JPH10176038A - Polylactic acid composition, its production and molded product from the composition - Google Patents

Polylactic acid composition, its production and molded product from the composition

Info

Publication number
JPH10176038A
JPH10176038A JP11016897A JP11016897A JPH10176038A JP H10176038 A JPH10176038 A JP H10176038A JP 11016897 A JP11016897 A JP 11016897A JP 11016897 A JP11016897 A JP 11016897A JP H10176038 A JPH10176038 A JP H10176038A
Authority
JP
Japan
Prior art keywords
polylactic acid
lactide
polymerization
acid composition
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11016897A
Other languages
Japanese (ja)
Other versions
JP3752776B2 (en
Inventor
Yoshiaki Hirai
良明 平井
Yukio Horikawa
幸雄 堀川
Yoshiharu Kimura
良晴 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP11016897A priority Critical patent/JP3752776B2/en
Publication of JPH10176038A publication Critical patent/JPH10176038A/en
Application granted granted Critical
Publication of JP3752776B2 publication Critical patent/JP3752776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a polylactic acid composition having high molecular weight and excellent heat stability with a small lowering of molecular weight in molding and capable of giving a molded product having high strength by compounding a polylactic acid with tris(acetylacetonato)aluminum at a specific ratio. SOLUTION: This composition contains (A) a poylactic acid composed of L- and/or D-lactic acid and (B) tris(acetylacetonato)aluminum Al(Acac)3 } in an amount of 0.075-2.0mol% based on a lactic acid unit of the component A. A method for using Al(Acac)3 as a catalyst in an amount of 0.15-4.0mol% based on lactide as a cyclic dimer of lactic acid in performing melt ring-opening polymerization of the lactide is exemplified to obtain the component A. By this method, the objective composition can be provided without requiring a post-treatment after the melt ring-opening polymerization of the lactide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、衣料用、日用生活
用、医薬品材料用、医療材料用、および農業、漁業、工
業、建築土木等の産業資材用に利用できる、粉末、繊
維、フィルム、および成形材料として好適なポリ乳酸組
成物、その製造方法および該組成物からの成形品に関す
る。
[0001] The present invention relates to powders, fibers and films which can be used for clothing, daily life, pharmaceutical materials, medical materials, and industrial materials such as agriculture, fisheries, industry, construction and civil engineering. And a polylactic acid composition suitable as a molding material, a method for producing the composition, and a molded article from the composition.

【0002】[0002]

【従来の技術】化石原料由来の合成ポリマーに対して、
ポリ乳酸は穀物を発酵させて得られる乳酸を原料とする
ため、地球資源保護の観点から注目されている。また、
ポリ乳酸は土中、水中および生体内で容易に加水分解さ
れ、自然界に広く存在し動植物に対して無害な乳酸とな
り、最終的には代謝あるいは微生物分解によって二酸化
炭素と水とに分解されるため、生分解性材料としても注
目されている。更に近年は、特に生体に対する安全性が
高いことから、医薬、医療分野への応用が盛んに行われ
ている。
2. Description of the Related Art For synthetic polymers derived from fossil raw materials,
Polylactic acid, which uses lactic acid obtained by fermenting grains as a raw material, is receiving attention from the viewpoint of protecting global resources. Also,
Polylactic acid is easily hydrolyzed in soil, water and living organisms, is widely found in nature and is harmless to animals and plants, and is eventually decomposed into carbon dioxide and water by metabolism or microbial degradation , Has also attracted attention as a biodegradable material. Furthermore, in recent years, applications to the medical and medical fields have been vigorously performed, particularly because of its high safety for living organisms.

【0003】ポリ乳酸の合成法としては、乳酸をオリゴ
マー化した後、これを解重合して環状二量体であるラク
チドを単離し、このラクチドを溶融開環重合させて得る
方法が知られている。この方法は、ラクチドの精製を充
分に行いさえすれば比較的容易に高分子量のポリ乳酸が
得られるため、非常に有用な方法である。
As a method for synthesizing polylactic acid, there is known a method in which lactic acid is oligomerized, depolymerized to isolate lactide, which is a cyclic dimer, and obtained by subjecting the lactide to melt ring-opening polymerization. I have. This method is a very useful method because high-molecular-weight polylactic acid can be obtained relatively easily if lactide is sufficiently purified.

【0004】このラクチド溶融開環重合の触媒としては
種々の金属化合物が報告されているが、中でもスズ化合
物、特にオクチル酸スズ(以下、Sn(Oct)2 と略
記する)がその触媒活性の高さから、短い重合時間で高
分子量のポリ乳酸が得られるため好ましく用いられてい
る。
Various metal compounds have been reported as catalysts for the lactide melt ring-opening polymerization. Among them, tin compounds, particularly tin octylate (hereinafter abbreviated as Sn (Oct) 2 ) have high catalytic activity. Therefore, it is preferably used because a high-molecular-weight polylactic acid can be obtained in a short polymerization time.

【0005】[0005]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、第一にポリ乳酸の熱安定性の改善であり、
第二に成形加工時の揮発成分による周辺環境汚染の防止
を目的とするポリ乳酸中の残存ラクチドの低減である。
The problem to be solved by the present invention is to improve the thermal stability of polylactic acid.
The second is to reduce residual lactide in polylactic acid for the purpose of preventing the surrounding environment from being contaminated by volatile components during molding.

【0006】まず、第一の課題について詳述する。ポリ
乳酸は他の熱可塑性プラスチックと同様、加熱溶融によ
る成形加工が可能である。しかし、Sn(Oct)2
触媒として製造されたポリ乳酸は成型加工工程にて著し
く分子量が低下し、充分な強度を持つ成形品が得られな
いという問題点がある。その原因は加水分解、解重合お
よび環状オリゴマー化並びに分子内および分子間エステ
ル交換によるもので、このような反応にポリ乳酸中に残
存するスズ化合物が関与していることが知られている。
First, the first problem will be described in detail. Polylactic acid, like other thermoplastics, can be molded by heating and melting. However, polylactic acid produced using Sn (Oct) 2 as a catalyst has a problem that the molecular weight is remarkably reduced in a molding process, and a molded article having sufficient strength cannot be obtained. The cause is due to hydrolysis, depolymerization and cyclic oligomerization, and intra- and intermolecular transesterification, and it is known that tin compounds remaining in polylactic acid are involved in such a reaction.

【0007】この解決策として幾つかの方法が提案され
ている。例えば、ポリ乳酸重合生成物を水に対して不混
和性の有機溶媒に溶解し、次いで無機酸、水溶性有機酸
又は水溶性錯化剤を含む水性相又は水と接触させ、該有
機相を分離した後ポリ乳酸を公知の方法で単離すること
で触媒を除去する方法(特開昭63−145327
号)、該重合生成物を親水性有機溶媒の存在下、酸性物
質と接触させることにより触媒を除去する方法(特開平
7−102053号)、あるいは該重合生成物にホウ素
化合物を添加し、触媒を失活させることで熱安定性を改
善する方法(特開平7−62213号)等が挙げられ
る。
Several solutions have been proposed as solutions to this problem. For example, a polylactic acid polymerization product is dissolved in an organic solvent immiscible with water, and then contacted with an aqueous phase or water containing an inorganic acid, a water-soluble organic acid, or a water-soluble complexing agent, and the organic phase is dried. A method of removing the catalyst by separating polylactic acid by a known method after separation (Japanese Patent Application Laid-Open No. 63-145327).
), A method of removing the catalyst by bringing the polymerization product into contact with an acidic substance in the presence of a hydrophilic organic solvent (JP-A-7-102553), or adding a boron compound to the polymerization product to form a catalyst. For improving thermal stability by deactivating (Japanese Patent Application Laid-Open No. 7-62213).

【0008】しかし、第1、第2の方法は多量の溶媒と
労力、設備を必要とするためコスト面で不利となり、ま
たポリ乳酸中に浸透した溶媒の完全な除去が難しい等の
ため、品質面での問題点も多い。また、第3の方法は重
合生成物であるポリマーチップに微量の添加剤を均一に
分散させることは非常に難しく、この分散に溶媒を使用
した場合はその除去に関して問題が生じることは前記第
1、第2の方法と同様である。
However, the first and second methods are disadvantageous in terms of cost because they require a large amount of solvent, labor and equipment, and it is difficult to completely remove the solvent permeated into polylactic acid. There are many problems on the surface. Further, in the third method, it is very difficult to uniformly disperse a trace amount of additive in a polymer chip which is a polymerization product, and when a solvent is used for this dispersion, there is a problem in removing the solvent. , And the second method.

【0009】すなわち、重合生成物を後処理を加えずに
そのまま次の成型加工工程に用いることが工業的には理
想であるが、Sn(Oct)2 触媒を用いたラクチド溶
融開環重合でこれを達成するのは困難である。
That is, it is industrially ideal to use the polymerization product as it is in the next molding step without post-treatment, but this is achieved by lactide melt ring-opening polymerization using a Sn (Oct) 2 catalyst. Is difficult to achieve.

【0010】一方、Sn(Oct)2 以外の触媒による
ポリ乳酸重合の研究は数多くなされているが、得られた
重合生成物の熱安定性の観点から触媒を検討した例は無
い。
On the other hand, many studies have been made on polylactic acid polymerization using a catalyst other than Sn (Oct) 2 , but there is no example of examining a catalyst from the viewpoint of the thermal stability of the obtained polymerization product.

【0011】本発明にて用いたトリスアセチルアセトナ
トアルミニウム(以下、Al(Acac)3 と略記す
る)がラクチドの溶融開環重合に際して触媒作用を有す
ることはMakromol.Chem.、1991、2
287〜2296、(1996)に記載されている。同
文献によれば、ラクチドに対して0.1モル%のAl
(Acac)3 を用い150℃で50時問重合させるこ
とにより重量平均分子量(Mw)17.1万(数平均分
子量(Mn)9万、Mw/Mn=1.9より算出)のポ
リ乳酸が得られている。
The fact that the trisacetylacetonatoaluminum (hereinafter abbreviated as Al (Acac) 3 ) used in the present invention has a catalytic action in the ring-opening polymerization of lactide is disclosed in Makromol. Chem. , 1991, 2
287-2296, (1996). According to the document, 0.1 mol% of Al based on lactide is used.
(Acac) 3 was polymerized at 150 ° C. for 50 hours to obtain polylactic acid having a weight average molecular weight (Mw) of 171,000 (number average molecular weight (Mn) of 90,000, calculated from Mw / Mn = 1.9). Have been obtained.

【0012】上記の例を工業化する場合に問題となる点
は、まず第一に重合時間がかかりすぎることである。こ
の問題点を解消する手段として容易に考えられる方法
は、重合温度を上げることと触媒量を増やすことであ
る。ところが、ラクチド溶融開環重合によるポリ乳酸重
合の場合、ラクチドとポリ乳酸の間に重合平衡が存在
し、その温度が高いほど平衡はラクチド側になることか
ら、重合温度を高くするほど重合度が上がりにくくなる
ことが知られている。また、触媒量に関してもスズ化合
物その他の触媒研究の結果、その量を増やせば増やすほ
ど重合度は低下することが当業者間での常識となってい
る。よって、前記の例の重合条件に対して、重合温度を
あげる、あるいは触媒量を増やす等の操作を行った場
合、得られるポリ乳酸の分子量は前記例の値よりもさら
に低いものになると考えられていた。これらがAl(A
cac)3 が高分子量のポリ乳酸を得るためのラクチド
溶融開環重合触媒として工業的使用に適さないと判断さ
れていた所以である。
The problem that arises when the above example is industrialized is that, first of all, the polymerization time is too long. A method that can be easily considered as a means for solving this problem is to increase the polymerization temperature and increase the amount of the catalyst. However, in the case of polylactic acid polymerization by lactide melt ring-opening polymerization, there is a polymerization equilibrium between lactide and polylactic acid, and the higher the temperature, the more the equilibrium is on the lactide side. It is known that climbing is difficult. Regarding the amount of catalyst, as a result of research on tin compounds and other catalysts, it is common knowledge among those skilled in the art that the higher the amount, the lower the degree of polymerization. Therefore, for the polymerization conditions of the above example, when performing an operation such as raising the polymerization temperature or increasing the amount of the catalyst, the molecular weight of the resulting polylactic acid is considered to be even lower than the value of the above example. I was These are Al (A
This is because it was determined that cac) 3 was not suitable for industrial use as a lactide melt ring-opening polymerization catalyst for obtaining high molecular weight polylactic acid.

【0013】次に第二の課題について詳述する。ポリ乳
酸をラクチドの溶融開環重合で製造した場合、重合生成
物中にラクチドが残存するのを避けることはできない。
この残存ラクチドは成形加工時に気化し、周辺環境の汚
染、成形金型の汚染、成形品中のボイド形成による強度
低下等の原因となる。ポリ乳酸にラクチドが残存する原
因は、モノマー(ラクチド)/ポリマー間の重合平衡に
より150℃以上ではモノマーは0にはならないからで
ある。
Next, the second problem will be described in detail. When polylactic acid is produced by melt ring-opening polymerization of lactide, it cannot be avoided that lactide remains in the polymerization product.
This residual lactide is vaporized during the molding process, causing contamination of the surrounding environment, contamination of the molding die, and reduction in strength due to the formation of voids in the molded product. The reason that lactide remains in polylactic acid is that the monomer does not become 0 at 150 ° C. or higher due to polymerization equilibrium between the monomer (lactide) and the polymer.

【0014】このラクチドを重合生成物から除く方法と
して提案されているものとして、特開平3−14829
号公報に記載の方法が挙げられる。同方法はラクチドの
開環重合による生体吸収性ポリエステル製造の後半ある
いは反応終了後に重合生成物を溶融状態に保ちながら減
圧し、残存ラクチドを系外に除くというものである。
As a method proposed for removing this lactide from a polymerization product, Japanese Patent Application Laid-Open No. 3-14829 has been proposed.
The method described in Japanese Unexamined Patent Publication (Kokai) No. HEI 9-205 (1994) is exemplified. In this method, the pressure is reduced while maintaining the polymerization product in a molten state in the second half of the production of the bioabsorbable polyester by ring-opening polymerization of lactide or after the reaction, and the remaining lactide is removed from the system.

【0015】上記公報には開環重合に使用する触媒およ
び触媒量に関する特定はないが、実施例に記載されてい
るのは前と同様にSn(Oct)2 でその使用量はラク
チドに対して0.00086〜0.0032モル%の範
囲である。しかし上記範囲の触媒量では工業的に妥当な
時間で重合を完了させることは難しい。例えば、該公報
の実施例9にはL−ラクチドに対して0.0024モル
%のSn(Oct)2を用いた例が開示されているが、
200℃で常圧下180時間、さらに減圧下で2時間と
非常に長い重合時間を必要としている。
Although the above publication does not specify the catalyst used in the ring-opening polymerization and the amount of the catalyst, it is described in Examples that Sn (Oct) 2 is used and the amount used is based on lactide. It is in the range of 0.00086 to 0.0032 mol%. However, it is difficult to complete the polymerization in a commercially reasonable time with the catalyst amount in the above range. For example, Example 9 of the publication discloses an example using 0.0024 mol% of Sn (Oct) 2 with respect to L-lactide.
It requires a very long polymerization time of 200 hours at 200 ° C. under normal pressure and 2 hours under reduced pressure.

【0016】一方、Sn(Oct)2 の量を増やすと重
合速度は上昇するが、同時に解重合速度も大きくなり、
減圧によってラクチドを除いてもすぐに再生産されるた
め残存ラクチド量は低下せず、又そのまま減圧を続けれ
ばポリマー収率が低下してしまう。
On the other hand, when the amount of Sn (Oct) 2 is increased, the polymerization rate increases, but at the same time, the depolymerization rate also increases.
Even if lactide is removed by reducing the pressure, the lactide is immediately re-produced, so that the amount of the remaining lactide does not decrease, and if the pressure is kept reduced, the polymer yield decreases.

【0017】従って、Sn(Oct)2 触媒によるポリ
乳酸重合において、減圧によるラクチド除去を工業的に
実施が可能な条件で行なうことは困難であった。
Therefore, in the polymerization of polylactic acid using a Sn (Oct) 2 catalyst, it has been difficult to remove lactide under reduced pressure under conditions that can be carried out industrially.

【0018】本発明は上記の実情に鑑みなされたもので
あって、第一の課題に対しては高分子量でかつ熱安定性
に優れるため成形加工時の分子量低下が小さく、高強度
の成形品を与えるポリ乳酸組成物、ラクチド溶融開環重
合において重合後の後処理を必要としない高分子量かつ
熱安定性に優れたポリ乳酸組成物の新規な製造方法、お
よび該ポリ乳酸組成物からなる成形品の提供を目的とす
るものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances. The first object of the present invention is to provide a high-strength molded article having a high molecular weight and excellent thermal stability, so that a decrease in molecular weight during molding is small. , A novel method for producing a polylactic acid composition having a high molecular weight and excellent thermal stability that does not require post-polymerization in lactide melt ring-opening polymerization, and molding comprising the polylactic acid composition The purpose is to provide goods.

【0019】また、第二の課題に対しては成形加工時の
周辺環境汚染が無いポリ乳酸組成物、残存ラクチド量の
少ないポリ乳酸組成物を短時間で効率よく製造する方
法、および該ポリ乳酸組成物からなる成形品の提供を目
的とするものである。
Further, the second object is to provide a polylactic acid composition which does not contaminate the surrounding environment at the time of molding, a method for efficiently producing a polylactic acid composition having a small amount of residual lactide in a short time, and the polylactic acid composition. It is intended to provide a molded article comprising the composition.

【0020】[0020]

【課題を解決するための手段】上記第一の目的を達成す
るための本発明は、L−及び/又はD−乳酸から成るポ
リ乳酸と、該ポリ乳酸の乳酸単位に対して0.075〜
2.0モル%のAl(Acac)3 を含んで成るポリ乳
酸組成物を特徴とするものである。
Means for Solving the Problems The present invention for achieving the first object is a polylactic acid comprising L- and / or D-lactic acid, and a polylactic acid having a content of 0.075 to lactic acid unit of the polylactic acid.
A polylactic acid composition comprising 2.0 mol% of Al (Acac) 3 is characterized.

【0021】いまひとつの発明は、乳酸の環状二量体で
あるラクチドを溶融開環重合してポリ乳酸を製造するに
際し、触媒として該ラクチドに対して0.15〜4.0
モル%のAl(Acac)3 を用いることを特徴とする
ポリ乳酸組成物の製造方法である。
Another invention is a method for producing a polylactic acid by subjecting lactide, which is a cyclic dimer of lactic acid, to melt-opening polymerization to produce polylactic acid.
A method for producing a polylactic acid composition, comprising using mol% of Al (Acac) 3 .

【0022】また、いまひとつの発明は、L−及び/又
はD−乳酸から成るポリ乳酸と、該ポリ乳酸の乳酸単位
に対して0.075〜2.0モル%のAl(Acac)
3 を含んで成るポリ乳酸組成物からなることを特徴とす
る成形品である。
Another invention relates to a polylactic acid comprising L- and / or D-lactic acid, and 0.075 to 2.0 mol% of Al (Acac) based on lactic acid units of the polylactic acid.
3 is a molded article characterized by comprising the the comprising at polylactic acid composition.

【0023】又、第二の目的を達成するための本発明
は、L−及び/又はD−乳酸からなり、ラクチドの含有
量が1%未満であるポリ乳酸と、該ポリ乳酸の乳酸単位
に対して0.075〜2.0モル%のAl(Acac)
3 を含んで成るポリ乳酸組成物を特徴とするものであ
る。
The present invention for achieving the second object is a polylactic acid comprising L- and / or D-lactic acid and having a lactide content of less than 1%, and a lactic acid unit of the polylactic acid. 0.075 to 2.0 mol% of Al (Acac)
3. A polylactic acid composition comprising ( 3 ).

【0024】いまひとつの発明は、乳酸の環状二量体で
あるラクチドを溶融開環重合してポリ乳酸を製造するに
際し、触媒として該ラクチドに対して0.15〜4.0
モル%のAl(Acac)3 を用い、重合系中の残存ラ
クチド量が30〜5%となるまで重合反応を進行させる
第一工程と、該工程の重合生成物を溶融状態で減圧下に
おき重合を完結させる第二工程とからなることを特徴と
するポリ乳酸組成物の製造方法である。
Another invention is a method for producing polylactic acid by subjecting lactide, which is a cyclic dimer of lactic acid, to melt-opening polymerization to produce polylactic acid, wherein the lactide is used as a catalyst in an amount of 0.15 to 4.0.
A first step of using a mole% of Al (Acac) 3 to advance the polymerization reaction until the amount of residual lactide in the polymerization system becomes 30 to 5%, and placing the polymerization product of the step in a molten state under reduced pressure. A method for producing a polylactic acid composition, comprising a second step of completing polymerization.

【0025】さらに、いまひとつの発明は、L−及び/
又はD−乳酸からなり、ラクチドの含有量が1%未満で
あるポリ乳酸と、該ポリ乳酸の乳酸単位に対して0.0
75〜2.0モル%のAl(Acac)3 を含んで成る
ポリ乳酸組成物から成る事を特徴とする成形品である。
Further, another invention relates to L- and / or
Or, a polylactic acid composed of D-lactic acid and having a lactide content of less than 1%, and 0.0
A molded article characterized by comprising a polylactic acid composition containing 75 to 2.0 mol% of Al (Acac) 3 .

【0026】[0026]

【発明の実施の形態】本発明に用いられるラクチドは前
述したように乳酸をオリゴマー化した後解重合すること
によって得られる乳酸の環状二量体である。乳酸にはL
−乳酸とD−乳酸が存在し、それに伴ってラクチドにも
L−ラクチド、D−ラクチド、D、L−ラクチド、ラセ
ミラクチドが存在する。本発明に用いられるラクチドの
光学純度は特に限定されるものではないが、得られる高
分子量ポリ乳酸の融点はポリ乳酸の光学純度によって決
定され、高純度のものほど高融点のポリ乳酸が得られる
ため、より耐熱性の高いポリ乳酸を望むならば高光学純
度のラクチドを用いることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Lactide used in the present invention is a cyclic dimer of lactic acid obtained by oligomerizing lactic acid and then depolymerizing as described above. L for lactic acid
-Lactic acid and D-lactic acid are present, and lactide is accompanied by L-lactide, D-lactide, D, L-lactide, and racemic lactide. Although the optical purity of lactide used in the present invention is not particularly limited, the melting point of the obtained high molecular weight polylactic acid is determined by the optical purity of the polylactic acid, and the higher the purity, the higher the melting point of the polylactic acid. Therefore, if polylactic acid having higher heat resistance is desired, it is preferable to use lactide having high optical purity.

【0027】ラクチドの溶融開環重合においては水酸基
を有する化合物が重合の開始剤として働くため、生成す
るポリ乳酸の分子量は原料中の水酸基濃度によって決定
される。例えば、ホモポリマーの場合、重量平均分子量
20万以上のポリ乳酸を得るためには原料中の水分量は
5ppm〜60ppmの範囲内にあることが必要であ
る。
In the melt ring-opening polymerization of lactide, since the compound having a hydroxyl group functions as a polymerization initiator, the molecular weight of the resulting polylactic acid is determined by the hydroxyl group concentration in the raw material. For example, in the case of a homopolymer, in order to obtain polylactic acid having a weight average molecular weight of 200,000 or more, the water content in the raw material needs to be within a range of 5 ppm to 60 ppm.

【0028】本発明に用いられるAl(Acac)3
前述したようにその使用量がラクチドに対して0.1モ
ル%では十分な分子量のポリ乳酸は得られない。しか
し、本発明者等は該Al(Acac)3 が当業者の常識
に反して、その使用量を増やすことで得られるポリ乳酸
の分子量が増大することを見出した。本発明におけるA
l(Acac)3 の使用量は、ラクチドに対して0.1
5〜4.0モル%(ポリ乳酸の乳酸単位にたいしては
0.075〜2.0モル%)である。0.15モル%未
満では得られるポリ乳酸の分子量が充分ではなく、使用
量が増えると得られるポリ乳酸の分子量は大きくなるが
3.0モル%付近で分子量の増加が飽和し、それ以上で
はむしろ分子量が低下する。また、Al(Acac)3
の使用量増加に伴って得られたポリ乳酸の熱安定性は低
下する傾向にあり、4.0モル%より多く使用すること
は熱安定性の点からも不利である。
As described above, if the amount of Al (Acac) 3 used in the present invention is 0.1 mol% based on lactide, polylactic acid having a sufficient molecular weight cannot be obtained. However, the present inventors have found that, contrary to the common knowledge of those skilled in the art, the molecular weight of polylactic acid obtained by increasing the amount of Al (Acac) 3 increases. A in the present invention
l (Acac) 3 is used in an amount of 0.1 to lactide.
5 to 4.0 mol% (0.075 to 2.0 mol% for the lactic acid unit of the polylactic acid). If the amount is less than 0.15 mol%, the molecular weight of the obtained polylactic acid is not sufficient, and if the amount used is increased, the molecular weight of the obtained polylactic acid becomes large. Rather, the molecular weight decreases. Also, Al (Acac) 3
The thermal stability of the obtained polylactic acid tends to decrease with an increase in the amount of used, and the use of more than 4.0 mol% is disadvantageous from the viewpoint of thermal stability.

【0029】本発明における重合温度は特に限定される
ものではないが、180〜200℃であることが好まし
い。180℃より低温では重合に長時間を要するととも
に、得られたポリ乳酸の融点よりも低温であるため攪拌
が不能となり好ましくない。また、200℃より高温で
はラクチドとポリ乳酸の平衡がラクチド側に偏りすぎる
ため重合度が上がりにくくなり、またラクチドの生成量
が増大するためポリ乳酸の収率が低下する。
The polymerization temperature in the present invention is not particularly limited, but is preferably from 180 to 200 ° C. If the temperature is lower than 180 ° C., it takes a long time for polymerization, and the temperature is lower than the melting point of the obtained polylactic acid. If the temperature is higher than 200 ° C., the equilibrium between lactide and polylactic acid is too close to the lactide side, so that the degree of polymerization is hardly increased, and the production amount of lactide increases, so that the yield of polylactic acid decreases.

【0030】重合生成物中の残存ラクチドを低減させる
手段として、重合をある程度まで進行させる第一工程
と、その重合生成物から減圧によってラクチドを除去す
る第二工程とに分けて行なうことが望ましい。該第一工
程の終点は重合生成物中の残存ラクチド量が30〜5%
に達した時点である。残存ラクチド量が30%より多い
時点で第一工程を終了させると、残ったラクチドは第二
工程にて除かれるわけであるからポリマー収率は70%
より小さくなり不経済である。また第一工程終了時の残
存ラクチド量が5%未満であれば、第二工程にて十分ラ
クチドが除去されない。これは残存ラクチドが重合生成
物中で可塑剤として作用し、減圧下での自身の揮発を助
けていると考えられる。
As a means for reducing the residual lactide in the polymerization product, it is desirable to carry out the first step of proceeding the polymerization to a certain extent and the second step of removing lactide from the polymerization product by reducing the pressure. The end point of the first step is that the residual lactide content in the polymerization product is 30 to 5%.
Is reached. When the first step is terminated when the amount of the remaining lactide is more than 30%, the remaining lactide is removed in the second step, so that the polymer yield is 70%.
It is smaller and uneconomical. If the residual lactide amount at the end of the first step is less than 5%, lactide is not sufficiently removed in the second step. This is believed to be due to the residual lactide acting as a plasticizer in the polymerization product, helping to volatilize itself under reduced pressure.

【0031】第一工程に要する時間は通常は60〜60
0分であるが使用した触媒の量、重合温度、系内の水分
量などによって異なるため、系中の残存ラクチド量をチ
ェックしてその時間を適宜選択すればよい。又、第一工
程を実施するための重合装置は特に限定されるものでは
ないが、例えば攪拌装置と加熱機構を備えたバッチ式反
応容器、あるいはエクストルーダータイプの連続式反応
装置等を挙げることができる。ただし、前述したように
本反応は系中の水分量によって生成するポリ乳酸の重合
度が左右されるため、反応系は無水雰囲気下であること
が望ましく、窒素、アルゴン等の不活性ガス雰囲気下で
重合させることが望ましい。
The time required for the first step is usually 60-60.
Although it is 0 minutes, it depends on the amount of the catalyst used, the polymerization temperature, the amount of water in the system, and the like. Therefore, the amount of residual lactide in the system may be checked and the time may be appropriately selected. Further, the polymerization apparatus for performing the first step is not particularly limited, for example, a batch type reaction vessel equipped with a stirring device and a heating mechanism, or an extruder type continuous reaction device and the like. it can. However, as described above, since the degree of polymerization of the generated polylactic acid depends on the amount of water in the system in this reaction, the reaction system is desirably under an anhydrous atmosphere, and under an inert gas atmosphere such as nitrogen or argon. It is desirable to polymerize with.

【0032】上記第一工程で得られる重合生成物を第二
工程に移行させる方法は得に限定されるものではない
が、その間も重合生成物は無水雰囲気下にあることが好
ましい。従って、例えば不活性ガスでシールされたバッ
チ式反応容器中で第一工程を行なった場合には、重合生
成物を反応容器外に取り出さず、そのまま系を減圧にし
て第二工程を行なうのが望ましい。また、連続反応装置
で第一工程を行なった場合には、その取り出し口から第
二工程へ無水雰囲気下で直接移送するか、あるいは取り
出した後無水雰囲気下で貯蔵し、しかる後第二工程に移
すという方法を挙げることができる。
The method of transferring the polymerization product obtained in the first step to the second step is not particularly limited, but the polymerization product is preferably kept under an anhydrous atmosphere during that time. Therefore, for example, when the first step is performed in a batch-type reaction vessel sealed with an inert gas, it is better to carry out the second step by reducing the pressure of the system without removing the polymerization product to the outside of the reaction vessel. desirable. When the first step is carried out in a continuous reaction apparatus, it is directly transferred from the outlet to the second step under an anhydrous atmosphere, or is taken out and stored in an anhydrous atmosphere, and then is returned to the second step. Transfer method.

【0033】本発明の第二工程は、第一工程で得られた
重合生成物中の残存ラクチドを低減させる工程であり、
その終点とするところは残存ラクチドの量が1%未満と
なった時点が好適に選ばれる。第二工程の温度条件は重
合生成物の融点以上であることが必須である。例えば、
ポリL乳酸ホモポリマーの場合には180℃以上である
ことが必要である。また、その上限は前述のように20
0℃以下である事が好ましい。200℃より高温にする
とポリ乳酸の解重合速度が上昇し、いくら減圧によって
ラクチドを除いてもラクチドが再生産することにより終
点に達しない虞がある。また減圧の条件は特に限定され
るものではないが、減圧度は低ければ低いほど終点に達
するまでの時間が短縮されるため、好ましくは10mm
Hg以下、より好ましくは5mmHg以下である。
The second step of the present invention is a step of reducing the residual lactide in the polymerization product obtained in the first step,
The end point is preferably selected when the amount of the remaining lactide becomes less than 1%. It is essential that the temperature conditions in the second step be higher than the melting point of the polymerization product. For example,
In the case of a poly-L-lactic acid homopolymer, the temperature must be 180 ° C. or higher. The upper limit is 20 as described above.
It is preferable that the temperature is 0 ° C. or lower. If the temperature is higher than 200 ° C., the rate of depolymerization of polylactic acid increases, and even if lactide is removed by reducing the pressure, the end point may not be reached due to lactide reproduction. The conditions for the pressure reduction are not particularly limited, but the lower the degree of the pressure reduction, the shorter the time required to reach the end point.
Hg or less, more preferably 5 mmHg or less.

【0034】本発明の成形品は、前述のごとき本発明の
ポリ乳酸組成物を溶融成形してなる成形品である。前記
成形品の例としては射出、押し出し等の各種成形品、フ
ィルム、シ−トまたは未延伸もしくは延伸配向された繊
維、さらには前記繊維からの繊維構造物(編物、織物、
不織布、紙、紐、テ−プ、ロ−プ、網など)、さらには
合成皮革の様な前記フィルムやシートと繊維との複合物
が挙げられるがこれらに限定されるものではない。
The molded article of the present invention is a molded article obtained by melt-molding the polylactic acid composition of the present invention as described above. Examples of the molded product include various molded products such as injection and extrusion, films, sheets, unstretched or stretch-oriented fibers, and fiber structures (knits, woven fabrics,
Non-woven fabric, paper, string, tape, rope, net, etc.), and a composite of the film or sheet and fiber such as synthetic leather, but is not limited thereto.

【0035】これら成形品の用途としては、防虫、保
温、防霜、遮光、防草用フィルム、シ−ト、繊維構造物
等の農業用用途、乗り物の内装や電気製品等の工業用用
途、法面緑化保護用シ−トや繊維構造物等の土木用用
途、床や壁材等の建築用途、使い捨て器具、使い捨て衣
料、靴や鞄等も含めた日用生活用品、玩具やゲーム機等
を含めた遊具、生理用品等を含めた衛生医療用途、漁
網、釣り糸、各種養殖用ロ−プ、網などの漁業用用途等
が挙げられるがこれらに限定される物ではない。
The uses of these molded articles include insect-proof, heat-retaining, frost-proof, light-shielding, weed-proof films, sheets, textile structures, etc., agricultural uses, vehicle interiors and electric products, industrial uses, etc. Applications include civil engineering applications such as sheets and fiber structures for slope revegetation protection, architectural applications such as floors and wall materials, disposable equipment, disposable clothing, daily necessities including shoes and bags, toys and game machines. Examples include, but are not limited to, sanitary and medical applications including playground equipment, sanitary goods, and the like, and fishing applications such as fishing nets, fishing lines, various aquaculture ropes, and nets.

【0036】[0036]

【実施例】以下、実施例により本発明を詳述する。なお
その前に本明細書における種々の特性値の測定法を記述
する。
The present invention will be described below in detail with reference to examples. Before that, the method of measuring various characteristic values in this specification will be described.

【0037】<重量平均分子量>クロロホルムを溶離液
としたGPC(ゲル浸透クロマトグラフィー)によって
ポリ乳酸組成物中のポリマ−部の重量平均分子量(M
w)を測定した。なお、分子量較正曲線はポリスチレン
を用いて作成した。
<Weight average molecular weight> The weight average molecular weight (M) of the polymer part in the polylactic acid composition was determined by GPC (gel permeation chromatography) using chloroform as an eluent.
w) was measured. In addition, the molecular weight calibration curve was created using polystyrene.

【0038】<残存ラクチド量>前述のGPC測定にお
けるポリマー部、及びモノマー(ラクチド)部の面積か
ら、下記式にて求められる値を重合生成物中の残存ラク
チド量とした。
<Amount of Residual Lactide> From the area of the polymer part and the monomer (lactide) part in the above-described GPC measurement, a value obtained by the following equation was defined as the amount of residual lactide in the polymerization product.

【0039】残存ラクチド量(%)=モノマー部の面積
/(ポリマー部の面積+モノマー部の面積)×100
Residual lactide amount (%) = Area of monomer part / (Area of polymer part + Area of monomer part) × 100

【0040】<曲げ強度>五酸化燐存在下、室温で24
時間減圧乾燥したポリ乳酸組成物を200℃、5分の条
件で圧縮成形し、厚さ約1.6mmの成形板を得た。こ
れより、幅15mm、長さ80mmの試験片を切り出
し、支点間距離26mm、試験速度0.8mm/分の条
件で曲げ強度を測定した。
<Bending strength> 24 hours at room temperature in the presence of phosphorus pentoxide.
The polylactic acid composition dried under reduced pressure for hours was compression molded at 200 ° C. for 5 minutes to obtain a molded plate having a thickness of about 1.6 mm. From this, a test piece having a width of 15 mm and a length of 80 mm was cut out, and the bending strength was measured under the conditions of a distance between supporting points of 26 mm and a test speed of 0.8 mm / min.

【0041】<物性安定性>成形品とした時の物性とし
ての安定性を、次の様に成形安定性で調べた。すなわ
ち、成形前のポリ乳酸組成物(重合後)を前述した圧縮
成形法で成形した(成形後)。重合後および成形後のポ
リ乳酸組成物の重量平均分子量(Mw)を測定し、下記
式にて成形安定性を求めた。
<Stability of Physical Properties> The stability as physical properties of a molded article was examined in terms of molding stability as follows. That is, the polylactic acid composition (after polymerization) before molding was molded (after molding) by the compression molding method described above. The weight average molecular weight (Mw) of the polylactic acid composition after polymerization and after molding was measured, and the molding stability was determined by the following formula.

【0042】成形安定性(%)=ポリ乳酸組成物Mw
(成形後)/ポリ乳酸組成物Mw(重合後)×100
Molding stability (%) = polylactic acid composition Mw
(After molding) / polylactic acid composition Mw (after polymerization) × 100

【0043】また、成形品の安定性を成形作業を行う代
わりに以下の方法による熱安定性で代表させた。すなわ
ち、溶融処理前のポリ乳酸組成物(重合後)約3gを、
試験管中窒素下で180℃、1時間加熱(溶融処理)
し、得られたポリ乳酸組成物(溶融後)をえた。重合後
と溶融後のポリ乳酸組成物の重量平均分子量(Mw)を
前述の方法で測定し、下記式にて熱安定性を求めた。
The stability of the molded article was represented by the thermal stability by the following method instead of performing the molding operation. That is, about 3 g of the polylactic acid composition (after polymerization) before the melt treatment,
Heat at 180 ° C for 1 hour under nitrogen in test tube (melting process)
Then, the obtained polylactic acid composition (after melting) was obtained. The weight average molecular weight (Mw) of the polylactic acid composition after polymerization and after melting was measured by the method described above, and the thermal stability was determined by the following equation.

【0044】熱安定性(%)=ポリ乳酸組成物Mw(溶
融後)/ポリ乳酸組成物Mw(重合後)×100
Thermal stability (%) = polylactic acid composition Mw (after melting) / polylactic acid composition Mw (after polymerization) × 100

【0045】<収率>重合原料であるラクチドの重量
と、重合生成物であるポリ乳酸組成物の重量から、重合
反応の収率を下記式より求めた。
<Yield> From the weight of lactide as a raw material for polymerization and the weight of a polylactic acid composition as a polymerization product, the yield of a polymerization reaction was determined by the following formula.

【0046】 収率(%)=ポリ乳酸組成の重量/原料の重量×100Yield (%) = weight of polylactic acid composition / weight of raw material × 100

【0047】(実施例1)L−ラクチド(水分率31p
pm、PURAC社製)120g(833mmol)と
Al(Acac)3 2.70g(8.33mmol)
を、攪拌装置、窒素導入管を備えた反応容器に投入し、
窒素置換の後、窒素気流下で180℃に加熱し溶融開環
重合させた。このとき、触媒であるAl(Acac)3
の量は、原料のL−ラクチドに対して1.0モル%、生
成したポリ乳酸組成物の乳酸単位に対しては0.5モル
%であった。分子量の上昇が飽和した時点で反応を終了
し重合生成物を系外に取り出した。得られたポリ乳酸組
成物およびこれを成形して得られた成形板の特性は表1
に示すとおりであった。重合後のポリ乳酸組成物の重量
平均分子量は43.2万と非常に大きく、また成形後も
32.4万(成形安定性75.0%)の高分子量を保持
しているため、成形板の曲げ強さも998kgf/cm
2 と非常に大きなものであった。これは触媒としてSn
(Oct)2 を用いて得られたポリ乳酸組成物成形板の
曲げ強度(比較例1)の約1.6倍の値であった。
Example 1 L-lactide (moisture ratio 31 p)
pm, manufactured by PURAC) 120 g (833 mmol) and 2.70 g (8.33 mmol) of Al (Acac) 3
Into a reaction vessel equipped with a stirrer and a nitrogen inlet tube,
After the replacement with nitrogen, the mixture was heated to 180 ° C. in a nitrogen stream to perform melt ring-opening polymerization. At this time, the catalyst Al (Acac) 3
Was 1.0 mol% with respect to the raw material L-lactide and 0.5 mol% with respect to the lactic acid units of the resulting polylactic acid composition. The reaction was terminated when the increase in the molecular weight was saturated, and the polymerization product was taken out of the system. Table 1 shows the properties of the obtained polylactic acid composition and the molded plate obtained by molding the same.
Was as shown in FIG. The weight-average molecular weight of the polylactic acid composition after polymerization is as large as 432,000, and after molding, the polylactic acid composition maintains a high molecular weight of 3240 (molding stability 75.0%). Has a bending strength of 998kgf / cm
It was 2 and very big. This is because Sn
The bending strength of the polylactic acid composition molded plate obtained using (Oct) 2 was about 1.6 times the bending strength (Comparative Example 1).

【0048】(比較例1)実施例1におけるAl(Ac
ac)3 に代えて該ラクチドに対して0.1mol%の
Sn(Oct)2 を触媒として用いる以外は実施例1と
同様にして溶融開環重合をおこなった。得られたポリ乳
酸組成物およびこれを成形して得られた成形板の特性は
表1に示すとおりであった。重合後のポリ乳酸組成物の
重量平均分子量は実施例1と同様に45.6万の高分子
であったが、成形によって分子量が12.4万(成形安
定性27.2%)まで大きく低下し、そのため成形板の
曲げ強さも625kgf/cm2 しかなく実施例1に比
べてはるかに小さい値であった。
(Comparative Example 1) Al (Ac) in Example 1
Melt ring-opening polymerization was carried out in the same manner as in Example 1 except that 0.1 mol% of Sn (Oct) 2 with respect to the lactide was used as a catalyst instead of ac) 3 . The properties of the obtained polylactic acid composition and the molded plate obtained by molding the same were as shown in Table 1. The weight average molecular weight of the polylactic acid composition after polymerization was a high molecular weight of 4560,000 as in Example 1, but the molecular weight was greatly reduced to 1240,000 (molding stability: 27.2%) by molding. However, the bending strength of the formed plate was only 625 kgf / cm 2 , which was much smaller than that of Example 1.

【0049】[0049]

【表1】 [Table 1]

【0050】実施例1および比較例1によるポリ乳酸組
成物の溶融処理した前後の重量平均分子量を表2に示
す。成形品の安定性の場合と同様に実施例1によるもの
が36.5万の高分子量を保持し、熱安定性も84.5
%と高値を示すのに対し、比較例1によるものは分子量
が7.8万と著しく低下し、熱安定性が17.3%と低
値を示した。この結果もAl(Acac)3 触媒による
ポリ乳酸組成物の熱安定性の高さを示すものである。ま
た、同処理が成形のシミュレ−ションとして妥当である
ことを示すものである。
Table 2 shows the weight average molecular weights of the polylactic acid compositions according to Example 1 and Comparative Example 1 before and after the melt treatment. As in the case of the stability of the molded article, the one according to Example 1 has a high molecular weight of 36.5 million and a thermal stability of 84.5.
%, Whereas the sample according to Comparative Example 1 had a remarkably reduced molecular weight of 78,000 and a low thermal stability of 17.3%. This result also indicates the high thermal stability of the polylactic acid composition using the Al (Acac) 3 catalyst. It also shows that this process is appropriate as a simulation for molding.

【0051】(実施例2〜6)実施例1におけるAl
(Acac)3 の触媒量を表2のとおりにする以外は実
施例1と同様にして溶融開環重合をおこなった。得られ
たポリ乳酸組成物の特性値は表2に示すとおりである。
いずれからも重量平均分子量の大きなポリ乳酸が得ら
れ、溶融処理後も20万以上の重量平均分子量(熱安定
性60%以上)を保持しており、熱安定性の高いポリ乳
酸組成物が得られた。
(Embodiments 2 to 6) Al in Embodiment 1
Melt ring-opening polymerization was carried out in the same manner as in Example 1 except that the amount of (Acac) 3 catalyst was as shown in Table 2. The characteristic values of the obtained polylactic acid composition are as shown in Table 2.
From all of these, a polylactic acid having a large weight average molecular weight can be obtained, and a polylactic acid composition having a high heat stability having a weight average molecular weight of 200,000 or more (thermal stability of 60% or more) even after the melting treatment can be obtained. Was done.

【0052】(比較例2)Al(Acac)3 の触媒量
を0.270g(0.833mmol)とする以外は実
施例1と同様にして溶融開環重合をおこなった。このと
き、Al(Acac)3 は、原料のL−ラクチドに対し
て0.1モル%、生成したポリ乳酸組成物の乳酸単位に
対しては0.05モル%となる。得られた重合生成物の
特性値は表2に示すとおりであり、重量平均分子量が2
0万以下と低値であり、本発明の方法(実施例1〜6)
によって得られるものより小さかった。
Comparative Example 2 Melt ring-opening polymerization was carried out in the same manner as in Example 1 except that the amount of Al (Acac) 3 catalyst was changed to 0.270 g (0.833 mmol). At this time, Al (Acac) 3 is 0.1 mol% with respect to the raw material L-lactide, and 0.05 mol% with respect to the lactic acid unit of the produced polylactic acid composition. The characteristic values of the obtained polymerization product are as shown in Table 2, and the weight average molecular weight is 2
As low as 100,000 or less, the method of the present invention (Examples 1-6)
Was smaller than that obtained by

【0053】(比較例3)Al(Acac)3 の触媒量
を13.5g(41.6mmol)とする以外は実施例
1と同様にして溶融開環重合をおこなった。このとき、
Al(Acac)3 は、原料のL−ラクチドに対して
5.0モル%、生成したポリ乳酸組成物の乳酸単位に対
しては2.5モル%となる。得られた重合生成物の特性
値は表2に示すとおりであり、溶融処理後の重量平均分
子量が20万以下、熱安定性が51.9%と低値であ
り、本発明の方法(実施例1〜6)によって得られるも
のより小さかった。
Comparative Example 3 Melt ring-opening polymerization was carried out in the same manner as in Example 1 except that the amount of Al (Acac) 3 catalyst was changed to 13.5 g (41.6 mmol). At this time,
Al (Acac) 3 is 5.0 mol% based on the raw material L-lactide, and 2.5 mol% based on the lactic acid unit of the polylactic acid composition produced. The characteristic values of the obtained polymerization product are as shown in Table 2. The weight average molecular weight after the melt treatment was 200,000 or less, and the thermal stability was as low as 51.9%. It was smaller than that obtained by Examples 1-6).

【0054】[0054]

【表2】 [Table 2]

【0055】(実施例7)L−ラクチド(水分率11p
pm、PURAC社製)60g(416mmol)とA
l(Acac)3 0.675g(2.08mmol)
を、攪拌装置、窒素導入管を備えた反応容器に投入し
た。このとき、触媒であるAl(Acac)3の量は、
原料のL−ラクチドに対して0.5モル%であった。窒
素置換の後、第一工程として窒素気流下で180℃に加
熱し溶融開環重合させた。残存ラクチド量が約15%に
なった時点で第二工程として系を3mmHgまで減圧し
さらに180℃で加熱、重合させた。分子量の上昇が飽
和した時点で反応を終了し重合生成物を系外に取り出し
た。得られたポリ乳酸組成物の特性は表3に示す通りで
あり、Mwが36.2万で残存ラクチド量が0.1%と
非常に少ないポリ乳酸組成物が48.2g(収率80.
3%)得られた。また、180℃で1時間溶融処理した
後のMwは32.4万と分子量保持率が高く、熱安定性
は90%と優れたものであった。
Example 7 L-lactide (moisture 11p)
pm, PURAC) 60 g (416 mmol) and A
0.675 g (2.08 mmol) of l (Acac) 3
Was charged into a reaction vessel equipped with a stirrer and a nitrogen inlet tube. At this time, the amount of Al (Acac) 3 as a catalyst is
It was 0.5 mol% with respect to the raw material L-lactide. After the replacement with nitrogen, as a first step, the mixture was heated to 180 ° C. under a nitrogen stream to carry out melt ring opening polymerization. When the amount of residual lactide became about 15%, as a second step, the pressure of the system was reduced to 3 mmHg, and the system was heated and polymerized at 180 ° C. The reaction was terminated when the increase in the molecular weight was saturated, and the polymerization product was taken out of the system. The properties of the obtained polylactic acid composition are as shown in Table 3, and 48.2 g of polylactic acid composition having a very small Mw of 36,000 and a residual lactide amount of 0.1% (yield: 80.80 g) was obtained.
3%). Further, the Mw after melting treatment at 180 ° C. for 1 hour was 324,000, which was a high molecular weight retention rate, and the thermal stability was as excellent as 90%.

【0056】(実施例8)実施例7において第一工程終
了後に一旦窒素下で重合生成物を系外に取り出し、冷
却、粉砕の後に再び反応容器に戻し、第二工程を行なっ
た。得られた重合生成物の特性は表3に示す通りであ
り、実施例7と同様に高重合度で熱安定性は88%と優
れたポリ乳酸組成物が得られた。
Example 8 In Example 7, after completion of the first step, the polymerization product was once taken out of the system under nitrogen, cooled, pulverized, returned to the reaction vessel, and subjected to the second step. The properties of the obtained polymerization product are as shown in Table 3. As in Example 7, a polylactic acid composition having a high degree of polymerization and excellent thermal stability of 88% was obtained.

【0057】(比較例4)実施例7において第一工程を
ポリ乳酸組成物の分子量の上昇が飽和する時点までと
し、第二工程を行なわなかった以外は実施例7と同様に
して重合を行なった。得られた重合生成物の特性は表3
に示す通りであり、残存ラクチド量が3.5%と非常に
多いものであった。
(Comparative Example 4) Polymerization was carried out in the same manner as in Example 7 except that the first step was repeated until the increase in the molecular weight of the polylactic acid composition was saturated, and the second step was not performed. Was. Table 3 shows the properties of the obtained polymerization products.
And the residual lactide amount was as high as 3.5%.

【0058】(比較例5)実施例7におけるAl(Ac
ac)3 に代えて、該ラクチドに対して0.1モル%の
Sn(Oct)2 を用いた以外は実施例7と同様にして
重合を行なった。得られたポリ乳酸組成物の特性は表3
に示す通りであり、残存ラクチド量が1.8%と非常に
多く、熱安定性も21%と低いものであった。
Comparative Example 5 Al (Ac) in Example 7
Polymerization was carried out in the same manner as in Example 7 except that 0.1 mol% of Sn (Oct) 2 based on the lactide was used instead of ac) 3 . Table 3 shows the properties of the obtained polylactic acid composition.
The residual lactide content was as high as 1.8% and the thermal stability was as low as 21%.

【0059】[0059]

【表3】 [Table 3]

【0060】(実施例9、10)実施例7における第一
工程を残存ラクチドが28.3%および6.4%になる
までとした以外は実施例7と同様にして重合を行なっ
た。得られた重合生成物の特性は表4に示す通りであ
り、いずれの場合も高重合度、低残存ラクチド量のポリ
乳酸組成物が高収率で得られた。
Examples 9 and 10 Polymerization was carried out in the same manner as in Example 7 except that the first step in Example 7 was repeated until the residual lactide became 28.3% and 6.4%. The properties of the obtained polymerization product are as shown in Table 4. In each case, a polylactic acid composition having a high degree of polymerization and a low residual lactide amount was obtained in high yield.

【0061】(比較例6)実施例7における第一工程を
残存ラクチド量が39.1%になるまでとした以外は実
施例7と同様にして重合を行なった。得られた重合生成
物の特性は表4に示す通りであり、第一工程終了後の残
存ラクチド量が多かったため、高重合度、低残存ラクチ
ド量の重合生成物が得られたがその収率は55.2%と
低いものであった。
Comparative Example 6 Polymerization was carried out in the same manner as in Example 7, except that the first step in Example 7 was repeated until the residual lactide content became 39.1%. The properties of the obtained polymerization product are as shown in Table 4. Since the amount of residual lactide after the first step was large, a polymerization product having a high degree of polymerization and a low residual lactide amount was obtained. Was as low as 55.2%.

【0062】(比較例7)実施例7における第一工程を
残存ラクチド量が4.3%になるまでとした以外は実施
例7と同様にして重合を行なった。得られた重合生成物
の特性は表4に示す通りであり、第一工程終了後の残存
ラクチド量が少なくなりすぎたため、第二工程でのラク
チド除去が十分に行われず、残存ラクチド量が2.3%
となった
Comparative Example 7 Polymerization was carried out in the same manner as in Example 7 except that the first step in Example 7 was repeated until the residual lactide amount became 4.3%. The properties of the obtained polymerization product are as shown in Table 4, and the amount of lactide remaining in the second step was too small after the completion of the first step. 0.3%
Became

【0063】[0063]

【表4】 [Table 4]

【0064】[0064]

【発明の効果】本発明のポリ乳酸組成物は熱安定性が高
いため成形加工の際の分子量が20万以上に保持され、
高強度の成形品が得られる。また、本発明の方法はラク
チド溶融開環重合後の後処理を必要とせず、高分子量で
熱安定性に優れたポリ乳酸組成物を得ることができるた
め、工業的に非常に利用価値が高い。また、触媒として
従来のスズ化合物に替わりより安全なアルミニウム化合
物を用いているため、生体内材科、あるいは食品関係へ
の使用に際しても安全性が高い。また、本発明のポリ乳
酸組成物は残存ラクチド量が少ないため成形加工時にラ
クチドが揮発し周辺環境を汚染することがなく、成形品
中に残存ラクチドに由来するボイドの形成とそれに起因
する低強度部分が無い成形品を得ることができる。ま
た、本発明の方法はポリ乳酸中の残存ラクチドの除去
に、再沈や洗浄等の溶媒除去工程を要する方法を用い
ず、重合に要する時間も短いため工業的価値が非常に高
い。さらに、本発明の成形品は高強度であるため、衣料
用、日用生活用、医薬品材料用、医療材料用、および農
業、漁業、工業、建築、土木などの産業資材用に用いる
粉末、繊維、フイルム、および成形材料として極めて好
適である。
The polylactic acid composition of the present invention has high thermal stability, so that the molecular weight at the time of molding is maintained at 200,000 or more.
A high-strength molded product is obtained. In addition, the method of the present invention does not require post-treatment after lactide melt-ring-opening polymerization, and can obtain a polylactic acid composition having a high molecular weight and excellent thermal stability, and thus has a very high industrial value. . In addition, since a safer aluminum compound is used as a catalyst instead of the conventional tin compound, the safety is high even when used in biomedical materials or food-related products. Further, the polylactic acid composition of the present invention has a small amount of residual lactide, so that lactide does not volatilize during the molding process and does not pollute the surrounding environment. A molded product having no parts can be obtained. In addition, the method of the present invention does not use a method that requires a solvent removal step such as reprecipitation or washing to remove residual lactide in polylactic acid, and the time required for polymerization is short. Furthermore, since the molded article of the present invention has high strength, powders and fibers used for clothing, daily life, pharmaceutical materials, medical materials, and industrial materials such as agriculture, fisheries, industry, construction, civil engineering, etc. , A film, and a molding material.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 L−及び/又はD−乳酸から成るポリ乳
酸と、該ポリ乳酸の乳酸単位に対して0.075〜2.
0モル%のトリスアセチルアセトナトアルミニウムを含
んで成るポリ乳酸組成物。
1. A polylactic acid comprising L- and / or D-lactic acid, and 0.075 to 2.75 to lactic acid unit of the polylactic acid.
A polylactic acid composition comprising 0 mol% aluminum trisacetylacetonato.
【請求項2】 ポリ乳酸中のラクチドが1%未満である
ことを特徴とする請求項1記載のポリ乳酸組成物。
2. The polylactic acid composition according to claim 1, wherein the content of lactide in the polylactic acid is less than 1%.
【請求項3】 乳酸の環状二量体であるラクチドを溶融
開環重合してポリ乳酸を製造するに際し、触媒として該
ラクチドに対して0.15〜4.0モル%のトリスアセ
チルアセトナトアルミニウムを用いることを特徴とする
ポリ乳酸組成物の製造方法。
3. A lactide, which is a cyclic dimer of lactic acid, is melt-opened and polymerized to produce polylactic acid. As a catalyst, 0.15 to 4.0 mol% of trisacetylacetonatoaluminum based on lactide is used as a catalyst. A method for producing a polylactic acid composition, characterized by using:
【請求項4】 重合系中の残存ラクチド量が30〜5%
となるまで重合反応を進行させる第一工程と、該工程の
重合生成物を溶融状態で減圧下におき重合を完結させる
第二工程とからなることを特徴とする請求項3記載のポ
リ乳酸組成物の製造方法。
4. The amount of residual lactide in the polymerization system is 30 to 5%.
4. The polylactic acid composition according to claim 3, comprising a first step of allowing the polymerization reaction to proceed until the polymerization reaction reaches a temperature, and a second step of completing the polymerization by placing the polymerization product in the molten state under reduced pressure in a molten state. Method of manufacturing a product.
【請求項5】 第二工程の減圧度が10mmHg以下で
あることを特徴とする請求項4記載のポリ乳酸組成物の
製造方法。
5. The method for producing a polylactic acid composition according to claim 4, wherein the degree of reduced pressure in the second step is 10 mmHg or less.
【請求項6】 請求項1または請求項2記載のポリ乳酸
組成物からなる成形品。
6. A molded article comprising the polylactic acid composition according to claim 1.
JP11016897A 1996-10-18 1997-04-10 POLYLACTIC ACID COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND MOLDED ARTICLE OF THE COMPOSITION Expired - Fee Related JP3752776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11016897A JP3752776B2 (en) 1996-10-18 1997-04-10 POLYLACTIC ACID COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND MOLDED ARTICLE OF THE COMPOSITION

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29750796 1996-10-18
JP8-297507 1996-10-18
JP11016897A JP3752776B2 (en) 1996-10-18 1997-04-10 POLYLACTIC ACID COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND MOLDED ARTICLE OF THE COMPOSITION

Publications (2)

Publication Number Publication Date
JPH10176038A true JPH10176038A (en) 1998-06-30
JP3752776B2 JP3752776B2 (en) 2006-03-08

Family

ID=26449848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11016897A Expired - Fee Related JP3752776B2 (en) 1996-10-18 1997-04-10 POLYLACTIC ACID COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND MOLDED ARTICLE OF THE COMPOSITION

Country Status (1)

Country Link
JP (1) JP3752776B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063941A1 (en) * 2005-12-02 2007-06-07 Kureha Corporation Polyglycolic acid resin composition
JP2016050292A (en) * 2014-09-02 2016-04-11 東洋紡株式会社 Polylactic acid-based resin for pulverized toner, polylactic acid-based resin composition for pulverized toner, and pulverized toner using these
CN108384210A (en) * 2018-04-04 2018-08-10 中国科学院长春应用化学研究所 A kind of application of pyruvates and polydactyl acid
CN113583408A (en) * 2021-08-04 2021-11-02 杨桂生 High-performance full-biodegradable polylactic acid and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063941A1 (en) * 2005-12-02 2007-06-07 Kureha Corporation Polyglycolic acid resin composition
US8362158B2 (en) 2005-12-02 2013-01-29 Kureha Corporation Polyglycolic acid resin composition
JP5164576B2 (en) * 2005-12-02 2013-03-21 株式会社クレハ Polyglycolic acid resin composition
JP2016050292A (en) * 2014-09-02 2016-04-11 東洋紡株式会社 Polylactic acid-based resin for pulverized toner, polylactic acid-based resin composition for pulverized toner, and pulverized toner using these
CN108384210A (en) * 2018-04-04 2018-08-10 中国科学院长春应用化学研究所 A kind of application of pyruvates and polydactyl acid
CN113583408A (en) * 2021-08-04 2021-11-02 杨桂生 High-performance full-biodegradable polylactic acid and preparation method thereof

Also Published As

Publication number Publication date
JP3752776B2 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
Ayyoob et al. Synthesis of poly (glycolic acids) via solution polycondensation and investigation of their thermal degradation behaviors
JPH07126358A (en) Preparation of polymer of alpha hydroxy acid
CA2732419A1 (en) Process for the continuous production of polyesters
JPH0314829A (en) Preparation of bioabsorbable polyester
JP2001514279A (en) Biodegradable lactone copolymer
CN100347217C (en) Production process of thermoplastic polycaprolactone
JP5988049B2 (en) Nylon 4 resin composition molded body and method for producing the same
US20060047088A1 (en) High-molecular aliphatic polyester and process for producing the same
KR20000071024A (en) Process for the polymerization of lactide
JP5150074B2 (en) Polylactic acid and method for producing the same
Ganguly et al. Synthesis and Production of Polylactic Acid (PLA)
JP3796891B2 (en) POLYLACTIC ACID COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND MOLDED ARTICLE OF THE COMPOSITION
CN112469761A (en) Controlled production of polyglycolic acid and glycolide
JPH10176038A (en) Polylactic acid composition, its production and molded product from the composition
JP3747563B2 (en) POLYLACTIC ACID COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND MOLDED ARTICLE OF THE COMPOSITION
JP3765156B2 (en) POLYLACTIC ACID COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND MOLDED ARTICLE OF THE COMPOSITION
JP2591932B2 (en) Biodegradable polymer film and method for preparing the same
JP3248597B2 (en) Method for producing aliphatic polyester
EP2209772B1 (en) Method for producing cyclic diesters of l-, d- and d, l-lactic acid
JP3144231B2 (en) Aliphatic polyester and / or copolymer thereof
JP3537542B2 (en) Method for producing polylactic acid
JP3144416B2 (en) Aliphatic polyester and / or copolymer thereof
JPH07247345A (en) Production of polylactic acid
JP2850775B2 (en) Polylactic acid production method
JP3301221B2 (en) Polylactic acid production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051205

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees