JPH10176666A - Lubrication of piston and valve in piston reciprocating type gas pump and airtight method - Google Patents

Lubrication of piston and valve in piston reciprocating type gas pump and airtight method

Info

Publication number
JPH10176666A
JPH10176666A JP35995796A JP35995796A JPH10176666A JP H10176666 A JPH10176666 A JP H10176666A JP 35995796 A JP35995796 A JP 35995796A JP 35995796 A JP35995796 A JP 35995796A JP H10176666 A JPH10176666 A JP H10176666A
Authority
JP
Japan
Prior art keywords
piston
cylinder
discharge valve
valve
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35995796A
Other languages
Japanese (ja)
Inventor
Harutaka Mayuzumi
治隆 黛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP35995796A priority Critical patent/JPH10176666A/en
Publication of JPH10176666A publication Critical patent/JPH10176666A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To effectively form a lubricating oil film on a sliding part, and prevent seizure and the like by rotating a piston so as to prevent a piston and cylinder from being brought into contact with each other repeatedly at a constant part while the piston performs reciprocating motion, and moving a contact point of the piston and the cylinder in order. SOLUTION: Rotating motion of a crank 1 driven by power in a cylinder main body 9 is transmitted to a piston 7 for reciprocation through a connecting rod 2 and a cross head 3. A cylinder bore 8 is rotated through a piston rotating gear 11 by rotation of a piston rotating pinion 10 which is interlocked with power for rotating the crank 1, and the piston 7 is rotated through engagement of an internal gear 13 and a planetary pinion 12 which revolves around a center of the bore 8. A thin lubricating oil film is formed on the piston 7 by component force 14 in the rotating center direction of both gears in the engaging point of the pinion 12 and the internal gear 13 so as to hold lubricating performance of the sliding part in a high level.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】ピストン往復式気体用ポンプは構
造が簡単であるため気体加圧用或いは減圧用に広く使わ
れている
BACKGROUND OF THE INVENTION A piston reciprocating gas pump is widely used for pressurizing or depressurizing gas because of its simple structure.

【従来の技術】[Prior art]

(1)焼付は全ての機械に共通した問題であるが従来は
潤滑に着目して対策が打たれた。焼付は焼付を起した部
品相互の接触位置が固定化した結果熱が蓄積して起す場
合、接触位置を分散する有効な技術が無かった。 (2)ピストンからの気体の漏洩に対してはピストンリ
ングを使用して防止する例が一般的であった。しかしそ
の結果摩擦は増し動力消費も増加した上、温度も上がり
焼付くおそれもあった。 (3)吸入弁吐出弁共シリンダヘッドに配置されるがピ
ストンとシリンダヘッドで挟まれた部位、即ち上死点に
於いてピストン頂部平面(18)とシリンダヘッド底面
(33)で挟まれた隙間空間(32)にある気体はピス
トンによる気体の送り出しに当り吐出行程に於ける最終
段階でせっかく加圧した気体が送り出されずにシリンダ
内に残されてしまい続いて起る吸入行程ではこの残留気
体が自由膨張してピストンのポンピング効率を大きく落
とす隙間損失となるがこれを防ぐ効果的な方法は無かっ
た。
(1) Seizure is a problem common to all machines, but measures have conventionally been taken focusing on lubrication. In the case of seizure, when heat accumulates as a result of fixing the contact position between the parts where the seizure occurred, there was no effective technique for dispersing the contact position. (2) It has been common to use a piston ring to prevent gas leakage from a piston. However, as a result, friction increased, power consumption increased, and the temperature also increased, and there was a risk of seizure. (3) Both the suction valve and the discharge valve are arranged in the cylinder head, but are located between the piston and the cylinder head, that is, the gap between the piston top plane (18) and the cylinder head bottom surface (33) at the top dead center. The gas in the space (32) is sent out by the piston, and the gas pressurized in the final stage of the discharge stroke is not sent out and is left in the cylinder. In the subsequent suction stroke, this residual gas is removed. There is no effective way to prevent the gap loss, which causes free expansion and greatly reduces the pumping efficiency of the piston.

【発明が解決しようとする課題】[Problems to be solved by the invention]

(1)ピストンとシリンダが一定の部位でピストンの往
復運動中に繰り返し接触せぬ様にピストンを回転させ
て、ピストンとシリンダとの接触点を移動させること。 (2)ピストンとシリンダとの接触点(15)に重点を
置いて薄い油膜を展開し両者間の潤滑を確保すると共に
油膜を通して両者間に熱の授受を行なう。一方でその反
対側に当然起る点(16)での両者間の微細な空隙に微
量の圧隙気体をピストンの背圧側向け自然漏洩を許すこ
と。 (3)吐出行程に於けるピストンの上死点での吐出弁や
吸入弁との接触に対し万一発生しても関連部品の損傷が
回避出来ること。
(1) To move the contact point between the piston and the cylinder by rotating the piston so that the piston and the cylinder do not come into contact repeatedly during the reciprocating motion of the piston at a certain position. (2) A thin oil film is developed with emphasis on the contact point (15) between the piston and the cylinder to ensure lubrication between the two and to transfer heat between the two through the oil film. On the other hand, a small amount of pressure gas is allowed to naturally leak toward the back pressure side of the piston in the minute gap between the two at the point (16) which naturally occurs on the opposite side. (3) Damage to related parts can be avoided even in the event of contact with the discharge valve or suction valve at the top dead center of the piston during the discharge stroke.

【課題を解決するための手段】[Means for Solving the Problems]

(1)ピストンを内側からプラネタリピニオン(12)
で回転させシリンダボア内壁(8)に対し歯車の噛合ピ
ッチ点付近の歯面に似た滑りを伴った転がり接触をさせ
る。こうしてピストンとシリンダとはピストンの回転に
従って次から次へと隣り合った部分に移って行き一周す
る迄の間ピストンの外周上で最初に接触した部分は接触
を起さない。 (2)ピストンの外周側面には接触点(15)のピスト
ン中心線に対し反対側の点(16)に気体は通すが潤滑
油は楽には通さない程度の極く浅い気体道を設えること
で圧縮気体は自然漏洩する。 (3)ピストン(7)の中心線上に吐出弁(22)と吸
入弁(26)を配置し吐出弁及び吸入弁は共通中心線を
軸として自由に連し回り出来る構造にすることで3者間
に起り得る衝突連し回りに起因する破損は回避出来る。
(1) Piston from inside to planetary pinion (12)
To make rolling contact with the inner surface of the cylinder bore (8) with sliding similar to the tooth surface near the meshing pitch point of the gear. In this way, the piston and the cylinder move from one to the next in accordance with the rotation of the piston, and the first contact on the outer periphery of the piston does not come into contact until the piston and the cylinder make one revolution. (2) Provide a very shallow gas path on the outer peripheral side of the piston that allows gas to pass through at the point (16) opposite to the center line of the piston at the contact point (15) but does not allow lubricating oil to pass easily. , The compressed gas leaks spontaneously. (3) The discharge valve (22) and the suction valve (26) are arranged on the center line of the piston (7), and the discharge valve and the suction valve can be freely connected and rotated around the common center line. Damage caused by a series of collisions that can occur in between can be avoided.

【発明の効果】ピストン往復式の気体の圧縮ポンプ又は
真空ポンプに於いてピストン及びバルブの潤滑と気密の
方法新しくする事によって従来のピストン往復式のポン
プに不可欠である (1)ピストンリングを不要としてピストン速度を上げ (2)バルブの配置を変更することにより容積効率を高
め (3)それ等の結果多段式ポンプの段数削減を可能なら
しめた。
The piston reciprocating gas compression pump or vacuum pump is indispensable to the conventional piston reciprocating pump by renewing the method of lubricating and sealing the piston and valve. (1) No piston ring is required. (2) Volumetric efficiency was improved by changing the arrangement of valves. (3) As a result, the number of stages in a multi-stage pump was reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 ピストン駆動式説明図FIG. 1 is an explanatory diagram of a piston drive type.

【図2】 バルブ関係説明図FIG. 2 is an explanatory view of a valve.

【符号の説明】[Explanation of symbols]

1 クランク 2 連結桿 3 クロスヘッド 4 ピストンロッド 5 スナップリング 6 ノックピン 7 ピストン 8 シリンダボア 9 シリンダ本体 10 ピストン回転ピニオン 11 ピストン回転ギヤ 12 プラネタリピニオン 13 ピストン内歯歯車 14 プラネタリピニオン12とピストン内歯歯車13
との噛合点で発生する両歯車の中心方向の分力によりピ
ストンがシリンダボアに圧し付けられる方向 15 ピストンとシリンダボアの接触点 16 ピストンとシリンダボアの空隙 17 ピストンロッドの回転軸受部 18 ピストン頂部平面 19 吐出弁の中心線 20 シリンダヘッド 21 ノックピン 22 吐出弁 23 吐出弁座 24 吐出弁スプリング 25 シリンダヘッドカバ 26 吸入弁 27 バルブガイド 28 吸入弁スプリング 29 スプリングシート 30 吐出気道 31 シリンダヘッド下面 32 隙間空間
DESCRIPTION OF SYMBOLS 1 Crank 2 Connecting rod 3 Crosshead 4 Piston rod 5 Snap ring 6 Dowel pin 7 Piston 8 Cylinder bore 9 Cylinder main body 10 Piston rotation pinion 11 Piston rotation gear 12 Planetary pinion 13 Piston internal gear 14 Planetary pinion 12 and piston internal gear 13
The direction in which the piston is pressed against the cylinder bore by the component force in the center direction of the two gears generated at the point of meshing with the piston 15 The contact point between the piston and the cylinder bore 16 The gap between the piston and the cylinder bore 17 The rotating bearing part of the piston rod 18 The top plane of the piston 19 Discharge Valve center line 20 Cylinder head 21 Dowel pin 22 Discharge valve 23 Discharge valve seat 24 Discharge valve spring 25 Cylinder head cover 26 Suction valve 27 Valve guide 28 Suction valve spring 29 Spring seat 30 Discharge airway 31 Cylinder head lower surface 32 Clearance space

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリンダ本体(9)に内蔵された動力に
より駆動されるクランク(1)の回転運動は連結桿
(2)を介してクロスヘッド(3)の往復運動に変換さ
れる。クロスヘッド(3)にはピストンロッド(4)が
静合されておりスナップリング(5)により軸方向に、
又、ノックピン(6)により回転方向に両者は結合され
ている。シリンダボア(8)にはピストン(7)が滑合
されピストンヘッド(4)を介してクロスヘッド(3)
に連結しているのでクロスヘッドの往復運動はピストン
に伝えられる。シリンダ本体(9)にはクランク(1)
を回転させる動力に連動するピストン回転ピニオン(1
0)と噛合うピストン回転ギヤ(11)がシリンダボア
(8)の中心線と同じで常時回転している。この上には
ボア(8)の中心から半径Rの軌道を周るピストン駆動
プラネタリピニオン(12)があり、ピストンの内壁に
設らえた内歯歯車(13)と噛合ってピストン(7)を
シリンダボアに嵌ったまゝ常時回転させている。プラネ
タリピニオン(12)とピストン内歯歯車(13)の噛
合点に於ける両歯車の回転中心方向の分力(14)によ
りピストンはシリンダボアの内壁に薄い潤滑油膜を介し
て接触点(15)に圧し付けられ乍らピストンの回転に
従って逐次接触点(15)もまだ接触していないピスト
ン外周をシリンダの内壁に接触させて転がって行く。か
くしてガスの圧縮によって上昇したピストン頂部の温度
をシリンダに伝えることで冷却すると共に接触点(1
5)のピストン中心線対称にある点(16)に於いては
ピストンはシリンダボア内壁から離されて微細な空隙が
出現しこれを通過して微量の圧縮空気がピストンの背圧
側に漏洩することでその付近のピストン及びシリンダボ
ア内壁を冷却し、更にピストンの回転につれて逐次空隙
部位を隣接する範囲に移動させる冷却方法。
1. A rotary motion of a crank (1) driven by power contained in a cylinder body (9) is converted into a reciprocating motion of a crosshead (3) via a connecting rod (2). A piston rod (4) is statically engaged with the crosshead (3), and is axially moved by a snap ring (5).
The two are connected in the rotational direction by the knock pin (6). A piston (7) is slipped into the cylinder bore (8), and a crosshead (3) is inserted through a piston head (4).
The reciprocating motion of the crosshead is transmitted to the piston. Crank (1) on cylinder body (9)
Rotating pinion (1
The piston rotating gear (11) meshing with 0) is always rotating at the same position as the center line of the cylinder bore (8). Above this is a piston driven planetary pinion (12) that orbits a radius R from the center of the bore (8), and meshes with an internal gear (13) provided on the inner wall of the piston to form the piston (7). It is always rotating as it fits in the cylinder bore. The piston moves to the contact point (15) via a thin lubricating oil film on the inner wall of the cylinder bore due to the component force (14) in the direction of the center of rotation of the two gears at the meshing point of the planetary pinion (12) and the piston internal gear (13). As the piston is rotated while being pressed, the outer periphery of the piston that has not yet come into contact with the contact point (15) sequentially contacts the inner wall of the cylinder and rolls. Thus, the temperature at the top of the piston, which has been increased by the compression of the gas, is transmitted to the cylinder to cool the cylinder and cool the contact point (1).
At the point (16), which is symmetrical with the piston center line in (5), the piston is separated from the inner wall of the cylinder bore and a minute gap appears, and a small amount of compressed air leaks to the back pressure side of the piston. A cooling method in which the inner wall of the piston and the cylinder bore in the vicinity thereof is cooled, and further, the gap portion is sequentially moved to an adjacent area as the piston rotates.
【請求項2】 圧縮空気より高い圧力で潤滑油をクラン
ク(1)の油路を通って連結桿(2)クロスヘッド
(3)を経てピストンロッドの先端部にある噴出孔から
ピストン頂部のピストンロッドの回転軸受部(17)を
潤滑すると同時にピストン頂部平面(18)に流出し、
ピストンの回転と共に遠心力でピストン外周部に至りシ
リンダ内壁に油膜を作り、ピストンとシリンダ間を潤滑
する。圧縮空気の流レに乗った一部の潤滑油は更に吐出
弁座を潤らせて弁座の磨耗を防ぐと共に弁閉時の弁座の
気密を高めて高圧空気の漏洩も防ぐ方法。
2. Lubricating oil at a pressure higher than compressed air passes through an oil passage of a crank (1), passes through a connecting rod (2), a crosshead (3), and passes through a jet hole at a tip end of a piston rod to a piston at a piston top. At the same time as lubricating the rotary bearing (17) of the rod, it flows out to the piston top plane (18),
With the rotation of the piston, the oil reaches the outer periphery of the piston by centrifugal force and forms an oil film on the inner wall of the cylinder to lubricate between the piston and the cylinder. A method in which part of the lubricating oil riding on the flow of compressed air further moistens the discharge valve seat to prevent wear of the valve seat and to increase airtightness of the valve seat when the valve is closed, thereby preventing leakage of high-pressure air.
【請求項3】 吐出弁の中心線(19)はシリンダボア
(8)の中心線と一致する様シリンダヘッド(20)を
シリンダ本体(9)とノックピン(21)で位置を定め
て組立てる。吐出弁(22)はシリンダヘッド(20)
内の吐出弁孔に遊合で組込まれシリンダヘッドカバ(2
5)と吐出弁スプリング(24)により吐出弁座(2
3)に密着されている。吸入弁(26)は吐出弁(2
2)と同心で吐出弁内に組込まれており、バルブガイド
(27)の吸入弁スプリング(28)スプリングシート
(29)により吐出弁に設えてある吸入弁座に着座して
いる。圧縮行程中のピストンによりシリンダ内の圧力が
吐出弁設定出力より高くなると吐出弁は自動的にスプリ
ング(24)を撓ませて弁座(23)から離れて、高圧
ガスがシリンダヘッド内の吐出気道(30)に流出しエ
アタンクに貯溜される。ピストンが上死点を廻るとシリ
ンダヘッド下面(30)とピストン頂部平面(18)に
挟まれた隙間空間(31)の圧力はピストンの降下開始
と共に急降下し吐出弁も吐出弁スプリング(24)によ
り元に戻り吐出弁は閉ぢる。この時、吸入弁は吐出弁に
組込まれているので吐出弁の急激な降下と着座時の衝撃
と慣性で吸入弁座から離れて過早に降下しピストン頂部
に接触する可能性を歪定出来ない。吸入弁も吐出弁もピ
ストンの回転中心線と同軸に配置され、夫々自由に旋回
出来るので万一接触してもピストンに引連られて旋回し
破損回避する構造として隙間損失を最低に抑えることで
容積効率を最大に出来る方法。
3. The cylinder head (20) is assembled with the cylinder body (9) and the knock pin (21) so that the center line (19) of the discharge valve coincides with the center line of the cylinder bore (8). The discharge valve (22) is a cylinder head (20)
Cylinder head cover (2)
5) and the discharge valve spring (24) by the discharge valve seat (2).
3) Close contact. The suction valve (26) is connected to the discharge valve (2
It is incorporated in the discharge valve concentrically with 2) and is seated on a suction valve seat provided on the discharge valve by a suction valve spring (28) and a spring seat (29) of a valve guide (27). When the pressure in the cylinder becomes higher than the set output of the discharge valve by the piston during the compression stroke, the discharge valve automatically deflects the spring (24) and separates from the valve seat (23), and the high pressure gas is discharged from the discharge airway in the cylinder head. It flows out to (30) and is stored in the air tank. When the piston goes around the top dead center, the pressure in the gap space (31) sandwiched between the lower surface (30) of the cylinder head and the plane (18) at the top of the piston drops rapidly when the piston starts to descend, and the discharge valve is also operated by the discharge valve spring (24). Return to the original position and close the discharge valve. At this time, since the suction valve is built into the discharge valve, it is possible to distort the possibility that the suction valve will suddenly fall away from the suction valve seat due to the sudden drop of the discharge valve and the impact and inertia at the time of seating and come into contact with the piston top. Absent. Both the suction valve and the discharge valve are arranged coaxially with the center line of rotation of the piston, and can rotate freely, so even if they come into contact, they are pulled by the piston and rotate to avoid damage, minimizing gap loss. A way to maximize volumetric efficiency.
JP35995796A 1996-12-18 1996-12-18 Lubrication of piston and valve in piston reciprocating type gas pump and airtight method Pending JPH10176666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35995796A JPH10176666A (en) 1996-12-18 1996-12-18 Lubrication of piston and valve in piston reciprocating type gas pump and airtight method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35995796A JPH10176666A (en) 1996-12-18 1996-12-18 Lubrication of piston and valve in piston reciprocating type gas pump and airtight method

Publications (1)

Publication Number Publication Date
JPH10176666A true JPH10176666A (en) 1998-06-30

Family

ID=18467167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35995796A Pending JPH10176666A (en) 1996-12-18 1996-12-18 Lubrication of piston and valve in piston reciprocating type gas pump and airtight method

Country Status (1)

Country Link
JP (1) JPH10176666A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102032141A (en) * 2010-11-30 2011-04-27 浙江大学 Vertical non-oil-contamination energy-saving vacuum pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102032141A (en) * 2010-11-30 2011-04-27 浙江大学 Vertical non-oil-contamination energy-saving vacuum pump

Similar Documents

Publication Publication Date Title
US10036371B2 (en) Scotch yoke arrangement
US6119649A (en) Rotating piston engine
US6336797B1 (en) Oiless rotary scroll air compressor air inlet valve
US6142060A (en) High pressure fuel pump having a bellows sealing arrangement
JP2018513296A (en) Compressor with liquid jet cooling function
US4644850A (en) Fluid machine
JP2010065635A (en) Scroll compressor
US6328545B1 (en) Oiless rotary scroll air compressor crankshaft assembly
JPH10176666A (en) Lubrication of piston and valve in piston reciprocating type gas pump and airtight method
US2857902A (en) Rotary device for the distribution of fluids into and from the cylinders of driving or working reciprocating machines
JP2012057625A (en) Scroll compressor
US9028231B2 (en) Compressor, engine or pump with a piston translating along a circular path
CN108180143A (en) Tangent round rotor pair, compressor and engine
JPH03105091A (en) Scroll type compressor
CN111456935B (en) Built-in oil pump's vortex air compressor
KR102453003B1 (en) Double type oil free reciprocating compressing apparatus and method
KR20200085998A (en) Multi-stage double type oil free reciprocating compressing apparatus
JPH04287878A (en) Unlubricated reciprocating machine
JPS63309785A (en) Compressor
CN105179043A (en) Control device with components arranged in array manner
CN115355171A (en) Combined sealed oilless screw blower
US924730A (en) Pump.
JPH02146286A (en) Oilless compressor
JP2011058395A (en) Hermetic compressor
JPH03107584A (en) Nonlubricated reciprocating equipment