cとを演算
するようになっている。FIG. 2 is a diagram showing the principle of measuring the furnace top profile by the apparatus shown in FIG. As shown in this figure, the light projecting point A of the beam projecting device 12 and the light receiving point B of the beam light receiving device 14 are set at a fixed reference length L. Further, the above-described measured surface computing device 16 calculates the vertical height H of the measured surface 3 from the reference length L and the horizontal distance C from the light projecting position B based on the light projecting angle α and the light receiving angle β with respect to the reference length L. Is calculated.
【0017】図3は、図1の装置による粒度検出の測定
原理を示す図である。この図に示すように、投光点Aか
らのレーザビーム5の投光角αを変化(増加又は減少)
させて被測定面3を走査すると、投光される被測定面3
の位置によっては、受光点Bから被測定面3上の散乱光
を観察できない死角が存在する。すなわち、受光点Bか
らみて粒子の裏側にレーザビーム5が投光される場合に
は、散乱光はほとんど観察されず、表側を走査する場合
のみ散乱光を観察することができる。この散乱光の強度
が低下する死角の投光角αに対するピッチ角度Δα(以
下、死角ピッチと呼ぶ)は、粒子の直径Dにほぼ比例し
て増減する。死角ピッチΔαはn番目の死角開始角度α
n とn+1番目の死角開始角度αn+1 との差(すなわ
ち、Δα=αn+1 −αn )である。従って、死角ピッチ
Δαを検出し、被測定面演算装置16により、死角ピッ
チΔαから粒子の粒径Dとその位置を演算することがで
きる。FIG. 3 is a diagram showing the principle of measurement of particle size detection by the apparatus shown in FIG. As shown in this figure, the projection angle α of the laser beam 5 from the projection point A is changed (increased or decreased).
Then, when the surface 3 to be measured is scanned, the surface 3
Depending on the position, there is a blind spot where the scattered light from the light receiving point B on the surface 3 to be measured cannot be observed. That is, when the laser beam 5 is projected on the back side of the particle as viewed from the light receiving point B, almost no scattered light is observed, and the scattered light can be observed only when scanning the front side. The pitch angle Δα of the blind spot at which the intensity of the scattered light decreases with respect to the projection angle α (hereinafter, referred to as a blind spot pitch) increases and decreases almost in proportion to the diameter D of the particles. The blind spot pitch Δα is the nth blind spot start angle α
The difference between n and the (n + 1) th blind spot start angle αn + 1 (that is, Δα = αn + 1−αn). Accordingly, the blind spot pitch Δα is detected, and the measured surface computing device 16 can calculate the particle diameter D and the position of the particle from the blind spot pitch Δα.
【0018】粒子がほぼ球形であり、死角ピッチΔαが
ほぼ直径に対応する場合には、幾何学的に、被測定面演
算装置16により、粒径Dを(H2 +C2 )0.5 ×Δα
の式1で概算値を算出することができる。なお、この式
で、Cは投光位置Bからの水平距離であり、L/2−R
(Rは半径位置)と置き換えることができる。また、式
1におけるHとC(又はR)は、死角ピッチΔαの走査
中にも変化するが、概算上はその平均値等を代表値(グ
ローバル値)として用いることができる。更に、実際の
鉱石やコークスは、表面が凸凹しており、細いレーザビ
ーム5を用いると死角ピッチΔαが直径に対応しない場
合がある。このような場合には、レーザビーム5の投光
径を適宜変化させて、粒径Dを代表する死角ピッチΔα
が得られるように調節する必要がある。例えば、表面の
凹凸が非常に激しい場合には、使用する鉱石又はコーク
スの既知の直径の半分程度の投光径dを用いることによ
り、鉱石とコークスの分散状態を把握することができ
る。If the particles are substantially spherical and the blind spot pitch Δα substantially corresponds to the diameter, the measured surface arithmetic unit 16 geometrically changes the particle diameter D to (H 2 + C 2 ) 0.5 × Δα.
Approximate value can be calculated by Equation 1. In this equation, C is a horizontal distance from the light projecting position B, and L / 2−R
(R is a radial position). In addition, H and C (or R) in Expression 1 also change during the scanning of the blind spot pitch Δα, but an average value or the like can be used as a representative value (global value) for estimation. Furthermore, the actual ore or coke has an uneven surface, and when a thin laser beam 5 is used, the blind spot pitch Δα may not correspond to the diameter. In such a case, the projection diameter of the laser beam 5 is appropriately changed so that the blind spot pitch Δα representing the particle diameter D is obtained.
Needs to be adjusted to obtain For example, when the unevenness of the surface is extremely severe, the dispersion state of the ore and the coke can be grasped by using the light emission diameter d which is about half the known diameter of the ore or the coke to be used.
【0019】上述した装置は、以下のように使用する。 (A)まず、一定の基準長Lを隔てた投光点Aと受光点
Bからレーザビーム5を投光/受光し、基準長Lに対す
る投光角αと受光角βとから被測定面3の基準長Lから
の垂直高さHと投光位置Aからの水平距離Cとを演算す
る。 (B)更に、投光角αを変化させて被測定面3を走査し
て散乱光の強度が低下する死角ピッチΔαを検出し、こ
の死角ピッチΔαから粒子の粒径Dを演算する。The device described above is used as follows. (A) First, a laser beam 5 is projected / received from a light projecting point A and a light receiving point B separated by a certain reference length L, and a measured surface 3 is obtained from a light projecting angle α and a light receiving angle β with respect to the reference length L. The vertical height H from the reference length L and the horizontal distance C from the projection position A are calculated. (B) Further, by changing the projection angle α and scanning the surface 3 to be measured, a dead angle pitch Δα at which the intensity of the scattered light is reduced is detected, and the particle diameter D of the particle is calculated from the dead angle pitch Δα.
【0020】(A)と(B)は、単一の走査により同時
に行うことが好ましい。しかし、必要により(A)と
(B)を別々のステップとして行うこともできる。Preferably, (A) and (B) are performed simultaneously by a single scan. However, if necessary, (A) and (B) can be performed as separate steps.
【0021】なお、本発明は上述した実施形態に限定さ
れず、本発明の要旨を逸脱しない範囲で種々に変更でき
ることは勿論である。It should be noted that the present invention is not limited to the above-described embodiment, but can be variously modified without departing from the gist of the present invention.
【0022】[0022]
【発明の効果】上述した本発明の装置及び方法によれ
ば、ビーム投光装置、ビーム受光装置、及び被測定面演
算装置を備え、一定の基準長Lを隔てた投光点と受光点
からレーザビームを投光/受光することにより、三角測
量技術により基準長Lに対する投光角αと受光角βとか
ら被測定面の基準長Lからの垂直高さHと投光位置から
の水平距離Cとを演算することができる。この場合、超
高感度光検出技術(ホトン・カウンティング相当)を組
み合わせることにより、光散乱媒体が多い場所でも、微
弱光信号を正確に検知することができる。According to the apparatus and method of the present invention described above, a beam projecting device, a beam receiving device, and a device for calculating a surface to be measured are provided. By projecting / receiving the laser beam, the vertical height H of the measured surface from the reference length L and the horizontal distance from the projection position are obtained from the projection angle α and the reception angle β with respect to the reference length L by triangulation technology. C can be calculated. In this case, by combining an ultra-high sensitivity light detection technology (equivalent to photon counting), a weak light signal can be accurately detected even in a place where there are many light scattering media.
【0023】更にこの技術を応用し、投光角αを変化さ
せて被測定面を走査する際の散乱光の強度が低下する死
角ピッチΔαを検出することにより、この死角ピッチΔ
αから粒子の粒径Dとその位置(垂直高さHと水平距離
C)を演算することができる。Further, by applying this technique and detecting the blind spot pitch Δα at which the intensity of the scattered light decreases when scanning the surface to be measured by changing the projection angle α, the blind spot pitch Δα is detected.
The particle diameter D of the particle and its position (vertical height H and horizontal distance C) can be calculated from α.
【0024】従って、本発明の粒度検出装置は、高炉炉
頂面のような、操業中で、かつ内部に多くの光散乱媒体
がある環境下で、粒度偏析が測定でき、操業へのフィー
ドバックがかけられる等の優れた効果を有する。Therefore, the particle size detection device of the present invention can measure particle size segregation in an environment such as a blast furnace furnace top and in an environment where there are many light scattering media inside, and provide feedback to the operation. It has excellent effects such as being applied.
【図1】本発明による粒度検出装置の全体構成図であ
る。FIG. 1 is an overall configuration diagram of a particle size detection device according to the present invention.
【図2】炉頂プロファイルの測定原理を示す図である。FIG. 2 is a view showing a principle of measuring a furnace top profile.
【図3】粒度検出の測定原理を示す図である。FIG. 3 is a diagram illustrating a measurement principle of particle size detection.
【図4】炉頂プロファイルを検出する従来例の構成図で
ある。FIG. 4 is a configuration diagram of a conventional example for detecting a furnace top profile.
【図5】炉頂プロファイルを検出する別の従来例の構成
図である。FIG. 5 is a configuration diagram of another conventional example for detecting a furnace top profile.
1 レーザー光線 2 走査ミラー 3 被測定面 5 レーザビーム 6 散乱光 7 受光光学系 10 粒度検出装置 12 ビーム投光装置(投光部) 13 ミラースキャナ 14 ビーム受光装置(受光部) 14a ミラースキャナ 14b レンズ 14c 回転式光減衰器 14d 受光器アレイ 15 受光制御盤 16 被測定面演算装置(システム制御部) DESCRIPTION OF SYMBOLS 1 Laser beam 2 Scanning mirror 3 Surface to be measured 5 Laser beam 6 Scattered light 7 Light receiving optical system 10 Particle size detector 12 Beam light emitting device (light emitting unit) 13 Mirror scanner 14 Beam light receiving device (light receiving unit) 14a Mirror scanner 14b Lens 14c Rotary optical attenuator 14d Light receiver array 15 Light reception control panel 16 Measurement surface calculation device (system control unit)
Claims (3)
ム投光装置と、被測定面の投光位置からのレーザビーム
の散乱光を受光するビーム受光装置と、を備え、前記ビ
ーム投光装置の投光点とビーム受光装置の受光点は、一
定の基準長Lを隔てており、 更に被測定面演算装置を備え、該被測定面演算装置によ
り、基準長Lに対する投光角αと受光角βとから被測定
面の基準長Lからの垂直高さHと投光位置からの水平距
離Cとを演算し、更に、投光角αを変化させて被測定面
を走査して散乱光の強度が低下する死角ピッチΔαを検
出し、該死角ピッチΔαから粒子の粒径Dを演算する、
ことを特徴とする粒度検出装置。1. A beam projection device for projecting a laser beam onto a surface to be measured, and a beam receiving device for receiving scattered light of the laser beam from a projection position on the surface to be measured, The light projecting point of the device and the light receiving point of the beam receiving device are separated by a fixed reference length L, and further include a measured surface calculation device. The vertical height H of the surface to be measured from the reference length L and the horizontal distance C from the light projecting position are calculated from the light receiving angle β, and the surface to be measured is scanned by changing the light projecting angle α to scatter. Detecting the blind spot pitch Δα at which the intensity of light decreases, and calculating the particle diameter D of the particles from the blind spot pitch Δα;
A particle size detection device characterized by the above-mentioned.
(H2 +C2 )0.5×Δαの式で算出する、ことを特徴
とする請求項1に記載の粒度検出装置。2. The particle size detecting device according to claim 1, wherein the particle size D is calculated by an equation of (H 2 + C 2 ) 0.5 × Δα by the measured surface computing device.
からレーザビームを投光/受光し、基準長Lに対する投
光角αと受光角βとから被測定面の基準長Lからの垂直
高さHと投光位置からの水平距離Cとを演算し、更に、
投光角αを変化させて被測定面を走査して散乱光の強度
が低下する死角ピッチΔαを検出し、該死角ピッチΔα
から粒子の粒径Dを演算する、ことを特徴とする粒度検
出方法。3. A laser beam is projected / received from a light projecting point and a light receiving point separated by a predetermined reference length L, and a reference length L of the surface to be measured is determined based on a light projection angle α and a light receiving angle β with respect to the reference length L. , And a horizontal distance C from the light projecting position is calculated.
By changing the light projection angle α and scanning the surface to be measured, the blind spot pitch Δα at which the intensity of the scattered light is reduced is detected.
Calculating a particle diameter D of the particle from the particle diameter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33655396A JP3661900B2 (en) | 1996-12-17 | 1996-12-17 | Particle size detection apparatus and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33655396A JP3661900B2 (en) | 1996-12-17 | 1996-12-17 | Particle size detection apparatus and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10176908A true JPH10176908A (en) | 1998-06-30 |
JP3661900B2 JP3661900B2 (en) | 2005-06-22 |
Family
ID=18300336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33655396A Expired - Fee Related JP3661900B2 (en) | 1996-12-17 | 1996-12-17 | Particle size detection apparatus and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3661900B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004025220A1 (en) * | 2002-09-10 | 2004-03-25 | Sapporo Breweries Limited | Method and instrument for measuring size of bubbles of malt alcohol beverage |
JP2010025663A (en) * | 2008-07-17 | 2010-02-04 | Nippon Steel Corp | Particle size measuring instrument and particle size measuring method |
-
1996
- 1996-12-17 JP JP33655396A patent/JP3661900B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004025220A1 (en) * | 2002-09-10 | 2004-03-25 | Sapporo Breweries Limited | Method and instrument for measuring size of bubbles of malt alcohol beverage |
US7355694B2 (en) | 2002-09-10 | 2008-04-08 | Sapporo Breweries Limited | Method and apparatus for measuring a particle diameter of foam on a malt alcoholic drink |
JP2010025663A (en) * | 2008-07-17 | 2010-02-04 | Nippon Steel Corp | Particle size measuring instrument and particle size measuring method |
Also Published As
Publication number | Publication date |
---|---|
JP3661900B2 (en) | 2005-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5160114B2 (en) | Vehicle passage judgment device | |
US5442573A (en) | Laser thickness gauge | |
US6994748B2 (en) | Method and apparatus for measuring melt level | |
JP6811661B2 (en) | Mobile imager and mobile | |
JPH10176908A (en) | Apparatus and method for detecting grain size | |
JPS6310764B2 (en) | ||
US6384904B1 (en) | Distance measuring apparatus | |
JPH10122842A (en) | Method for measuring flatness of steel plate | |
JPH0318882Y2 (en) | ||
JPS58196406A (en) | Device for measuring furnace wall profile | |
JPH08193810A (en) | Device for measuring displacement | |
JP2982757B2 (en) | 3D shape input device | |
JP2002047491A (en) | Diagnostic method for oven wall of coke oven and diagnostic apparatus therefor | |
JPH10253319A (en) | Position measuring device | |
JP4175736B2 (en) | Automatic tracking device for position measurement drawing | |
JP2006189390A (en) | Optical displacement measuring method and device | |
JP2000046930A (en) | Optical sensor | |
JPH10185515A (en) | Coil position detector | |
JPH10126659A (en) | Image measurement camera and image measurement device | |
JP2000074626A (en) | Distance measuring instrument | |
JPH0344504A (en) | Method and apparatus for measuring three-dimensional shape of surface | |
JPS6124647B2 (en) | ||
JPS5826325Y2 (en) | position detection device | |
JPH10222776A (en) | Fire source position detecting device and automatic fire extinguishing appliance | |
JPH04168390A (en) | Non-contact type range finder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050304 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050317 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080401 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080401 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080401 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090401 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090401 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100401 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100401 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110401 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120401 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120401 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130401 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140401 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |