JPH10176170A - Method and apparatus for evaluating heating furnace - Google Patents

Method and apparatus for evaluating heating furnace

Info

Publication number
JPH10176170A
JPH10176170A JP8339416A JP33941696A JPH10176170A JP H10176170 A JPH10176170 A JP H10176170A JP 8339416 A JP8339416 A JP 8339416A JP 33941696 A JP33941696 A JP 33941696A JP H10176170 A JPH10176170 A JP H10176170A
Authority
JP
Japan
Prior art keywords
straight pipe
fluid
heat
reaction tube
straight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8339416A
Other languages
Japanese (ja)
Inventor
Kenichi Mae
健一 前
Takayoshi Obata
敬良 小畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP8339416A priority Critical patent/JPH10176170A/en
Publication of JPH10176170A publication Critical patent/JPH10176170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a technique of evaluating a heating furnace having a reaction tube in the inside promptly and easily without requiring many man-hours. SOLUTION: In practicing a method for evaluating a heating furnace having a reaction tube through the inside of which the fluid to be heated flows in the furnace, the reaction tube is regarded as a combination of straight tubes, the transfer of heat from the furnace to the tube is considered as that performed by the heat radiation from a heat radiation wall to the straight tube, and the state of the fluid in the straight tube is determined from the relationships between the heat radiation from the heat radiation wall to the surface of the straight tube, the heat conduction from the surface of the straight tube to the inside surface of the tube and the heat transfer from the inside surface of the tube to the fluid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、加熱対象の流体が
内部を流れる反応管を炉内に備えた加熱炉の評価技術に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for evaluating a heating furnace provided with a reaction tube in which a fluid to be heated flows.

【0002】[0002]

【従来の技術】このような加熱炉の一例としては、図3
に示すようなエチレン製造用熱分解炉がある。エチレン
製造用の熱分解炉では、炭化水素類(ナフサ、天然ガ
ス、エタン等)を含む混合流体を、炉内に備えられる反
応管内に供給し、この反応管内を流れる混合流体を、管
の外部から加熱して熱分解反応を起こさせ、その生成物
としてエチレン、プロピレン等のオレフィンを得る。こ
のような加熱炉の評価をおこなう場合、従来は、炉形状
と炉を貫通して配設される反応管の形状を正確(反応管
に曲がり部がある場合は、この曲がり部をそのままモデ
ル化し、反応管に合流部がある場合は、その合流部をそ
のままモデル化する)に代表できるモデルを作成し、こ
れを使用して評価をおこなっていた。ここで、炉内に於
ける燃焼部から反応管への伝熱は、所謂、燃焼伝熱シミ
ュレーションを使用し、反応管と反応管内の流体に関し
ては、所謂、反応管内分解反応シミュレーションを使用
していた。
2. Description of the Related Art An example of such a heating furnace is shown in FIG.
There is a pyrolysis furnace for ethylene production as shown in FIG. In a pyrolysis furnace for producing ethylene, a mixed fluid containing hydrocarbons (naphtha, natural gas, ethane, etc.) is supplied into a reaction tube provided in the furnace, and the mixed fluid flowing in the reaction tube is supplied to the outside of the tube. To cause a thermal decomposition reaction to obtain an olefin such as ethylene or propylene as a product. Conventionally, when such a heating furnace is evaluated, the shape of the furnace and the shape of the reaction tube disposed through the furnace are accurately determined (if the reaction tube has a bent portion, the bent portion is directly modeled. If the reaction tube has a confluence, the confluence is modeled as it is) and a model was created and evaluated using this model. Here, the so-called combustion heat transfer simulation is used for the heat transfer from the combustion part to the reaction tube in the furnace, and the so-called decomposition reaction simulation for the reaction tube is used for the reaction tube and the fluid in the reaction tube. Was.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術においては、炉構造(炉壁、反応管等の形状及び
配置構成)を正確に代表するモデルを必要とするため、
熱流体解析をおこなう前にモデル作成が必要であり、膨
大な作業工数を必要とした。結果、加熱炉の設計上必要
となる反応管形状の変更、条件の変更に対して、迅速な
対応が困難であるという問題があった。さらに、燃焼伝
熱シミュレーションは、その出力結果の評価が比較的難
しい。従って、本発明の目的は、内部に反応管を備えた
加熱炉の評価を、過大な工数を必要とすることなく、迅
速且つ容易におこなうことができる加熱炉の評価技術を
得ることにある。
However, the above prior art requires a model that accurately represents the furnace structure (shape and arrangement of furnace walls, reaction tubes, etc.).
Before the thermo-fluid analysis was performed, a model had to be created, which required a huge amount of work. As a result, there is a problem that it is difficult to quickly respond to a change in the shape of the reaction tube and a change in the conditions required for the design of the heating furnace. Further, in the combustion heat transfer simulation, it is relatively difficult to evaluate the output result. Accordingly, an object of the present invention is to provide a heating furnace evaluation technique that can quickly and easily evaluate a heating furnace having a reaction tube therein without requiring an excessive number of steps.

【0004】[0004]

【課題を解決するための手段】この目的を達成するため
の本発明による加熱炉の評価方法の特徴手段は、以下の
とおりである。即ち、請求項1に記載されているよう
に、加熱対象の流体が内部を流れる反応管を炉内に備え
た加熱炉の評価方法であって、前記反応管を直管の組み
合わせとみなし、前記炉から前記反応管への熱の授受
を、熱放射壁から前記直管への熱放射によるものとみな
し、前記直管内の流体の状態を、前記熱放射壁と直管表
面との間に於ける熱放射授受、前記直管表面と直管内面
との間に於ける熱伝導授受、及び前記直管内面と前記流
体との熱伝達授受の関係に基づいて求めるのである。こ
の方法を採用するにあっては、手法上、二つの主要なモ
デル化が行われる。即ち、その1は、炉内の燃焼伝熱を
熱放射壁からの熱放射によるものと見なすのであり、そ
の2は、反応管を、その構造に対応した直管の組み合わ
せと見なしすものである。このような評価手法を採る場
合は、熱放射壁からなる炉壁に対応した筐体を仮想し、
反応管表面への熱の授受を熱放射だけでおこなう。さら
に、反応管とこの反応管の内部にある流体に関しては、
いわゆる伝熱と熱伝達を考慮することで、反応管内部の
流体の物理状態を得る。さらに、一般の反応管は、これ
が、直管対応部とこれらの直管対応部とを接続する曲が
り管部と合流部とから構成されているのが通常である。
しかも、これらの曲がり管部は、流体における圧損を考
慮すると、直管が延びたものと見なせる、逆に圧力損失
が、この部位で直管の場合より大きくなっているものと
みなせる。一方、合流部に関しては、この部位に於ける
流体の質量流量が保たれる条件を満足すれば、結果に大
きな差は発生しない。従って、反応管を含む加熱炉を上
記のような条件を満足する直管の組み合わせ見なすとと
もに、この直管の周りに配設された熱放射壁からなる熱
系と見なしても、現状に比較的適合したシミューレート
(評価)をおこなうことができる。この場合、検討対象
となるモデルは、直管と熱放射壁とを備えた系の非常に
単純な組み合わせとできるため、従来問題であった前処
理を迅速におこなうことができる。結果、加熱炉の評価
を容易且つ迅速に行える解析・評価手法を得ることがで
きた。さらに、この場合、シミューレート条件の変更を
迅速におこなって、様々な条件での検討・評価が迅速に
行えるため、合理的な評価に容易に到達することができ
る。
Means for solving the problems The means for evaluating the heating furnace according to the present invention for achieving this object are as follows. That is, as described in claim 1, a method for evaluating a heating furnace having a reaction tube in which a fluid to be heated flows inside the furnace, wherein the reaction tube is regarded as a combination of straight tubes, Transfer of heat from the furnace to the reaction tube is considered to be due to heat radiation from the heat radiating wall to the straight tube, and the state of the fluid in the straight tube is defined between the heat radiating wall and the surface of the straight tube. The heat radiation is transmitted and received between the straight pipe surface and the inner surface of the straight pipe, and the heat transfer between the fluid and the fluid is performed between the straight pipe inner surface and the fluid. In adopting this method, two major modelings are performed. That is, (1) regards the heat transfer of combustion in the furnace as being due to heat radiation from the heat radiation wall, and (2) regards the reaction tube as a combination of straight tubes corresponding to the structure. . When adopting such an evaluation method, a case corresponding to a furnace wall composed of a heat radiation wall is imagined,
Transfer of heat to the reaction tube surface is performed only by heat radiation. Further, regarding the reaction tube and the fluid inside the reaction tube,
By taking into account so-called heat transfer and heat transfer, the physical state of the fluid inside the reaction tube is obtained. Further, a general reaction tube is usually composed of a straight tube corresponding portion, a bent tube portion connecting these straight tube corresponding portions, and a merging portion.
In addition, in consideration of the pressure loss in the fluid, it can be considered that the straight pipe extends, and conversely, it can be considered that the pressure loss is larger at this portion than in the case of the straight pipe. On the other hand, as for the junction, if the condition for maintaining the mass flow rate of the fluid at this portion is satisfied, there is no large difference in the result. Therefore, even if the heating furnace including the reaction tube is regarded as a combination of straight tubes that satisfies the above-described conditions, and is regarded as a heat system including heat radiating walls disposed around the straight tube, it is relatively difficult at present. Suitable simulation (evaluation) can be performed. In this case, since the model to be considered can be a very simple combination of a system having a straight pipe and a heat radiation wall, it is possible to quickly perform the pretreatment which has conventionally been a problem. As a result, an analysis / evaluation method capable of easily and quickly evaluating the heating furnace was obtained. Further, in this case, the simulation conditions are changed quickly, and the examination and evaluation can be performed quickly under various conditions, so that a reasonable evaluation can be easily achieved.

【0005】さて、上記の加熱炉の評価方法を使用する
装置は、請求項2に記載するように、以下の構成とな
る。即ち、加熱対象の流体が内部を流れる反応管を炉内
に備えた加熱炉の評価装置であって、熱放射壁とみなせ
る内壁を備えた筐体と、前記筐体内を貫通する直管を備
えた基本モデルを備えるとともに、前記直管内の流体の
状態を、前記熱放射壁と前記直管表面との間に於ける熱
放射授受、前記直管表面と前記直管内面との間に於ける
熱伝導授受及び前記直管内面と前記流体との熱伝達授受
の関係に基づいて求める熱流体解析手段を備え、入力さ
れる前記反応管の構造に基づいて、前記反応管を前記直
管の組み合わせとみなす場合に必要となる直管モデル化
条件が加味されるとともに、前記基本モデルの組み合わ
せとして構成される評価対象統合モデルを、前記加熱炉
に対応して生成する評価対象統合モデル生成手段を備
え、入力される前記熱放射壁、直管、前記直管内の流体
の初期条件および境界条件に基づいて、前記評価対象統
合モデルに、前記熱流体解析手段を適応して前記直管内
の流体の物理状態を求める中央処理手段を備えるのであ
る。この評価装置は、先に説明した本願の評価手法を使
用するものであり、熱放射壁とみなせる内壁を備えた筐
体と、前記筐体内を貫通する直管を備えた基本モデル
と、この基本モデルを対象として、その直管内の流体の
物理状態を熱流体解析できる熱流体解析手段を備えてい
る。この構造により、例えば、図5に示すような単純な
基本モデルを対象とする場合、熱放射壁、直管及び直管
内の流体に関して、それらの初期条件及び境界条件を設
定してやれば、直管内の流体の物理状態を求めることが
できる。先にも説明したように、本願にあっては、評価
対象の反応管を、直管の組み合わせとみなす。例えば、
図4に示すような構造の反応管を対象とする場合、炉全
体としては、図6に示すように、系が基本モデルが組み
合わされたものと見なされる。このようなモデル化操作
にあっては、反応管を直管の組み合わせとみなすため
に、所定の条件が必要となる。即ち、反応管が直管形状
を有する部位はほぼそのままモデル化し、曲がり管部に
関してはこの条件を加味された直管としてモデル化す
る。さらに、複数本の管が合流している場合は、この合
流条件を満たすように条件付けが行われる。このような
処理条件付けを加味された評価対象統合モデルを、評価
対象統合モデル生成手段によって生成する。このモデル
は、図6に示すようなモデルとなっており、実質上、基
本モデルと、これらの基本モデル間に於けるデータの遣
り取りの条件を規定したモデルとなる。このような評価
対象統合モデルは、先に説明した熱流体解析手段を各基
本モデルに適用する要領で、全体の処理をおこなうこと
ができ、結果的に反応管の構造に適合した評価結果(シ
ミュレーション結果)を得ることができる。この働きを
中央処理手段がおこなう。結果、この装置にあっては、
本願方法を適切に実施できる。
An apparatus using the above-described method for evaluating a heating furnace has the following configuration as described in claim 2. That is, an evaluation apparatus for a heating furnace including a reaction tube in which a fluid to be heated flows inside, which includes a housing having an inner wall that can be regarded as a heat radiating wall, and a straight tube that penetrates the housing. And the state of the fluid in the straight pipe is transmitted and received between the heat radiating wall and the straight pipe surface and between the straight pipe surface and the straight pipe inner surface. A heat-fluid analyzing means for determining based on the relationship between heat transfer and heat transfer between the inner surface of the straight tube and the fluid, and combining the reaction tube with the straight tube based on the input structure of the reaction tube; In addition to the straight pipe modeling conditions required when deeming that the model is integrated, an evaluation object integrated model generating means for generating an evaluation object integrated model configured as a combination of the basic models corresponding to the heating furnace is provided. The heat radiation input A central processing unit that determines the physical state of the fluid in the straight pipe by adapting the thermo-fluid analysis unit to the integrated model to be evaluated based on the initial condition and the boundary condition of the fluid in the straight pipe and the straight pipe; Be prepared. This evaluation device uses the evaluation method of the present invention described above, and includes a housing having an inner wall that can be regarded as a heat radiation wall, a basic model including a straight pipe penetrating the housing, The model is provided with a thermo-fluid analysis means capable of performing a thermo-fluid analysis of the physical state of the fluid in the straight pipe for the model. With this structure, for example, when targeting a simple basic model as shown in FIG. 5, if the initial conditions and boundary conditions are set for the heat radiating wall, the straight pipe, and the fluid in the straight pipe, the The physical state of the fluid can be determined. As described above, in the present application, a reaction tube to be evaluated is regarded as a combination of straight tubes. For example,
When a reaction tube having a structure as shown in FIG. 4 is targeted, as a whole furnace, as shown in FIG. 6, the system is regarded as a combination of a basic model. In such a modeling operation, predetermined conditions are required in order to regard the reaction tube as a combination of straight tubes. That is, a portion of the reaction tube having a straight tube shape is modeled as it is, and a curved tube portion is modeled as a straight tube taking this condition into account. Further, when a plurality of pipes are joined, conditioning is performed so as to satisfy the joining condition. An evaluation object integrated model to which such processing conditions are added is generated by an evaluation object integrated model generation unit. This model is a model as shown in FIG. 6, and is a model that substantially defines basic models and conditions for exchanging data between these basic models. Such an integrated model to be evaluated can perform the entire process in the same manner as applying the above-described thermo-fluid analysis means to each basic model, and as a result, the evaluation results (simulation) suitable for the structure of the reaction tube Result) can be obtained. This function is performed by the central processing means. As a result, in this device,
The method of the present application can be appropriately performed.

【0006】[0006]

【発明の実施の形態】本願の実施の形態を以下図面に基
づいて説明する。図1には、本願の評価装置1の形態例
を示した。本願の評価装置は、いわゆるコンピュータと
このコンピュータに格納されたソフトから構成されてい
る。このコンピュータはキーボード2、ディスプレイ装
置3等を備えた入出力装置4、コンピュータに於ける演
算を実際に行う中央処理装置5、さらに、半導体メモリ
ー、磁気ディスク等からなる記憶装置6を備えている。
この記憶装置6に解析ソフト等が収納される。装置1
は、評価にあたって必要となる熱流体解析用のソフトで
ある熱流体解析手段7が備えられている。シミュレーシ
ョンの実行にあたっては、別途入力される評価対象の物
理系の初期条件及び境界条件に基づいて、前記ソフト
が、評価対象の物理系の各部位に対応付けられたメモリ
ーに格納される物理量を、このソフトを支配する方程式
系を満足するように解くことにより、収束解を求め、系
の解析結果を得ることができる。この方程式系を解くに
あたっては、所謂、有限要素法等を使用する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the evaluation device 1 of the present application. The evaluation device of the present application includes a so-called computer and software stored in the computer. The computer includes an input / output device 4 including a keyboard 2, a display device 3, etc., a central processing unit 5 for actually performing operations in the computer, and a storage device 6 including a semiconductor memory, a magnetic disk, and the like.
Analysis software and the like are stored in the storage device 6. Apparatus 1
Is provided with a thermo-fluid analysis means 7 which is software for thermo-fluid analysis required for evaluation. In executing the simulation, the software calculates a physical quantity stored in a memory associated with each part of the physical system to be evaluated based on initial conditions and boundary conditions of the physical system to be evaluated which are separately input. By solving so as to satisfy the equation system governing this software, a convergence solution can be obtained and an analysis result of the system can be obtained. In solving this equation system, a so-called finite element method or the like is used.

【0007】本願で使用する基本モデル8の構成につい
て、次に説明する。図5に、基本モデル8の構成を示し
た。この基本モデル8は、熱輻射壁9が四方を囲む筐体
10内に、単一本の直管11が貫通する構成のものであ
る。この基本モデル8の熱流体解析にあたっては、直管
11を囲む熱放射壁9から直管表面11aへの熱放射に
よる熱の授受、直管表面11aから直管内面11bへの
熱伝導による熱の授受、さらに、直管内面11bから直
管内にある移動流体への熱移動及び流体解析をおこな
う。このようなシミュレーションにあって、熱放射、熱
伝導、熱伝達等の条件、さらに、シミュレーション上の
条件事項となる境界条件等の設定が、任意に行えること
は当然である。
Next, the configuration of the basic model 8 used in the present application will be described. FIG. 5 shows the configuration of the basic model 8. The basic model 8 has a configuration in which a single straight pipe 11 penetrates a housing 10 in which a heat radiation wall 9 surrounds four sides. In the thermal fluid analysis of the basic model 8, heat is transferred by heat radiation from the heat radiating wall 9 surrounding the straight pipe 11 to the straight pipe surface 11a, and heat is transferred by heat conduction from the straight pipe surface 11a to the straight pipe inner surface 11b. Transfer and heat analysis from the straight pipe inner surface 11b to the moving fluid in the straight pipe and fluid analysis are performed. In such a simulation, it is naturally possible to arbitrarily set conditions such as heat radiation, heat conduction, and heat transfer, as well as boundary conditions and the like, which are conditions in the simulation.

【0008】上記のような解析を可能とするため、図1
に示すように、装置1には、シミュレーションソフトで
ある熱流体解析手段7が格納されている。当然、この手
段内には、熱放射解析手段7a、熱伝導解析手段7b、
熱伝達流体解析手段7cが含まれている。熱放射解析手
段7aは直管11を囲む熱放射壁9から直管表面11a
への熱放射による熱の授受のシミュレーションをおこな
い、熱伝導解析手段7bが直管表面11aから直管内面
11bへの熱伝導による熱の授受の解析をおこない、さ
らに、熱伝達流体解析手段7cが、直管内面11bから
直管内にある移動する流体への熱の授受および、流体自
体の流動解析をおこなう。ここで、熱放射解析手段7a
はその基礎方程式として一般的な熱放射式を、熱伝導解
析手段7bは、同じく熱伝導方程式を主な基礎方程式と
する。さらに、熱伝達流体解析手段7cは、乱流の発生
に伴うエネルギー散逸を加味したナビエストークス方程
式を主な基礎方程式としている。従って、この構成によ
り、熱放射壁9の物理状態、直管11の入口部12と出
口部13との物理状態を境界条件等として設定すれば、
直管内に於ける流体の状態を得ることができる。
To enable the above analysis, FIG.
As shown in (1), the apparatus 1 stores a thermo-fluid analyzing means 7 which is simulation software. Naturally, this means includes heat radiation analysis means 7a, heat conduction analysis means 7b,
Heat transfer fluid analysis means 7c is included. The heat radiation analyzing means 7a is arranged so that the heat radiating wall 9 surrounding the straight pipe 11 is connected to the straight pipe surface 11a.
A simulation of the transfer of heat by heat radiation to the pipe is performed, the heat conduction analysis means 7b analyzes the transfer of heat by heat conduction from the straight pipe surface 11a to the straight pipe inner face 11b, and further, the heat transfer fluid analysis means 7c. The transfer of heat from the straight pipe inner surface 11b to the moving fluid in the straight pipe and the flow analysis of the fluid itself are performed. Here, the thermal radiation analysis means 7a
Is a general heat radiation equation as its basic equation, and the heat conduction analysis means 7b similarly uses the heat conduction equation as a main basic equation. Further, the heat transfer fluid analysis means 7c uses a Navier-Stokes equation in consideration of energy dissipation accompanying the generation of turbulence as a main basic equation. Therefore, according to this configuration, if the physical state of the heat radiation wall 9 and the physical state of the inlet 12 and the outlet 13 of the straight pipe 11 are set as boundary conditions and the like,
The state of the fluid in the straight pipe can be obtained.

【0009】さて、以上が、本願の評価装置1の基本構
成であるが、図3に示すような実際の加熱分解炉14の
評価を行おうとする場合、この分解炉14に備えられる
反応管15の構成は、単純な直管ではなく、例えば、反
応管15に曲がり管部16があたっり、合流部17があ
ったりする。このような状況に対応できるように、本願
の装置1は構成されている。 即ち、実際の加熱分解炉
14の反応管15を、これまで説明してきた直管11と
してモデル化するために、図1に示す直管モデル化条件
生成手段18が設けられている。この直管モデル化条件
生成手段18は、実際の検討対象の反応管15を直管と
見なす場合にシミュレート上必要となる条件を生成する
ものである。図4(イ)に示す単純化された解析対象例
について、以下説明する。このような条件の一例を挙げ
ると、評価対象に曲がり管部16がある場合は、この曲
がり管部16の存在を直管11で代表するために、この
曲がり管部16に対応するモデル位置にある曲がり管部
対応部16m(図4参照)のシミュレート演算を変更す
る条件(例えば、管路が曲がり部の存在により延長され
たものとみなし、エネルギー損失の割合を増加する等の
条件)を自動生成する。ここで、この条件を曲がり管部
対応条件と呼ぶ。さらに、合流部17が存在する場合
は、この合流部17に対応する直管部を挟む格子点間
(直管合流部対応部17m)で、物理量間の関係が、質
量流量一定の条件を満たすように、各格子間における物
理量関係が満たすべき条件を自動生成する。ここで、こ
の条件を接続条件と呼ぶ。このような接続条件の一例を
示すと、2本の管が合流して1本の管となっており、管
径間が合流前後でルート2倍となっている場合、接続条
件は流速が変わらないものとする。一方、管径が上流側
管径D1下流側管径D2となっている場合は、合流前の流
速をV1とする場合、合流後の流速はV2=2(D1
221とされるのである。このような接続条件は、
合流部17に対応する位置にある格子点間17mで満足
されるべきものである。この装置1にあっては、直管モ
デル化条件生成手段18によって設定される条件を考慮
して、直管11、直管内に存する流体に対して設定され
る各格子の物理量の関係を満たすように、シミュレート
をおこなう。従って、本願装置にあっては、基本モデル
8を使用しながら、実際の反応管15に適合した解析を
おこなうことができる。
The above is the basic configuration of the evaluation apparatus 1 of the present application. When an actual evaluation of the thermal cracking furnace 14 as shown in FIG. 3 is to be performed, a reaction tube 15 provided in the cracking furnace 14 is required. Is not a simple straight pipe, but, for example, a bent pipe section 16 is provided in the reaction tube 15 and a confluent section 17 is provided. The apparatus 1 of the present application is configured to cope with such a situation. That is, in order to model the actual reaction tube 15 of the thermal decomposition furnace 14 as the straight tube 11 described above, the straight tube modeling condition generating means 18 shown in FIG. 1 is provided. The straight pipe modeling condition generating means 18 generates conditions necessary for simulation when the reaction tube 15 to be actually studied is regarded as a straight pipe. The simplified analysis target example shown in FIG. 4A will be described below. As an example of such a condition, in the case where the evaluation object includes the bent pipe portion 16, in order to represent the presence of the bent pipe portion 16 with the straight pipe 11, a model position corresponding to the bent pipe portion 16 is placed. Conditions for changing the simulation calculation of a certain bent pipe portion corresponding portion 16m (see FIG. 4) (for example, conditions such that the pipeline is regarded as being extended due to the presence of the bent portion and the rate of energy loss is increased). Generate automatically. Here, this condition is referred to as a bent tube portion corresponding condition. Further, when the junction 17 is present, the relationship between the physical quantities satisfies the condition of a constant mass flow rate between lattice points sandwiching the straight pipe corresponding to the junction 17 (the straight pipe junction corresponding to 17 m). As described above, the conditions that the physical quantity relationship between the lattices should satisfy are automatically generated. Here, this condition is called a connection condition. As an example of such connection conditions, when two pipes are merged into one pipe, and the route between the pipe diameters is twice the route before and after the merge, the connection condition is that the flow velocity changes. Make it not exist. On the other hand, if the pipe diameter is the upstream pipe diameter D 1 and the downstream pipe diameter D 2 , the flow velocity before the merge is V 1, and the flow velocity after the merge is V 2 = 2 (D 1 /
D 2 ) 2 V 1 . Such connection conditions are:
This is to be satisfied at a distance of 17 m between lattice points located at a position corresponding to the junction 17. In the apparatus 1, the conditions set by the straight pipe modeling condition generating means 18 are taken into consideration so as to satisfy the relationship between the straight pipe 11 and the physical quantity of each grid set for the fluid existing in the straight pipe. Then, simulate. Therefore, in the apparatus of the present invention, an analysis suitable for the actual reaction tube 15 can be performed while using the basic model 8.

【0010】さて、前記の直管モデル化条件生成手段1
8により生成される、先に説明した曲がり管部対応条
件、接続条件等が、直管の曲がり管部対応部16m、直
管合流部対応部17mで満たされるように、実行プログ
ラムが生成される。このような組み込み操作をおこなう
のが、評価対象統合モデル生成手段19の役割である。
例えば、曲がり管部対応条件に関しては、熱伝達流体解
析手段の適応にあたって、この部位のエネルギー損失が
大きくなるように演算条件が変更される。さらに、合流
部17に関しては、この合流部17を挟む格子間で、各
物理量が質量流量一定となるように、格子間物理量を接
続する式が追加される。このような条件を加味した実行
プログラム(評価対象統合モデルと呼ぶ)を、評価対象
統合モデル生成手段19が自動生成する。このような評
価対象統合モデルの図4の構造に対応する概念図を図6
に示した。このモデルが、3本の直管を備えて構成され
ることが判る。合流前後に渡っては、前記合流接続条件
を満足するように、各格子の物理量が受け渡される。
The straight pipe modeling condition generating means 1 will now be described.
The execution program is generated such that the above-described bent pipe section corresponding conditions, connection conditions, and the like generated by step 8 are satisfied by the straight pipe bent pipe section corresponding section 16m and the straight pipe merging section corresponding section 17m. . It is the role of the evaluation object integrated model generation means 19 to perform such a built-in operation.
For example, with regard to the condition corresponding to the bent pipe portion, the calculation condition is changed so that the energy loss at this portion increases when adapting the heat transfer fluid analysis means. Further, with respect to the junction 17, a formula for connecting physical quantities between lattices is added so that each physical quantity has a constant mass flow rate between the lattices sandwiching the junction 17. The evaluation target integrated model generation means 19 automatically generates an execution program (referred to as an evaluation target integrated model) in consideration of such conditions. FIG. 6 is a conceptual diagram corresponding to the structure of FIG. 4 of such an evaluation object integrated model.
It was shown to. It can be seen that this model is configured with three straight tubes. Before and after the merging, the physical quantity of each lattice is transferred so as to satisfy the merging connection condition.

【0011】一方、中央処理装置5にある中央処理手段
20は、入出力装置4から入力される初期条件及び境界
条件に基づいて、評価対象に対応して、生成された評価
対象統合モデルの解析を行い収束解を得る構成とされて
いる。この処理にあたり、中央処理手段20は、先に説
明した熱流体解析手段7を適宜使用する。さらに、この
中央処理手段20は、得られた結果を入出力装置4に出
力し、適宜表示することができる。
On the other hand, the central processing means 20 in the central processing unit 5 analyzes the generated integrated model for the evaluation object corresponding to the evaluation object based on the initial condition and the boundary condition inputted from the input / output device 4. To obtain a converged solution. In this processing, the central processing means 20 appropriately uses the previously described thermal fluid analysis means 7. Further, the central processing means 20 can output the obtained result to the input / output device 4 and display it as appropriate.

【0012】以上が、本願の評価装置1の構成である
が、この評価装置1を使用して、加熱分解炉14の評価
をおこなう例について、図2、図4(イ)の例を取りな
がら以下説明する。ここで、(イ)は評価対象である反
応管15の実際の構成を模式的に図示したものであり、
(ロ)は、これを直管11として代表する状態を示して
いる。さらに、図2は作業ステップのフローを示したも
のである。作業にあたっては、評価対象の加熱炉の一例
である加熱分解炉14の図面(図4(イ))をみなが
ら、作業者は、先ず、反応管15の形状等を含む条件を
入出力装置4より入力する。この場合、直状管部15
a、曲がり管部16、合流部17等の識別情報、さらに
は、合流条件(どの管とどの管とが合流しているか)等
の情報も同時に入力する(ステップ1)。このようにし
て入力された反応管15に関する情報は、直管モデル化
条件生成手段18に受け渡され、直状管部15aに関し
てはそのまま、曲がり管部16に関しては先の曲がり管
部対応条件が、合流部17に関しては先の合流接続条件
が、対応する格子間の位置に関連付けて生成される(ス
テップ2)。そして、先に説明した評価対象統合モデル
生成手段19の働きにより、上記の曲がり管部対応条
件、接続条件を加味した評価対象統合モデルが構築され
る(ステップ3、4)。
The above is the configuration of the evaluation apparatus 1 of the present application. An example in which the evaluation apparatus 1 is used to evaluate the pyrolysis furnace 14 will be described with reference to FIGS. 2 and 4 (a). This will be described below. Here, (a) schematically shows the actual configuration of the reaction tube 15 to be evaluated.
(B) shows a state where this is represented as the straight pipe 11. FIG. 2 shows a flow of operation steps. In the operation, the operator firstly inputs the conditions including the shape of the reaction tube 15 and the like into the input / output device 4 while referring to the drawing (FIG. 4A) of the pyrolysis furnace 14 which is an example of the heating furnace to be evaluated. Enter more. In this case, the straight tube portion 15
a, identification information of the bent pipe section 16 and the merging section 17 and the like, as well as information such as merging conditions (which pipes merge with which pipes) are also input (step 1). The information on the reaction tube 15 input in this way is passed to the straight tube modeling condition generating means 18, and the straight tube portion 15 a is not changed, and the bent tube portion 16 is not changed. For the merging section 17, the merging connection conditions described above are generated in association with the corresponding positions between the lattices (step 2). Then, by the operation of the evaluation object integrated model generating means 19 described above, an evaluation object integrated model taking into account the above-mentioned curved tube portion corresponding condition and connection condition is constructed (steps 3 and 4).

【0013】一方、作業者は、加熱分解炉14の運転条
件に対応して、熱放射壁9が満足すべき条件、さらに、
直管11、その入口部12、出口部13の初期条件及び
境界条件を入力する(ステップ5)。
[0013] On the other hand, in accordance with the operating conditions of the pyrolysis furnace 14, the operator must satisfy the conditions that the heat radiating wall 9 should satisfy.
Initial conditions and boundary conditions of the straight pipe 11, its inlet 12, and outlet 13 are input (step 5).

【0014】この作業の後、作業者の指令に従って、評
価装置1は、評価対象統合モデルを対象として熱流体解
析を実行し(ステップ6)、解析結果を出力する(ステ
ップ7)。このようにして、加熱分解炉のシミュレーシ
ョンを終了することができる。
After this operation, the evaluation device 1 executes a thermo-fluid analysis on the integrated model to be evaluated in accordance with the instruction of the operator (step 6) and outputs the analysis result (step 7). Thus, the simulation of the pyrolysis furnace can be completed.

【0015】〔別実施の形態例〕上記の実施の形態にあ
っては、直管モデル化条件を自動生成するものとした
が、単なる解析の実行にあたっては、このような直管モ
デル化条件は、作業者により、入出力装置4側から入力
するものとしてもよい。
[Other Embodiments] In the above-described embodiment, the straight pipe modeling conditions are automatically generated. However, when a simple analysis is performed, such straight pipe modeling conditions are not used. Alternatively, the input may be made from the input / output device 4 side by an operator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願の加熱炉評価装置の構成概念図FIG. 1 is a conceptual diagram of a configuration of a heating furnace evaluation apparatus of the present application.

【図2】加熱評価の手順を示す図FIG. 2 is a diagram showing a procedure of heating evaluation.

【図3】評価対象となる熱分解炉の実際の構成例を示す
FIG. 3 is a diagram showing an actual configuration example of a thermal decomposition furnace to be evaluated.

【図4】反応管のモデル化概念図FIG. 4 is a conceptual diagram of modeling a reaction tube.

【図5】基本モデルの概念構成図FIG. 5 is a conceptual configuration diagram of a basic model.

【図6】図4(ロ)に対応する統合モデルの説明図FIG. 6 is an explanatory diagram of an integrated model corresponding to FIG.

【符号の説明】[Explanation of symbols]

5 中央処理装置 7 熱流体解析手段 7a 熱放射解析手段 7b 熱伝導解析手段 7c 熱伝達流体解析手段 9 熱放射壁 11 直管 16 曲がり管部 17 合流部 18 直管モデル化条件生成手段 19 評価対象統合モデル生成手段 5 Central Processing Unit 7 Thermal Fluid Analysis Means 7a Heat Radiation Analysis Means 7b Heat Conduction Analysis Means 7c Heat Transfer Fluid Analysis Means 9 Heat Radiation Wall 11 Straight Pipe 16 Bent Pipe 17 Confluence 18 Straight Pipe Modeling Condition Generation Means 19 Evaluation Target Integrated model generation means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加熱対象の流体が内部を流れる反応管を
炉内に備えた加熱炉の評価方法であって、 前記反応管を直管の組み合わせとみなし、 前記炉から前記反応管への熱の授受を、熱放射壁から前
記直管への熱放射によるものとみなし、 前記直管内の流体の状態を、前記熱放射壁と直管表面と
の間に於ける熱放射授受、前記直管表面と直管内面との
間に於ける熱伝導授受、及び前記直管内面と前記流体と
の熱伝達授受の関係に基づいて求める加熱炉の評価方
法。
1. A method for evaluating a heating furnace including a reaction tube in which a reaction object fluid flows inside, wherein the reaction tube is regarded as a combination of straight tubes, and heat from the furnace to the reaction tube is provided. Is considered to be due to heat radiation from the heat radiating wall to the straight pipe, and the state of the fluid in the straight pipe is transferred between the heat radiating wall and the surface of the straight pipe. A method for evaluating a heating furnace, which is obtained based on a relationship between heat transfer between a surface and an inner surface of a straight pipe and heat transfer between the inner surface of the straight pipe and the fluid.
【請求項2】 加熱対象の流体が内部を流れる反応管を
炉内に備えた加熱炉の評価装置であって、 熱放射壁とみなせる内壁を備えた筐体と、前記筐体内を
貫通する直管を備えた基本モデルを備えるとともに、 前記直管内の流体の状態を、前記熱放射壁と前記直管表
面との間に於ける熱放射授受、前記直管表面と前記直管
内面との間に於ける熱伝導授受及び前記直管内面と前記
流体との熱伝達授受の関係に基づいて求める熱流体解析
手段を備え、 入力される前記反応管の構造に基づいて、前記反応管を
前記直管の組み合わせとみなす場合に必要となる直管モ
デル化条件が加味されるとともに、前記基本モデルの組
み合わせとして構成される評価対象統合モデルを、前記
加熱炉に対応して生成する評価対象統合モデル生成手段
を備え、 入力される前記熱放射壁、直管、前記直管内の流体の初
期条件および境界条件に基づいて、前記評価対象統合モ
デルに、前記熱流体解析手段を適応して前記直管内の流
体の物理状態を求める中央処理手段を備えた加熱炉の評
価装置。
2. An evaluation apparatus for a heating furnace having a reaction tube in which a fluid to be heated flows inside the furnace, comprising: a housing having an inner wall which can be regarded as a heat radiation wall; A basic model having a pipe is provided, and the state of the fluid in the straight pipe is transferred between the heat radiating wall and the straight pipe surface by heat radiation transfer between the straight pipe surface and the straight pipe inner surface. Thermofluid analyzing means for obtaining the heat transfer and the heat transfer between the inner surface of the straight pipe and the fluid. In addition to the straight pipe modeling condition required when considering a combination of pipes, an evaluation target integrated model generation that generates an evaluation target integrated model configured as a combination of the basic models in accordance with the heating furnace With means, input The heat radiation wall, the straight pipe, and the central condition for determining the physical state of the fluid in the straight pipe by applying the thermo-fluid analysis means to the integrated model to be evaluated based on the initial conditions and boundary conditions of the fluid in the straight pipe. Heating furnace evaluation device provided with processing means.
JP8339416A 1996-12-19 1996-12-19 Method and apparatus for evaluating heating furnace Pending JPH10176170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8339416A JPH10176170A (en) 1996-12-19 1996-12-19 Method and apparatus for evaluating heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8339416A JPH10176170A (en) 1996-12-19 1996-12-19 Method and apparatus for evaluating heating furnace

Publications (1)

Publication Number Publication Date
JPH10176170A true JPH10176170A (en) 1998-06-30

Family

ID=18327273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8339416A Pending JPH10176170A (en) 1996-12-19 1996-12-19 Method and apparatus for evaluating heating furnace

Country Status (1)

Country Link
JP (1) JPH10176170A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255078A (en) * 2000-03-13 2001-09-21 Tokyo Gas Co Ltd Configuration evaluating method for heat exchanging member
CN104896926A (en) * 2015-06-01 2015-09-09 北京中科诚毅科技发展有限公司 Novel heating furnace with multi-hearth structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255078A (en) * 2000-03-13 2001-09-21 Tokyo Gas Co Ltd Configuration evaluating method for heat exchanging member
JP4498527B2 (en) * 2000-03-13 2010-07-07 東京瓦斯株式会社 Ice accretion shape analysis method for heat exchanger and heat exchanger shape optimization method using the same
CN104896926A (en) * 2015-06-01 2015-09-09 北京中科诚毅科技发展有限公司 Novel heating furnace with multi-hearth structure

Similar Documents

Publication Publication Date Title
CN105844069B (en) A kind of oil-immersed transformer Calculation Method of Temperature Field and device
Cornejo et al. The influence of channel geometry on the pressure drop in automotive catalytic converters: Model development and validation
Issac et al. Experimental and numerical investigation of heat transfer characteristics of jet impingement on a flat plate
James et al. Large-eddy simulations of gas turbine combustors
Sleiti et al. Computational fluid dynamics to predict duct fitting losses: Challenges and opportunities
Li et al. Feature-based intelligent system for steam simulation using computational fluid dynamics
Razeghi et al. Comparison of combustion models based on fast chemistry assumption in large eddy simulation of pool fire
Zhang et al. Coupling one-dimensional user code and STAR-CCM+ for simulation of rolling conditions in a rod bundle channel
JPH10176170A (en) Method and apparatus for evaluating heating furnace
Jiang et al. N-Side cell-based smoothed finite element method for incompressible flow with heat transfer problems
JP4898306B2 (en) Channel network calculation method
Ramamurthy et al. 3D simulation of combining flows in 90 rectangular closed conduits
CN115618620A (en) Pressurized water reactor grid node dividing method based on RELAP5
Lande Complex mesh generation with openfoam
Mangani et al. Application of an object-oriented CFD code to heat transfer analysis
Dimitriou et al. A comparison of 1D-3D co-simulation and transient 3D simulation for EGR distribution studies
Fuchs Automated Design and Model Generation for a District Heating Network from OpenStreetMap Data
Diogo Couto et al. Lessons learned using FMI co-simulation for model-based design of cyber physical systems
Han et al. A universal parallel simulation framework for energy pipeline networks on high-performance computers
Schwarz et al. An OpenFOAM solver for the extended Navier–Stokes equations
Profir Mesh morphing techniques in CFD
Braga et al. Numerical simulation of turbulent flow in small-angle diffusers and contractions using a new wall treatment and a linear high Reynolds k–ε model
Elmi et al. Development of an Integrated Procedure for Combustor Aero-Thermal Preliminary Design
Chabibi et al. Model integration approach from SysML to MATLAB/simulink
Leandro et al. taX manual