JPH10175411A - Tire air ressure estimating device - Google Patents

Tire air ressure estimating device

Info

Publication number
JPH10175411A
JPH10175411A JP35357796A JP35357796A JPH10175411A JP H10175411 A JPH10175411 A JP H10175411A JP 35357796 A JP35357796 A JP 35357796A JP 35357796 A JP35357796 A JP 35357796A JP H10175411 A JPH10175411 A JP H10175411A
Authority
JP
Japan
Prior art keywords
wheel
wheels
tire
wheel speed
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35357796A
Other languages
Japanese (ja)
Other versions
JP3300620B2 (en
Inventor
Hideki Ohashi
秀樹 大橋
Hiroyuki Kawai
弘之 河井
Hiroyoshi Kojima
弘義 小島
Koji Umeno
孝治 梅野
Kenji Tomiita
健治 冨板
Takeyasu Taguchi
健康 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP35357796A priority Critical patent/JP3300620B2/en
Publication of JPH10175411A publication Critical patent/JPH10175411A/en
Application granted granted Critical
Publication of JP3300620B2 publication Critical patent/JP3300620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To further more improve estimating accuracy of a tire air pressure of a drive wheel by performing no drive wheel compensation at running time of so-called stride road. SOLUTION: A device has wheel speed sensors 32FL to 32RR detecting a speed of each wheel, vibration component extraction block 38 extracting a vibration component of the speed of each wheel caused by vibration of a tire from a speed signal of each wheel, correction block 40 obtaining a vibration component of the wheel speed after correction of a right/left drive wheel by removing the same phase component from a vibration component of the speed of the right/left drive wheels, and a drive wheel use tire air pressure estimation block 42 estimating a tire air pressure of the right/left drive wheels based on a vibration component of the wheel speed after correction. A difference degree arithmetic block 46 calculating a difference degree of a vibration component of a speed of a right/left driven wheel is provided, when the difference degree exceeds a reference value, estimation of a tire air pressure of the right/left drive wheel by the drive wheel use tire air pressure estimation block 42 is inhibited by an estimation inhibiting block 48.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自動車等のタイヤの空
気圧を推定するタイヤ空気圧推定装置に係り、更に詳細
には車輪速信号に基づきタイヤのばね定数を求めタイヤ
の空気圧を推定するタイヤ空気圧推定装置に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tire pressure estimating apparatus for estimating the air pressure of a tire of an automobile or the like, and more particularly to a tire air pressure for estimating a tire air pressure by obtaining a tire spring constant based on a wheel speed signal. It relates to an estimation device.

【0002】[0002]

【従来の技術】タイヤの空気圧とタイヤのばね定数との
間には一定の関係があり、またタイヤのばね定数とタイ
ヤの共振周波数との間には一定の関係があることを利用
し、車輪速信号よりタイヤの振動に起因する車輪速の振
動成分を抽出し、その振動成分に基づきタイヤの上下方
向又は前後方向の共振周波数を求め、該共振周波数に基
づきタイヤの空気圧を推定するタイヤ空気圧推定装置は
従来より種々の構成のものが提案されており、例えばそ
の一例が本願出願人のうちの一の出願人の出願にかかる
特開平6−122304号公報に記載されている。
2. Description of the Related Art The fact that there is a fixed relationship between the tire air pressure and the tire spring constant and that there is a fixed relationship between the tire spring constant and the tire resonance frequency makes use of the wheel. Tire pressure estimation that extracts a vibration component of the wheel speed caused by the tire vibration from the speed signal, obtains a vertical or vertical resonance frequency of the tire based on the vibration component, and estimates a tire pressure based on the resonance frequency. 2. Description of the Related Art Various types of apparatuses have been proposed in the related art, and one example is described in Japanese Patent Application Laid-Open No. 6-122304 filed by one of the present applicants.

【0003】かかるタイヤ空気圧推定装置によれば、車
輪速の振動成分の共振周波数に基づきタイヤの空気圧が
推定されるので、圧力センサの如くタイヤの空気圧を直
接検出する手段を要することなくタイヤの空気圧を推定
することができる。
According to such a tire pressure estimating apparatus, the tire pressure is estimated based on the resonance frequency of the vibration component of the wheel speed, so that there is no need for a means for directly detecting the tire pressure, such as a pressure sensor. Can be estimated.

【0004】また上述の如きタイヤ空気圧推定装置に於
いては、駆動輪の振動成分にディファレンシャルギヤ装
置やサスペンションメンバの共振成分が含まれているこ
とに起因して駆動輪のタイヤ空気圧を正確に推定するこ
とができない場合があるので、本願出願人はこの問題を
解消すべく特願平7−278338号に於いて、所謂駆
動輪補償が行われるタイヤ空気圧推定装置、即ち「左駆
動輪及び右駆動輪の車輪速を検出する車輪速検出手段
と、前記車輪速検出手段よりの左右駆動輪の車輪速信号
よりタイヤの振動に起因する左右駆動輪の車輪速の振動
成分を抽出する振動成分抽出手段と、前記左右駆動輪の
車輪速の振動成分よりそれらの同相成分を除去すること
により補正後の左右駆動輪の車輪速の振動成分を求める
補正手段と、前記補正後の左右駆動輪の車輪速の振動成
分に基づき前記左右駆動輪のタイヤ空気圧を推定する推
定手段とを有するタイヤ空気圧推定装置」、及び「左駆
動輪及び右駆動輪の車輪速を検出する車輪速検出手段
と、前記車輪速検出手段よりの左右駆動輪の車輪速信号
よりタイヤの振動に起因する左右駆動輪の車輪速の振動
成分を抽出する振動成分抽出手段と、前記左右駆動輪の
車輪速の振動成分に基づき前記左右駆動輪の第一のタイ
ヤ空気圧を推定する第一の推定手段と、前記左右駆動輪
の車輪速の振動成分よりそれらの同相成分を除去するこ
とにより補正後の左右駆動輪の車輪速の振動成分を求め
る補正手段と、前記左右駆動輪の第一のタイヤ空気圧を
比較する比較手段と、前記第一のタイヤ空気圧が低い方
の駆動輪について前記補正後の車輪速の振動成分に基づ
きタイヤ空気圧を推定する第二の推定手段と、前記第一
のタイヤ空気圧が低い方の駆動輪について前記第一のタ
イヤ空気圧と前記第二の推定手段により推定されたタイ
ヤ空気圧との偏差を演算し、前記第一のタイヤ空気圧が
高い方の駆動輪のタイヤ空気圧を当該駆動輪の前記第一
のタイヤ空気圧より前記偏差を減算した値に推定する第
三の推定手段とを有していることを特徴とするタイヤ空
気圧推定装置」を提案した。
In the tire pressure estimating apparatus as described above, the tire pressure of the driving wheel is accurately estimated due to the fact that the vibration component of the driving wheel includes the resonance component of the differential gear device and the suspension member. In order to solve this problem, the present applicant has disclosed in Japanese Patent Application No. 7-278338 a tire pressure estimating device in which so-called driving wheel compensation is performed, that is, "left driving wheel and right driving. Wheel speed detecting means for detecting the wheel speed of the wheel, and vibration component extracting means for extracting a vibration component of the wheel speed of the left and right driving wheels caused by the vibration of the tire from a wheel speed signal of the left and right driving wheels from the wheel speed detecting means. Correction means for obtaining a corrected vibration component of the wheel speed of the left and right drive wheels by removing the in-phase component from the vibration component of the wheel speed of the left and right drive wheels; A tire pressure estimation device having estimation means for estimating the tire pressure of the left and right drive wheels based on the vibration component of the wheel speed of the left and right drive wheels, and "a wheel for detecting the wheel speed of the left drive wheel and the right drive wheel" Speed detection means, vibration component extraction means for extracting a vibration component of the wheel speed of the left and right drive wheels caused by tire vibration from a wheel speed signal of the left and right drive wheels from the wheel speed detection means, and wheels of the left and right drive wheels First estimating means for estimating the first tire air pressure of the left and right driving wheels based on the vibration component of the speed, and removing the in-phase components from the vibration components of the wheel speeds of the left and right driving wheels to correct the left and right wheels. Correction means for determining a vibration component of the wheel speed of the drive wheel, comparison means for comparing the first tire pressure of the left and right drive wheels, and the corrected wheel speed for the drive wheel having the lower first tire pressure. of Second estimating means for estimating tire air pressure based on a dynamic component, and the first tire air pressure and the tire air pressure estimated by the second estimating means for the drive wheel having the lower first tire air pressure. A third estimating means for calculating the deviation, and estimating the tire pressure of the driving wheel having the higher first tire pressure to a value obtained by subtracting the deviation from the first tire pressure of the driving wheel. A tire pressure estimation device characterized by the fact that

【0005】[0005]

【発明が解決しようとする課題】しかし本願発明者が実
験的研究を行ったところ、上述の先の提案にかかるタイ
ヤ空気圧推定装置によれば、従来のタイヤ空気圧推定装
置に比して正確に駆動輪のタイヤ空気圧を推定すること
はできるが、車輌が左右の駆動輪に対する路面入力が大
きく異なる所謂「またぎ路」を走行する場合には、駆動
輪補償によって駆動輪のタイヤ空気圧の推定精度が却っ
て悪化し、特に駆動輪のタイヤ空気圧が実際の空気圧よ
りもかなり低い値に推定され、そのためタイヤ空気圧の
異常判定を適正に行うことができない場合があることが
判明した。
However, the present inventor has conducted an experimental study. According to the tire pressure estimating apparatus according to the above-mentioned proposal, the tire pressure estimating apparatus according to the present invention has a more accurate drive than the conventional tire air pressure estimating apparatus. Although it is possible to estimate the tire pressure of the wheels, when the vehicle travels on a so-called "crossover road" in which the road surface inputs to the left and right drive wheels are significantly different, the accuracy of the estimation of the tire pressure of the drive wheels is rather reduced by the drive wheel compensation. It became clear that the tire pressure of the driving wheels was estimated to be considerably lower than the actual pressure, and that it was sometimes impossible to properly determine the tire pressure abnormally.

【0006】また上記特願平7−278338号に於い
ては、「所定時間内に路面より左右駆動輪に入力される
外乱の大きさの偏差を求める手段と、該偏差が基準値を
越えるときにはタイヤ空気圧の推定を中止する手段とを
有するタイヤ空気圧推定装置」、及び「所定時間内に路
面より左右駆動輪に入力される外乱の大きさの偏差を求
める手段と、該偏差が基準値を越えるときには第一の推
定手段により推定された第一のタイヤ空気圧を左右駆動
輪のタイヤ空気圧とする手段とを有するタイヤ空気圧推
定装置」も提案されている。
In Japanese Patent Application No. 7-278338, "the means for determining the deviation of the magnitude of the disturbance inputted to the left and right driving wheels from the road surface within a predetermined time, and the method for determining the deviation when the deviation exceeds a reference value. A tire pressure estimating apparatus having means for stopping estimation of tire pressure ", and" means for obtaining a deviation of the magnitude of disturbance inputted from the road surface to the left and right driving wheels within a predetermined time, and the deviation exceeds a reference value. Sometimes, a tire pressure estimating apparatus having means for using the first tire pressure estimated by the first estimating means as the tire air pressure of the left and right driving wheels "has also been proposed.

【0007】これらの構成によれば、所定時間内に路面
より左右駆動輪に入力される外乱の大きさの偏差の大小
に拘らず常に駆動輪補償が行われる場合に比して、駆動
輪のタイヤ空気圧の推定精度を向上させることができ
る。しかし左右の駆動輪は駆動系により相互に連結され
ており、一方の駆動輪に入力される外乱が他方の駆動輪
に伝達されるため、左右駆動輪に入力される外乱の大き
さの偏差によっては車輌がまたぎ路を走行しているか否
かを有効に判定することができず、駆動輪補償による駆
動輪のタイヤ空気圧の推定精度の悪化を効果的に防止す
ることができないことが判明した。
[0007] According to these configurations, the driving wheel compensation is always performed irrespective of the magnitude of the deviation of the magnitude of the disturbance inputted to the left and right driving wheels from the road surface within a predetermined time. It is possible to improve the estimation accuracy of the tire pressure. However, the left and right driving wheels are connected to each other by a driving system, and the disturbance inputted to one driving wheel is transmitted to the other driving wheel, so that the deviation of the magnitude of the disturbance inputted to the left and right driving wheels causes Cannot effectively determine whether or not the vehicle is traveling on a straddle road, and it has been found that it is not possible to effectively prevent deterioration of the estimation accuracy of the tire air pressure of the drive wheels due to the drive wheel compensation.

【0008】本発明は、先の提案にかかるタイヤ空気圧
推定装置に於ける上述の如き問題に鑑みてなされたもの
であり、本発明の主要な課題は、車輌がまたぎ路を走行
しているか否かを正確に判定すると共に、車輌の通常走
行時(非またぎ路走行時)には駆動輪補償を行うが、ま
たぎ路走行時には駆動輪補償を行わないことにより、駆
動輪のタイヤ空気圧の推定精度を更に一層向上させるこ
とである。
The present invention has been made in view of the above-mentioned problems in the tire pressure estimating apparatus according to the above-mentioned proposal, and a main problem of the present invention is whether or not a vehicle is traveling on a straddle road. In addition to accurately determining whether or not the vehicle is traveling normally (when traveling on a non-crossing road), the driving wheel compensation is performed. Is to be further improved.

【0009】[0009]

【課題を解決するための手段】上述の如き主要な課題
は、本発明によれば、各輪の車輪速を検出する車輪速検
出手段と、各輪の車輪速信号よりタイヤの振動に起因す
る各輪の車輪速の振動成分を抽出する振動成分抽出手段
と、左右駆動輪の車輪速の振動成分よりそれらの同相成
分を除去することにより前記左右駆動輪の補正後の車輪
速の振動成分を求める補正手段と、前記補正後の車輪速
の振動成分に基づき前記左右駆動輪のタイヤ空気圧を推
定する駆動輪用推定手段とを有するタイヤ空気圧推定装
置に於いて、左右従動輪の車輪速の振動成分の相違度合
を演算する手段を有し、前記相違度合が基準値を越える
ときには前記駆動輪用推定手段による前記左右駆動輪の
タイヤ空気圧の推定が禁止されることを特徴とするタイ
ヤ空気圧推定装置(請求項1の構成)、又は各輪の車輪
速を検出する車輪速検出手段と、各輪の車輪速信号より
タイヤの振動に起因する各輪の車輪速の振動成分を抽出
する振動成分抽出手段と、左右駆動輪の車輪速の振動成
分よりそれらの同相成分を除去することにより前記左右
駆動輪の補正後の車輪速の振動成分を求める補正手段
と、前記補正後の車輪速の振動成分に基づき前記左右駆
動輪のタイヤ空気圧を推定する駆動輪用推定手段とを有
するタイヤ空気圧推定装置に於いて、左右従動輪の車輪
速の振動成分の相違度合を演算する手段を有し、前記駆
動輪用推定手段は前記相違度合が基準値を越えるときに
は前記左右駆動輪の補正前の車輪速の振動成分に基づき
前記左右駆動輪のタイヤ空気圧を推定することを特徴と
するタイヤ空気圧推定装置(請求項2の構成)によって
達成される。
According to the present invention, the main problems as described above are attributable to the wheel speed detecting means for detecting the wheel speed of each wheel, and to the wheel speed signal of each wheel resulting from the vibration of the tire. A vibration component extracting means for extracting a vibration component of the wheel speed of each wheel, and a vibration component of the corrected wheel speed of the left and right drive wheels by removing those in-phase components from the vibration components of the wheel speed of the left and right drive wheels. In a tire pressure estimating apparatus having a correcting means to be obtained and a driving wheel estimating means for estimating the tire pressure of the left and right driving wheels based on the vibration component of the corrected wheel speed, the vibration of the wheel speed of the left and right driven wheels is A tire air pressure estimating device comprising means for calculating the degree of difference between the components, wherein when the degree of difference exceeds a reference value, the estimation of the tire air pressure of the left and right driving wheels by the driving wheel estimating means is prohibited. ( Configuration of claim 1) or a wheel speed detecting means for detecting a wheel speed of each wheel, and a vibration component extracting means for extracting a vibration component of a wheel speed of each wheel caused by a tire vibration from a wheel speed signal of each wheel. Correction means for determining the corrected wheel speed vibration component of the left and right drive wheels by removing those in-phase components from the right and left drive wheel wheel speed vibration components; and A driving wheel estimating device for estimating the tire air pressure of the left and right driving wheels based on the driving wheel estimating device. A tire pressure estimating device for estimating the tire air pressure of the left and right driving wheels based on a vibration component of the wheel speed before correction of the left and right driving wheels when the degree of difference exceeds a reference value. Two It is achieved by formation).

【0010】本願発明者が行った実験的研究の結果によ
れば、駆動輪の車輪速信号にはディファレンシャルギヤ
装置やサスペンションメンバの前後共振成分及びピッチ
ング共振成分が含まれており、これらの共振成分は左右
の駆動輪に同相且つ同振幅にて現れるので、左右駆動輪
の車輪速信号の差を求めることにより駆動系の共振成分
を相殺することができる。また左右駆動輪のタイヤ自身
の共振成分はそれぞれ固有のものであるので、左右駆動
輪の車輪速信号の差を求めてもタイヤの共振成分が消去
されることはない。
According to the results of the experimental research conducted by the inventor of the present application, the wheel speed signal of the driving wheels includes the front-rear resonance component and the pitching resonance component of the differential gear device and the suspension member, and these resonance components are included. Appear in the left and right driving wheels in the same phase and the same amplitude, so that the resonance component of the driving system can be canceled by calculating the difference between the wheel speed signals of the left and right driving wheels. In addition, since the resonance components of the tires of the left and right driving wheels are unique to each other, even if the difference between the wheel speed signals of the left and right driving wheels is obtained, the resonance component of the tire is not eliminated.

【0011】上述の請求項1及び2の構成によれば、左
右駆動輪の車輪速の振動成分よりそれらの同相成分が除
去されることにより補正後の左右駆動輪の車輪速の振動
成分が求められ、補正後の左右駆動輪の車輪速の振動成
分に基づき左右駆動輪のタイヤ空気圧が推定されるの
で、駆動系共振の影響を受けることなく左右駆動輪のタ
イヤ空気圧が正確に推定される。
According to the first and second aspects of the present invention, the in-phase components are removed from the vibration components of the wheel speeds of the left and right driving wheels, thereby obtaining the corrected vibration components of the wheel speeds of the left and right driving wheels. Since the tire pressures of the left and right drive wheels are estimated based on the corrected vibration components of the wheel speeds of the left and right drive wheels, the tire pressures of the left and right drive wheels are accurately estimated without being affected by drive system resonance.

【0012】また本願発明者が行った実験的研究の結果
によれば、車輌がまたぎ路を走行する場合には、一方の
駆動輪にのみ大きい振動入力が与えられると他方の駆動
輪の車輪速信号には4次系の出力としての振動が主成分
となって現われ、左右の駆動輪の車輪速信号の位相差が
180°(逆相)に近い周波数域がタイヤの共振周波数
より低い領域に存在し、そのため左右駆動輪の車輪速信
号の差によって同相成分の駆動系振動を除去する駆動輪
補償が行われると、逆相成分が足し合わされることにな
り、見かけ上逆相領域に振動数スペクトルのピークが現
れ、その結果駆動輪のタイヤ空気圧が実際の空気圧より
も低い値であると推定されてしまうことが判明した。
According to the results of an experimental study conducted by the inventor of the present invention, when a vehicle travels on a straddle road, when a large vibration input is given to only one of the drive wheels, the wheel speed of the other drive wheel is increased. In the signal, vibration as the output of the quaternary system appears as a main component, and the frequency range in which the phase difference between the wheel speed signals of the left and right driving wheels is close to 180 ° (out of phase) is lower than the resonance frequency of the tire. Therefore, if the drive wheel compensation for removing the drive system vibration of the in-phase component is performed by the difference between the wheel speed signals of the left and right drive wheels, the opposite-phase components will be added, and the frequency appears in the opposite-phase region apparently. It has been found that a peak of the spectrum appears, and as a result, the tire pressure of the drive wheel is estimated to be lower than the actual pressure.

【0013】また左右の駆動輪は駆動系により互いに連
結されているのに対し、左右の従動輪は一般に相互に独
立しているので、左右の従動輪に入力される外乱の大き
さの偏差、即ち左右従動輪の車輪速の振動成分の相違度
合によれば、左右の駆動輪に入力される外乱の大きさの
偏差による場合に比して車輌がまたぎ路を走行している
か否かを有効に判定することができる。
The left and right driving wheels are connected to each other by a driving system, whereas the left and right driven wheels are generally independent of each other. That is, according to the degree of difference between the vibration components of the wheel speeds of the left and right driven wheels, it is effective to determine whether the vehicle is traveling on a straddle road as compared with the case of the deviation of the magnitude of the disturbance inputted to the left and right drive wheels. Can be determined.

【0014】上述の請求項1の構成によれば、左右従動
輪の車輪速の振動成分の相違度合が演算され、該相違度
合が基準値を越えるときには駆動輪用推定手段による左
右駆動輪のタイヤ空気圧の推定が禁止されるので、車輌
がまたぎ路を走行しているか否かが確実に判定されると
共に、車輌がまたぎ路を走行する場合に駆動輪補償によ
って駆動輪のタイヤ空気圧の推定精度が却って悪化する
ことが確実に防止され、これにより駆動輪のタイヤ空気
圧の推定精度が更に一層向上される。
According to the above construction, the difference between the vibration components of the wheel speeds of the left and right driven wheels is calculated, and when the difference exceeds a reference value, the tires of the left and right driving wheels are determined by the driving wheel estimating means. Since the estimation of the air pressure is prohibited, it is reliably determined whether the vehicle is traveling on a straddle road, and when the vehicle is traveling on a straddle road, the estimation accuracy of the tire pressure of the drive wheel is improved by the drive wheel compensation. On the contrary, the deterioration is reliably prevented, so that the estimation accuracy of the tire pressure of the drive wheel is further improved.

【0015】また上述の請求項2の構成によれば、左右
従動輪の車輪速の振動成分の相違度合が演算され、駆動
輪用推定手段は相違度合が基準値を越えるときには左右
駆動輪の補正前の車輪速の振動成分に基づき左右駆動輪
のタイヤ空気圧を推定するので、車輌がまたぎ路を走行
しているか否かが確実に判定されると共に、車輌がまた
ぎ路を走行する場合に駆動輪補償によって駆動輪のタイ
ヤ空気圧の推定精度が却って悪化することが確実に防止
され、これにより駆動輪のタイヤ空気圧の推定精度が更
に一層向上されると共に、車輌がまたぎ路を走行する場
合に駆動輪のタイヤ空気圧が全く推定されなくなること
が回避される。
According to the second aspect of the present invention, the difference between the vibration components of the wheel speeds of the left and right driven wheels is calculated, and the drive wheel estimating means corrects the left and right drive wheels when the difference exceeds the reference value. Since the tire pressures of the left and right driving wheels are estimated based on the vibration component of the preceding wheel speed, it is reliably determined whether or not the vehicle is traveling on a straddle road. The compensation surely prevents the estimation accuracy of the tire pressure of the drive wheel from deteriorating, thereby further improving the estimation accuracy of the tire pressure of the drive wheel, and further improving the estimation accuracy of the drive wheel when the vehicle runs on a straddle road. Is prevented from being estimated at all.

【0016】[0016]

【本発明に於ける空気圧推定原理】実施形態の説明に先
立ち、まず本発明に於けるタイヤ空気圧の推定原理、特
に駆動輪補償について説明する。
[Principle of Estimating Air Pressure in the Present Invention] Prior to the description of the embodiment, first, the principle of estimating tire air pressure in the present invention, in particular, drive wheel compensation will be described.

【0017】一般に、駆動輪側には従動輪側には見られ
ない共振現象があり、この特異な共振現象はディファレ
ンシャルギヤ装置及びサスペンションメンバの前後共振
及びディファレンシャルギヤ装置のピッチング共振に起
因するものであり、タイヤが路面より受ける力を上下
力、前後力、回転モーメント力に分解すると、前後力が
ディファレンシャルギヤ装置及びサスペンションメンバ
の前後共振を励振し、回転モーメント力がディファレン
シャルギヤ装置のピッチング共振を励振するものと考え
られる。
In general, there is a resonance phenomenon on the driving wheel side that is not seen on the driven wheel side, and this peculiar resonance phenomenon is caused by front-rear resonance of the differential gear device and the suspension member and pitching resonance of the differential gear device. Yes, when the force received by the tire from the road surface is broken down into vertical force, longitudinal force, and rotational moment force, the longitudinal force excites the longitudinal resonance of the differential gear device and the suspension member, and the rotational moment force excites the pitching resonance of the differential gear device. It is thought to be.

【0018】図5はサスペンションメンバの前後共振を
示す解図的平面図、図6はディファレンシャルギヤ装置
のピッチング共振を示す解図的斜視図である。
FIG. 5 is a schematic plan view showing front-rear resonance of the suspension member, and FIG. 6 is a schematic perspective view showing pitching resonance of the differential gear device.

【0019】これらの図に於いて、10L及び10Rは
それぞれ左駆動輪及び右駆動輪を示しており、左駆動輪
10L及び右駆動輪10Rはそれぞれタイヤ12L及び
12Rとこれを支持する図には示されていないホイール
とを含み、車輪キャリア14L及び14Rにより回転可
能に支持されている。車輪キャリア14L及び14Rは
それぞれ一対のサスペンションアーム16L及び16R
を介してサスペンションメンバ18により支持されてお
り、駆動輪10L及び10Rはそれぞれドライブシャフ
ト20L及び20Rを介してディファレンシャルギヤ装
置22により回転駆動される。
In these figures, 10L and 10R denote a left driving wheel and a right driving wheel, respectively. The left driving wheel 10L and the right driving wheel 10R correspond to the tires 12L and 12R and the figures for supporting the same. And wheels not shown, and are rotatably supported by wheel carriers 14L and 14R. The wheel carriers 14L and 14R are a pair of suspension arms 16L and 16R, respectively.
The drive wheels 10L and 10R are rotationally driven by a differential gear device 22 via drive shafts 20L and 20R, respectively.

【0020】本願発明者が行った実験結果によれば、図
5及び図6に示されている如く、サスペンションメンバ
18及びディファレンシャルギヤ装置22は同相にて、
即ち互いに一体となって振動しており、前後共振はサス
ペンションアーム16L及び16R等を介してサスペン
ションメンバ18及びディファレンシャルギヤ装置22
と駆動輪10Lと10Rとが逆相にて振動することによ
り発生し、ピッチング共振はドライブシャフト20L及
び20Rを介して左右の駆動輪10L及び10Rに伝播
され、従って左右の駆動輪の前後共振及びピッチング共
振は互いに同相である。
According to the results of experiments conducted by the inventor of the present invention, as shown in FIGS. 5 and 6, the suspension member 18 and the differential gear device 22 are in phase.
That is, they vibrate integrally with each other, and the longitudinal resonance is generated by the suspension member 18 and the differential gear device 22 via the suspension arms 16L and 16R.
And the driving wheels 10L and 10R vibrate in opposite phases, and the pitching resonance is propagated to the left and right driving wheels 10L and 10R via the drive shafts 20L and 20R. The pitching resonances are in phase with each other.

【0021】前後共振周波数及びピッチング共振周波数
は車輌の走行条件によって変動し、このことはサスペン
ションメンバのマウントばねや前後ばねの非線形特性に
よるものと考えられる。従ってサスペンションメンバや
ディファレンシャルギヤ装置等をばね及び質点系にて厳
密にモデル化し、駆動系共振を補償することは困難であ
る。
The front-rear resonance frequency and the pitching resonance frequency fluctuate depending on the running conditions of the vehicle. This is considered to be due to the non-linear characteristics of the mount spring of the suspension member and the front-rear spring. Therefore, it is difficult to strictly model the suspension member, the differential gear device, and the like using a spring and a mass point system to compensate for the drive system resonance.

【0022】そこで本発明に於いては、駆動系共振の位
相関係が左右の駆動輪間に於いて同相であることに着目
し、このことを利用して駆動系共振の影響が除去され
る。
Therefore, in the present invention, attention is paid to the fact that the phase relation of the drive system resonance is the same between the left and right drive wheels, and the effect of the drive system resonance is removed by utilizing this fact.

【0023】本願発明者が行った実験結果によれば、左
右の駆動輪の車輪速信号の差には前後共振及びピッチン
グ共振は殆ど現れず、このことは前後共振及びピッチン
グ共振が左右の駆動輪間に於いて同相且つ同振幅である
ことを意味する。一方左右駆動輪のタイヤの共振成分は
それぞれ固有であるので左右の駆動輪の車輪速信号の差
に於いても消えることはない。従って左右の駆動輪の車
輪速信号の差を演算することにより駆動系共振の影響を
補償し、駆動系共振の影響のないタイヤ空気圧を推定す
ることができる。
According to the results of experiments conducted by the inventor of the present application, the front-rear resonance and the pitching resonance hardly appear in the difference between the wheel speed signals of the left and right driving wheels, which means that the front-rear resonance and the pitching resonance do not change. It means that they have the same phase and the same amplitude in between. On the other hand, since the resonance components of the tires of the left and right driving wheels are unique, they do not disappear even in the difference between the wheel speed signals of the left and right driving wheels. Therefore, by calculating the difference between the wheel speed signals of the left and right driving wheels, the influence of the drive system resonance can be compensated, and the tire air pressure free of the influence of the drive system resonance can be estimated.

【0024】図7に示されている如く、左右の駆動輪1
0L及び10Rがそれぞれリム側質量10LR及び10
RRと、ベルト側質量10LV及び10RVと、これら
の間に位置するばね10LS、10RS及びダンパ10
LD、10RDとよりなるものと仮定され、回転運動が
便宜的に直線運動として表現されたモデルについて考え
る。
As shown in FIG. 7, the left and right drive wheels 1
0L and 10R are rim side masses 10LR and 10R, respectively.
RR, belt-side masses 10LV and 10RV, and springs 10LS, 10RS and a damper 10 located therebetween.
Consider a model that is assumed to be composed of LD and 10RD, and in which rotational motion is expediently represented as linear motion.

【0025】尚図7に於いて、L及びRはそれぞれ左駆
動輪及び右駆動輪に関するものであることを示してい
る。特にTOL及びTORは路面外乱を示し、Ts はサスペ
ンションメンバ18及びディファレンシャルギヤ装置2
2の前後共振及びピッチング共振により駆動輪が受ける
トルク(左右同相)を示し、J1L及びJ1Rはリム慣性を
示し、J2L及びJ2Rはベルト慣性を示し、θ1L及びθ1R
はリムの回転変位(その微分値は車輪速度である)を示
し、θ2L及びθ2Rはベルトの回転変位を示し、KL 及び
R はタイヤのばね定数を示し、CL 及びCR はタイヤ
の減衰係数を示している。
FIG. 7 shows that L and R relate to the left driving wheel and the right driving wheel, respectively. In particular, T OL and T OR indicate road disturbance, and Ts indicates the suspension member 18 and the differential gear device 2.
2, the torque (right and left in-phase) received by the drive wheels due to front-rear resonance and pitching resonance, J 1L and J 1R indicate rim inertia, J 2L and J 2R indicate belt inertia, θ 1L and θ 1R
Indicates the rotational displacement of the rim (the differential value is the wheel speed), theta 2L and theta 2R shows the rotational displacement of the belt, K L and K R represents a spring constant of the tire, the C L and C R 4 shows a tire damping coefficient.

【0026】図7に示されたモデルに於ける左右駆動輪
の運動方程式はそれぞれ下記の数1及び数2の如く表さ
れる。
The equations of motion of the left and right driving wheels in the model shown in FIG. 7 are expressed by the following equations 1 and 2, respectively.

【0027】[0027]

【数1】 (Equation 1)

【数2】 (Equation 2)

【0028】また図7に示されたモデルに於ける左右駆
動輪の状態方程式はそれぞれ下記の数3及び数4の如く
表される。
The state equations of the left and right driving wheels in the model shown in FIG. 7 are expressed by the following equations (3) and (4), respectively.

【0029】[0029]

【数3】 (Equation 3)

【数4】 (Equation 4)

【0030】但しそれぞれ数3及び数4に於いて、θ
12L =θ1L−θ2L、θ12R =θ1R−θ2Rである。
However, in Equations 3 and 4, θ
12L = θ 1L 2L, a θ 12R = θ 1R2R.

【0031】左駆動輪について考えると、数3の外乱の
次元は2であるが、実際には車輪速度しか検出できない
ので、1次元についてしか外乱を推定できない。ここで
は外乱の第一要素を推定する。パラメータとしてのばね
定数KL がKL +ΔKL に変動し、減衰係数CL がCL
+ΔCL に変動したとすると、推定外乱は下記の数5に
て表され、同様に右駆動輪の推定外乱は下記の数6にて
表される。尚数5及び数6に於いて、TOL′及びTOR
はそれぞれ路面外乱の影響を表している。
When considering the left driving wheel, the dimension of the disturbance in Equation 3 is 2, but actually only the wheel speed can be detected, so that the disturbance can be estimated only in one dimension. Here, the first element of the disturbance is estimated. Spring constant K L of a parameter is changed to K L + [Delta] K L, the damping coefficient C L is C L
Assuming that the fluctuation has changed to + ΔC L , the estimated disturbance is represented by the following equation 5, and similarly, the estimated disturbance of the right driving wheel is represented by the following equation 6. In Equations 5 and 6, T OL ′ and T OR
Represents the influence of road disturbance.

【0032】[0032]

【数5】 (Equation 5)

【数6】 (Equation 6)

【0033】左右の駆動輪に対し同じ条件にて設計され
た外乱オブザーバが使用されるならば、左右の同相関係
は推定外乱に於いても保持されるので、推定外乱の差、
即ち下記の数7によっても駆動系共振の影響を除去する
ことができる。尚左右の駆動輪のリム慣性J1L及びJ1R
は既知であると仮定する。
If a disturbance observer designed under the same conditions is used for the left and right driving wheels, the left-right in-phase relationship is maintained even in the estimated disturbance, so that the difference between the estimated disturbance and
That is, the influence of drive system resonance can be removed by the following equation (7). The rim inertia J 1L and J 1R of the left and right drive wheels
Assume that is known.

【数7】 (Equation 7)

【0034】数7を計算して整理すると数8の如くな
り、同相成分を表すTsの項を消去することができる。
When Equation 7 is calculated and arranged, Equation 8 is obtained, and the term of Ts representing the in-phase component can be eliminated.

【数8】 (Equation 8)

【0035】従って数8及び最小自乗法を用いてばね定
数の変動量ΔKL 、ΔKR 及び減衰係数の変動量Δ
L 、ΔCR を求めることにより駆動系共振の影響のな
いタイヤ空気圧を求めることができる。尚下記の数9は
最小自乗法の計算式である。
Therefore, using the equation (8) and the least squares method, the fluctuation amounts ΔK L and ΔK R of the spring constant and the fluctuation amount Δ of the damping coefficient Δ
By determining C L and ΔC R , it is possible to determine a tire air pressure free from the influence of drive system resonance. Equation 9 below is a calculation formula of the least squares method.

【0036】[0036]

【数9】 (Equation 9)

【0037】[0037]

【発明の実施の形態】以下に添付の図を参照しつつ、本
発明を幾つかの実施形態について詳細に説明する。
BRIEF DESCRIPTION OF THE DRAWINGS The invention will be described in more detail with reference to the accompanying drawings, in which: FIG.

【0038】第一の実施形態 図1は本発明によるタイヤ空気圧推定装置の第一の実施
形態を示す概略構成図(A)及びブロック線図(B)で
ある。
First Embodiment FIG. 1 is a schematic configuration diagram (A) and a block diagram (B) showing a first embodiment of a tire pressure estimation device according to the present invention.

【0039】図1(A)に於いて、左前輪30FL、右前
輪30FR、左後輪30RL、右後輪30RRにはそれぞれ対
応する車輪の車輪速Vwi(i=fl、fr、rl、rr)を周速
として検出する車輪速センサ32FL、32FR、32RL、
32RRが設けられている。車輪速Vwiを示す信号はタイ
ヤ空気圧推定演算装置34へ入力され、タイヤ空気圧推
定演算装置34は車輪速Vwiに基づき後述の如く各輪の
タイヤ空気圧Pi (i=fl、fr、rl、rr)を推定により
演算し、必要に応じて警報装置36へ制御信号を出力す
ることにより車輌の乗員に警報を発するようになってい
る。
In FIG. 1A, the left front wheel 30FL, the right front wheel 30FR, the left rear wheel 30RL, and the right rear wheel 30RR have respective wheel speeds Vwi (i = fl, fr, rl, rr). Wheel speed sensors 32FL, 32FR, 32RL that detect
32RR is provided. The signal indicating the wheel speed Vwi is input to the tire pressure estimation calculating device 34, which calculates the tire pressure Pi (i = fl, fr, rl, rr) of each wheel based on the wheel speed Vwi as described later. The calculation is performed by the estimation, and a control signal is output to the alarm device 36 as necessary, thereby issuing an alarm to the occupant of the vehicle.

【0040】図1(B)に示されている如く、タイヤ空
気圧推定演算装置34は車輪速センサ32FL〜32RRよ
り供給される車輪速信号よりタイヤの振動に起因する各
輪の車輪速の振動成分を抽出する振動成分抽出ブロック
38と、左右駆動輪の車輪速の振動成分よりそれらの同
相成分を除去することにより補正後の左右駆動輪の車輪
速の振動成分を求める補正ブロック40と、補正後の左
右駆動輪の車輪速の振動成分に基づき左右駆動輪のタイ
ヤ空気圧を推定する駆動輪用タイヤ空気圧推定ブロック
42とを有している。
As shown in FIG. 1B, the tire pressure estimating and calculating device 34 calculates a vibration component of the wheel speed of each wheel due to the vibration of the tire from the wheel speed signals supplied from the wheel speed sensors 32FL to 32RR. A vibration component extraction block 38 for extracting the vibration component of the wheel speed of the left and right drive wheels, a correction block 40 for obtaining a vibration component of the wheel speed of the left and right drive wheels after correction by removing those in-phase components from the vibration components of the wheel speed of the left and right drive wheels, And a drive wheel tire pressure estimation block 42 for estimating the tire pressure of the left and right drive wheels based on the vibration component of the wheel speed of the left and right drive wheels.

【0041】またタイヤ空気圧推定演算装置34は、タ
イヤ空気圧の推定値が基準値以下であるか否かを判定
し、推定値が基準値以下であるときには対応する車輪の
タイヤ空気圧が異常であることを示す制御信号を警報装
置36へ出力する異常判定ブロック44と、左右従動輪
の車輪速の振動成分の相違度合を演算する相違度合演算
ブロック46と、相違度合が基準値を越えるときには駆
動輪用タイヤ空気圧推定ブロック42による左右駆動輪
のタイヤ空気圧の推定を禁止する推定禁止ブロック48
とを有している。
The tire pressure estimation calculating unit 34 determines whether or not the estimated value of the tire pressure is equal to or less than the reference value. If the estimated value is equal to or less than the reference value, the tire pressure of the corresponding wheel is abnormal. An abnormality determination block 44 for outputting a control signal indicating the following to the alarm device 36, a difference degree calculation block 46 for calculating the difference between the vibration components of the wheel speeds of the left and right driven wheels, and a drive wheel for when the difference exceeds the reference value. Estimation prohibition block 48 that prohibits the tire pressure estimation block 42 from estimating the tire pressure of the left and right driving wheels.
And

【0042】尚タイヤ空気圧推定演算装置34は実際に
は例えば中央処理ユニット(CPU)と、リードオンリ
メモリ(ROM)と、ランダムアクセスメモリ(RA
M)と、入出力ポート装置とを有し、これらが双方向性
のコモンバスにより互いに接続されたマイクロコンピュ
ータであってよく、このことは後述の第二の実施形態に
ついても同様である。
Incidentally, the tire pressure estimating arithmetic unit 34 is actually, for example, a central processing unit (CPU), a read only memory (ROM), and a random access memory (RA).
M) and an input / output port device, which may be microcomputers connected to each other by a bidirectional common bus, and this is the same for a second embodiment described later.

【0043】この第一の実施形態のタイヤ空気圧推定演
算装置34は車輌が例えば後輪駆動車である場合には図
2に示されたフローチャートに従って駆動輪である左右
後輪のタイヤ空気圧PRL、PRRを推定し、タイヤ空気圧
が異常であるか否かを判定する。尚図2に示されたフロ
ーチャートによる制御は所定時間毎に繰り返し実行され
る。
When the vehicle is, for example, a rear-wheel drive vehicle, the tire pressure estimation and calculation device 34 of the first embodiment calculates the tire pressures P RL of the right and left rear wheels, which are the drive wheels, according to the flowchart shown in FIG. The PRR is estimated to determine whether the tire pressure is abnormal. The control according to the flowchart shown in FIG. 2 is repeatedly executed at predetermined time intervals.

【0044】まずステップ10に於いては車輪速Vwiを
示す信号の読み込みが行われ、ステップ20に於いては
各車輪速信号に対し前処理フィルタ処理、即ち所定の上
限及び下限カットオフ周波数にてバンドパスフィルタ処
理が行われ、ステップ30に於いては下記の数10及び
数11に従って前処理フィルタ処理後の左右前輪の車輪
速VFL及びVFRについて自乗積和演算が行われることに
より路面より左右前輪に入力される外乱の大きさを表す
自乗積和値GFL及びGFRが演算される。
First, in step 10, a signal indicating the wheel speed Vwi is read, and in step 20, a pre-processing filter process is performed on each wheel speed signal, that is, at a predetermined upper and lower cutoff frequency. Bandpass filter processing is performed. In step 30, the sum of squares is calculated for the wheel speeds V FL and V FR of the left and right front wheels after the pre-processing filter processing in accordance with Equations 10 and 11 below. Sum-of-squares values GFL and GFR representing the magnitude of the disturbance inputted to the left and right front wheels are calculated.

【0045】[0045]

【数10】GFL=ΣVFLi ・VFLi[Equation 10] GFL = ΣV FL i · V FL i

【数11】GFR=ΣVFRi ・VFRi[Equation 11] GFR = ΣV FR i · V FR i

【0046】ステップ40に於いてはiが1インクリメ
ントされ、ステップ50に於いてはiが基準値Na (1
00〜1000程度の正の一定の整数)であるか否かの
判別が行われ、否定判別が行われたときにはステップ1
0へ戻り、肯定判別が行われたときにはステップ60に
於いてiが0にリセットされる。
In step 40, i is incremented by one, and in step 50, i is incremented by a reference value Na (1).
(A positive constant of about 00 to 1000) is determined, and if a negative determination is made, step 1 is performed.
Returning to 0, when a positive determination is made, i is reset to 0 in step 60.

【0047】ステップ70に於いてはαを例えば2以上
7以下の一定の定数として自乗積和値GFLがα・GFRを
越えているか否かの判別が行われ、肯定判別が行われた
ときにはステップ90へ進み、否定判別が行われたとき
にはステップ80に於いて自乗積和値GFRがα・GFLを
越えているか否かの判別が行われる。このステップに於
いて否定判別が行われたときにはステップ100へ進
み、肯定判別が行われたときにはステップ90に於いて
前処理フィルタ処理後のNa 個の車輪速がクリアされた
後ステップ10へ戻る。
In step 70, it is determined whether or not the sum-of-squares value GFL exceeds α · GFR, where α is a constant constant, for example, 2 or more and 7 or less. The routine proceeds to 90, and if a negative determination is made, a determination is made in step 80 as to whether or not the sum of squares GFR exceeds α · GFL. When a negative determination is made in this step, the routine proceeds to step 100, and when an affirmative determination is made, the routine returns to step 10 after the Na wheel speeds after the pre-processing filter processing are cleared in step 90.

【0048】ステップ100に於いては外乱オブザーバ
の処理が行われる。即ち上述の数5に於けるLがLRに
書き換えられた式及び数6に於けるRがRRに書き換え
られた式に従って駆動系共振成分を含む左右後輪の推定
外乱wRL及びwRRが演算されると共に、左右後輪のタイ
ヤの捩れ角θ12RL、θ12RR及びタイヤの捩れ角速度θ
12RL)、θ12RR)が演算される。ステップ11
0に於いては左右後輪の推定外乱に基づき上述の数7に
於けるwがwR に書き換えられL及びRがそれぞれRL
及びRRに書き換えられた式に従って駆動系共振の影響
が除去された推定外乱wR が演算される。
In step 100, a process of a disturbance observer is performed. That is, the estimated disturbances w RL and w RR of the right and left rear wheels including the drive system resonance component are calculated according to the above-described equation in which L is replaced by LR in Equation 5 and the equation in which R is replaced by RR in Equation 6 above. And the torsional angles θ 12RL and θ 12RR of the right and left rear wheels and the torsional angular velocity θ of the tires
12RL ( ) and θ 12RR ( ) are calculated. Step 11
0 in w is rewritten to w R number 7 above based on the estimated disturbance of the left and right rear wheels at the L and R RL, respectively
And RR, the estimated disturbance w R from which the influence of the drive system resonance has been removed is calculated.

【0049】ステップ120に於いては推定外乱wR
タイヤの捩れ角θ12RL及びθ12RR、タイヤの捩れ角速度
θ12RL)及びθ12RR)に基づき上述の数9に対
応する式に従って最小自乗法により左右後輪のタイヤの
ばね定数の変動量ΔKRL、ΔKRR及び減衰係数の変動量
ΔCRL、ΔCRRが演算される。
In step 120, the estimated disturbance w R ,
Based on the torsional angles θ 12RL and θ 12RR of the tire and the torsional angular speeds θ 12RL ( ) and θ 12RR ( ) of the tire, the spring constants of the right and left rear tires are changed by the least squares method according to the equation corresponding to the above equation (9). The amounts ΔK RL and ΔK RR and the fluctuation amounts ΔC RL and ΔC RR of the damping coefficient are calculated.

【0050】ステップ130に於いてはjが1インクリ
メントされ、ステップ140に於いてはjが基準値Nb
(100〜10程度の正の一定の整数)であるか否かの
判別が行われ、否定判別が行われたときにはステップ1
70へ進み、肯定判別が行われたときにはステップ15
0に於いてjが0にリセットされた後にステップ160
に於いてそれぞれNa ・Nb 個のタイヤのばね定数の変
動量及び減衰係数の変動量に基づき左右後輪のタイヤ空
気圧PRL及びPRRが演算される。
In step 130, j is incremented by one, and in step 140, j is set to the reference value Nb.
(A positive integer of about 100 to 10) is determined, and if a negative determination is made, step 1 is performed.
Go to step 70, and if a positive determination is made, step 15
Step 160 after j is reset to 0 at 0
Tire pressure P RL and P RR of the left and right rear wheels, respectively on the basis of the variation amount of the variation amount and the damping coefficient of the spring constant of the Na · Nb pieces of tire In is calculated.

【0051】ステップ170に於いては左右後輪のタイ
ヤ空気圧PRL及びPRRが基準値以上であるか否かの判別
が行われ、左右後輪のタイヤ空気圧が基準値以上である
ときにはそのままステップ10へ戻り、タイヤ空気圧P
RL若しくはPRRが基準値未満であるときには警報装置3
6へ制御信号が出力されることより、対応する車輪のタ
イヤ空気空気圧が異常である旨が警報が運転者に発せら
れ、しかる後ステップ10へ戻る。
In step 170, it is determined whether or not the tire pressures PRL and PRR of the right and left rear wheels are equal to or higher than a reference value. Returning to 10, tire pressure P
Alarm device 3 when RL or P RR is less than the reference value
When the control signal is output to 6, a warning is issued to the driver that the tire air pressure of the corresponding wheel is abnormal, and then the process returns to step 10.

【0052】以上の説明より解る如く、ステップ10、
20、100により図1(B)の振動成分抽出ブロック
38の機能が達成され、ステップ110により補正ブロ
ック40の機能が達成され、ステップ120〜160に
より駆動輪用タイヤ空気圧推定ブロック42の機能が達
成され、ステップ170により異常判定ブロック44の
機能が達成される。またステップ30〜80により相違
度合演算ブロック46の機能が達成され、ステップ90
により推定禁止ブロック48の機能が達成される。
As understood from the above description, step 10,
The function of the vibration component extraction block 38 in FIG. 1B is achieved by 20 and 100, the function of the correction block 40 is achieved by step 110, and the function of the tire pressure estimation block 42 for driving wheels is achieved by steps 120 to 160. Then, the function of the abnormality determination block 44 is achieved by step 170. Further, the functions of the difference degree calculation block 46 are achieved by steps 30 to 80, and
Thus, the function of the estimation prohibition block 48 is achieved.

【0053】かくして第一の実施形態によれば、ステッ
プ30に於いて路面より左右前輪に入力される外乱の大
きさを表す自乗積和値GFR及びGFRが演算され、ステッ
プ70又は80に於いて肯定判別が行われたときには、
即ち図2に示されたフローチャートのNa サイクルの時
間内に路面より左右前輪に入力された外乱の大きさの相
違度合が大きいときには、ステップ100〜170が実
行されることなくステップ90に於いて前処理フィルタ
処理後のNa 個の車輪速がクリアされ、これにより左右
後輪のタイヤ空気圧の推定及び異常判定は行われないの
で、路面より左右後輪に入力される外乱の大きさが大き
く異なる状況に於いて駆動輪補償が行われることに起因
してタイヤ空気圧が低い値に誤推定されることを確実に
防止することができる。
Thus, according to the first embodiment, in step 30, the sum of squared products GFR and GFR representing the magnitude of the disturbance inputted to the left and right front wheels from the road surface are calculated, and in step 70 or 80, When a positive determination is made,
That is, when the difference between the magnitudes of the disturbances inputted to the left and right front wheels from the road surface is large within the time of the Na cycle in the flowchart shown in FIG. 2, steps 100 to 170 are not executed and the process proceeds to step 90. Since the Na wheel speeds after the processing filter processing are cleared and the tire pressures of the right and left rear wheels are not estimated and the abnormality determination is not performed, the magnitude of the disturbance inputted to the right and left rear wheels from the road surface is greatly different. Thus, it is possible to reliably prevent the tire pressure from being erroneously estimated to be a low value due to the drive wheel compensation being performed.

【0054】またこの実施形態によれば、所定時間内に
路面より左右前輪に入力される外乱の大きさの相違度合
が大きい状況に於いてステップ90に於いてクリアされ
る車輪速の数はNa 個であり、左右前輪に入力される外
乱の大きさの相違度合が小さいときに検出された車輪速
はタイヤ空気圧の演算に有効に使用されるので、タイヤ
空気圧の演算に必要なNa ・Nb 個の全ての車輪速がク
リアされる場合に比して効率よくタイヤ空気圧を推定す
ることができる。
Further, according to this embodiment, the number of wheel speeds cleared in step 90 in the situation where the magnitude of the difference in the magnitude of the disturbance inputted to the left and right front wheels from the road surface within a predetermined time is Na is The wheel speed detected when the degree of the difference in the magnitude of the disturbance inputted to the left and right front wheels is small is effectively used for the calculation of the tire pressure. The tire pressure can be estimated more efficiently than when all wheel speeds are cleared.

【0055】第二の実施形態 図3は本発明によるタイヤ空気圧推定装置の第二の実施
形態のブロック線図、図4は第二の実施形態に於けるタ
イヤ空気圧推定ルーチンを示すフローチャートである。
尚図3に於いて図1(B)に示された部材に対応する部
材には図1(B)に於いて付された符号と同一の符号が
付されており、また図4に於いて図2に示されたステッ
プに対応するステップには図2に於いて付されたステッ
プ番号と同一のステップ番号が付されている。
Second Embodiment FIG. 3 is a block diagram of a second embodiment of the tire pressure estimation device according to the present invention, and FIG. 4 is a flowchart showing a tire pressure estimation routine in the second embodiment.
In FIG. 3, members corresponding to those shown in FIG. 1 (B) are given the same reference numerals as those shown in FIG. 1 (B), and in FIG. Steps corresponding to the steps shown in FIG. 2 are given the same step numbers as those given in FIG.

【0056】この実施形態のタイヤ空気圧推定演算装置
34は推定禁止ブロック48に代えて駆動輪補償禁止ブ
ロック50を有しており、駆動輪補償禁止ブロック50
は相違度合演算ブロック46により演算された左右従動
輪の車輪速の振動成分の相違度合が基準値を越えるとき
には駆動輪用タイヤ空気圧推定ブロック42による左右
駆動輪のタイヤ空気圧の推定に於ける駆動輪補償を禁止
する。
The tire air pressure estimating operation device 34 of this embodiment has a drive wheel compensation prohibition block 50 instead of the estimation prohibition block 48.
When the difference between the vibration components of the wheel speeds of the left and right driven wheels calculated by the difference calculation block 46 exceeds the reference value, the driving wheels in the tire pressure estimation block 42 for the right and left driving wheels are estimated by the driving wheel tire pressure estimation block 42. Prohibit compensation.

【0057】またこの実施形態のステップ95以外の各
ステップはそれぞれ第一の実施形態の場合と同様に実行
され、ステップ70又は80に於いて肯定判別が行われ
たときにはステップ95に於いて第一の実施形態に於け
るステップ100と同様の外乱オブザーバ処理が行われ
ることにより、サスペンションメンバ等の共振成分を含
む推定外乱wRL、wRRを示す信号、左右駆動輪のタイヤ
の捩れ角θ12RL、θ12RRを示す信号及びタイヤの捩れ角
速度θ12RL)、θ12RR)に基づいてばね定数の
変動量及び減衰係数の変動量が演算され、しかる後駆動
系共振補償の演算(ステップ110)が行われることな
くステップ120へ進む。
Steps other than step 95 of this embodiment are executed in the same manner as in the first embodiment, and if an affirmative determination is made in step 70 or 80, the first step is executed in step 95. By performing the same disturbance observer processing as in step 100 in the embodiment, signals indicating estimated disturbances w RL and w RR including resonance components of the suspension members and the like, the torsion angle θ 12RL of the tires of the left and right driving wheels, The variation of the spring constant and the variation of the damping coefficient are calculated based on the signal indicating θ 12RR and the torsional angular velocities θ 12RL ( ) and θ 12RR ( ) of the tire, and then the drive system resonance compensation is calculated (step 110). ) Is not performed, and the process proceeds to step 120.

【0058】従ってこの実施形態に於いては、第一の実
施形態の場合と同様、ステップ10、20、100によ
り図3の振動成分抽出ブロック38の機能が達成され、
ステップ110により補正ブロック40の機能が達成さ
れ、ステップ120〜160により駆動輪用タイヤ空気
圧推定ブロック42の機能が達成され、ステップ170
により異常判定ブロック44の機能が達成される。また
ステップ30〜80により相違度合演算ブロック46の
機能が達成され、ステップ95により駆動輪補償禁止ブ
ロック50の機能が達成される。
Therefore, in this embodiment, the functions of the vibration component extraction block 38 of FIG. 3 are achieved by steps 10, 20, and 100, as in the first embodiment.
The function of the correction block 40 is achieved by step 110, and the function of the drive wheel tire pressure estimation block 42 is achieved by steps 120 to 160, and step 170
Thus, the function of the abnormality determination block 44 is achieved. The functions of the difference degree calculation block 46 are achieved by steps 30 to 80, and the function of the drive wheel compensation prohibition block 50 is achieved by step 95.

【0059】かくして第二の実施形態によれば、ステッ
プ30に於いて路面より左右前輪に入力される外乱の大
きさを表す自乗積和値GFL及びGFRが演算され、ステッ
プ70又は80に於いて肯定判別が行われたときには、
即ち図4に示されたフローチャートのNa サイクルの時
間内に路面より左右前輪に入力された外乱の大きさの相
違度合が大きいときには、ステップ100及び110が
実行されるのではなくステップ95に於いて外乱オブザ
ーバの処理のみが行われ、これにより駆動輪補償が行わ
れることなくステップ120〜170が実行されるの
で、路面より左右後輪に入力される外乱の大きさが大き
く異なる状況に於いて駆動輪補償が行われることに起因
してタイヤ空気圧が低い値に誤推定されることを確実に
防止することができる。
Thus, according to the second embodiment, in step 30, the sum of squares GFL and GFR representing the magnitude of the disturbance inputted to the left and right front wheels from the road surface are calculated, and in step 70 or 80, When a positive determination is made,
That is, when the difference between the magnitudes of the disturbances inputted to the left and right front wheels from the road surface is large within the time of the Na cycle in the flowchart shown in FIG. 4, steps 100 and 110 are not executed but step 95 is executed. Only the processing of the disturbance observer is performed, and the steps 120 to 170 are executed without performing the driving wheel compensation. Therefore, the driving is performed in a situation where the magnitude of the disturbance inputted to the right and left rear wheels from the road surface is largely different. It is possible to reliably prevent the tire pressure from being erroneously estimated to be a low value due to the wheel compensation being performed.

【0060】またこの実施形態によれば、所定時間内に
路面より左右前輪に入力される外乱の大きさの相違度合
が大きい状況に於いても、ステップ95に於いて外乱オ
ブザーバの処理が行われた後ステップ120〜170が
実行されるので、前処理フィルタ処理後のNa 個の車輪
速がクリアされる第一の実施形態の場合の如く、車輌が
またぎ路を走行するような場合に左右後輪のタイヤ空気
圧が全く推定されなくなることを確実に回避することが
できる。
Further, according to this embodiment, even in a situation where the magnitude of the magnitude of the disturbance inputted to the left and right front wheels from the road surface within a predetermined time is large, the disturbance observer is processed in step 95. After that, steps 120 to 170 are executed, so that when the vehicle runs on a straddle road as in the case of the first embodiment in which the Na wheel speeds after the pre-processing filter processing are cleared. It is possible to reliably prevent the tire pressure of the wheel from being estimated at all.

【0061】尚上述の第一及び第二の実施形態に於いて
は、駆動輪である左右後輪のタイヤ空気圧のみが推定さ
れるようになっているが、例えばステップ100又はス
テップ100及び95に於いて従動輪である左右前輪に
ついても外乱オブザーバの処理を行い、ステップ120
に於いて左右前輪についても左右前輪のタイヤのばね定
数の変動量ΔKFL、ΔKFR及び減衰係数の変動量Δ
FL、ΔCFRを演算することにより、それぞれステップ
160及び170に於いて左右前輪についてもタイヤ空
気圧が推定され異常判定が行われてもよい。
In the first and second embodiments described above, only the tire pressures of the left and right rear wheels, which are the driving wheels, are estimated. In step 120, the disturbance observer is also processed for the left and right front wheels that are driven wheels.
In the left and right front wheels, the variation amounts ΔK FL and ΔK FR of the spring constants of the tires of the left and right front wheels and the variation amount Δ of the damping coefficient
By calculating C FL and ΔC FR , the tire air pressure may be estimated for the left and right front wheels in steps 160 and 170, respectively, and the abnormality determination may be performed.

【0062】また上述の各実施形態に於いては、所定時
間内に左右前輪に入力される外乱の大きさはステップ3
0に於いて数10及び数11に従って自乗積和値として
演算されるようになっているが、上述の如く左右前輪に
ついても外乱オブザーバの処理が行われる場合には、こ
の外乱の大きさはステップ100又は95に於いて演算
される外乱オブザーバ処理後の外乱wFL、wFRの自乗積
和値として演算されてもよく、またsignXを変量Xの符
号とすると下記の数12又は数13に従って演算されて
もよい。
In each of the above-described embodiments, the magnitude of the disturbance inputted to the left and right front wheels within a predetermined time is determined in step 3
0 is calculated as the sum of squared products according to Equations 10 and 11, but if the disturbance observer process is performed on the left and right front wheels as described above, the magnitude of this disturbance is It may be calculated as the sum of the squares of the disturbances w FL and w FR after the disturbance observer processing calculated in 100 or 95, and if sign X is the sign of the variable X, the calculation is performed according to the following equation (12) or (13). May be done.

【0063】[0063]

【数12】GFL=ΣVFL・signVFL GFR=ΣVFR・signVFR [Equation 12] GFL = ΣV FL · signV FL GFR = ΣV FR · signV FR

【数13】GFL=ΣwFL・signwFL GFR=ΣwFR・signwFR [Expression 13] GFL = Σw FL · signw FL GFR = Σw FR · signw FR

【0064】更に上述の各実施形態に於いては、左右従
動輪の車輪速の振動成分の相違度合はが準値を越えてい
るか否かは、所定時間内に左右前輪に入力される外乱の
大きさGFL及びGFRの一方が他方に対しα倍を越えてい
るか否かにより判定されるようになっているが、例えば
GFL及びGFRの偏差の絶対値が基準値を越えているか否
かにより判定されてもよい。
Further, in each of the above-described embodiments, whether or not the difference between the vibration components of the wheel speeds of the left and right driven wheels exceeds a quasi-value is determined by the disturbance input to the left and right front wheels within a predetermined time. The determination is made based on whether one of the magnitudes GFL and GFR exceeds α times the other. For example, the determination is made based on whether the absolute value of the deviation between GFL and GFR exceeds a reference value. May be done.

【0065】以上に於いては本発明を特定の実施形態に
ついて詳細に説明したが、本発明はこれらの実施形態に
限定されるものではなく、本発明の範囲内にて他の種々
の実施形態が可能であることは当業者にとって明らかで
あろう。
Although the present invention has been described in detail with reference to specific embodiments, the present invention is not limited to these embodiments, and various other embodiments are included within the scope of the present invention. It will be clear to those skilled in the art that is possible.

【0066】例えば上述の各実施形態は後輪駆動車に適
用された実施形態であるが、車輌が前輪駆動車である場
合には上述の各実施形態の前輪と後輪とが相互に置き換
えられた形態にて本発明が実施される。即ち左右後輪に
ついてステップ30が実行されることにより従動輪であ
る左右後輪の自乗積和値GRL及びGRRが演算され、これ
らの自乗積和値GRL及びGRRについてステップ70及び
80が実行され、駆動輪である左右前輪についてステッ
プ90〜170又はステップ95〜170が実行され
る。
For example, each of the above embodiments is an embodiment applied to a rear wheel drive vehicle. However, when the vehicle is a front wheel drive vehicle, the front wheels and rear wheels of the above embodiments are replaced with each other. The present invention is implemented in the form described above. That is, by executing step 30 for the left and right rear wheels, the sum of squares GRL and GRR of the left and right rear wheels that are driven wheels are calculated, and steps 70 and 80 are executed for these sums of squares GRL and GRR. Steps 90 to 170 or steps 95 to 170 are executed for the left and right front wheels that are the driving wheels.

【0067】[0067]

【発明の効果】以上の説明より明らかである如く、上述
の請求項1の構成によれば、車輌がまたぎ路以外の路面
を走行する場合には駆動系共振の影響を受けることなく
左右駆動輪のタイヤ空気圧を正確に推定することがで
き、また左右従動輪の車輪速の振動成分の相違度合が演
算され、該相違度合が基準値を越えるときには駆動輪用
推定手段による左右駆動輪のタイヤ空気圧の推定が禁止
されるので、車輌がまたぎ路を走行しているか否かを確
実に判定し、車輌がまたぎ路を走行する場合に駆動輪補
償によって駆動輪のタイヤ空気圧の推定精度が却って悪
化することを確実に防し、これにより駆動輪のタイヤ空
気圧の推定精度を更に一層向上さることができる。
As is apparent from the above description, according to the structure of the first aspect, when the vehicle travels on a road surface other than a straddle road, the left and right drive wheels are not affected by the drive system resonance. The tire air pressure of the left and right driven wheels can be accurately estimated, and the difference between the vibration components of the wheel speeds of the left and right driven wheels is calculated. When the difference exceeds the reference value, the tire air pressure of the left and right driven wheels is estimated by the drive wheel estimating means. Estimation is prohibited, so it is reliably determined whether or not the vehicle is traveling on a straddle road, and when the vehicle is traveling on a straddle road, the accuracy of estimating the tire pressure of the drive wheel is rather deteriorated by the drive wheel compensation. Therefore, the estimation accuracy of the tire pressure of the drive wheel can be further improved.

【0068】また請求項2の構成によれば、車輌がまた
ぎ路以外の路面を走行する場合には駆動系共振の影響を
受けることなく左右駆動輪のタイヤ空気圧を正確に推定
することができ、また左右従動輪の車輪速の振動成分の
相違度合が演算され、駆動輪用推定手段は相違度合が基
準値を越えるときには補正前の左右駆動輪の車輪速の振
動成分に基づき左右駆動輪のタイヤ空気圧を推定するの
で、車輌がまたぎ路を走行しているか否かを確実に判定
し、車輌がまたぎ路を走行する場合に駆動輪補償によっ
て駆動輪のタイヤ空気圧の推定精度が却って悪化するこ
とを確実に防止し、これにより駆動輪のタイヤ空気圧の
推定精度を更に一層向上させることができると共に、車
輌がまたぎ路を走行する場合に駆動輪のタイヤ空気圧が
全く推定されなくなることを回避することができる。
According to the second aspect of the invention, when the vehicle travels on a road surface other than a stride road, the tire pressures of the left and right driving wheels can be accurately estimated without being affected by the drive system resonance. Further, the degree of difference between the vibration components of the wheel speeds of the left and right driven wheels is calculated. Since the air pressure is estimated, it is reliably determined whether the vehicle is traveling on a straddle road, and when the vehicle is traveling on a straddle road, the estimation accuracy of the tire pressure of the drive wheel is rather deteriorated by the drive wheel compensation. This reliably prevents the tire pressure of the drive wheels from being further improved, and the tire pressure of the drive wheels is not estimated at all when the vehicle travels on a straddle road. It is possible to avoid the Rukoto.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるタイヤ空気圧推定装置の第一の実
施形態を示す概略構成図(A)及びブロック線図(B)
である。
FIG. 1 is a schematic configuration diagram (A) and a block diagram (B) showing a first embodiment of a tire pressure estimation device according to the present invention.
It is.

【図2】第一の実施形態のタイヤ空気圧推定及び判定ル
ーチンを示すフローチャートである。
FIG. 2 is a flowchart illustrating a tire pressure estimation and determination routine according to the first embodiment.

【図3】本発明によるタイヤ空気圧推定装置の第二の実
施形態を示すブロック線図である。
FIG. 3 is a block diagram showing a second embodiment of the tire pressure estimation device according to the present invention.

【図4】第二の実施形態のタイヤ空気圧推定及び判定ル
ーチンを示すフローチャートである。
FIG. 4 is a flowchart illustrating a tire air pressure estimation and determination routine according to a second embodiment.

【図5】サスペンションメンバの前後共振を示す解図的
平面図である。
FIG. 5 is an illustrative plan view showing front-rear resonance of a suspension member.

【図6】ディファレンシャルギヤ装置のピッチング共振
を示す解図的斜視図である。
FIG. 6 is an illustrative perspective view showing pitching resonance of the differential gear device.

【図7】左右駆動輪の振動モデルを示す説明図である。FIG. 7 is an explanatory diagram showing a vibration model of left and right drive wheels.

【符号の説明】[Explanation of symbols]

32FL〜32RR…車輪速センサ 34…タイヤ空気圧推定演算装置 36…警報装置 38…振動成分抽出ブロック 40…補正ブロック 42…駆動輪用タイヤ空気圧推定ブロック 44…異常判定ブロック 46…相違度合演算ブロック 48…推定禁止ブロック 50…駆動輪補償禁止ブロック 32FL-32RR ... Wheel speed sensor 34 ... Tire pressure estimation calculation device 36 ... Warning device 38 ... Vibration component extraction block 40 ... Correction block 42 ... Driving wheel tire pressure estimation block 44 ... Abnormality determination block 46 ... Difference degree calculation block 48 ... Estimation prohibition block 50: Driving wheel compensation prohibition block

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大橋 秀樹 愛知県豊田市トヨタ町1番地トヨタ自動車 株式会社内 (72)発明者 河井 弘之 愛知県豊田市トヨタ町1番地トヨタ自動車 株式会社内 (72)発明者 小島 弘義 愛知県豊田市トヨタ町1番地トヨタ自動車 株式会社内 (72)発明者 梅野 孝治 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 冨板 健治 愛知県刈谷市昭和町1丁目1番地株式会社 デンソー内 (72)発明者 田口 健康 愛知県刈谷市昭和町1丁目1番地株式会社 デンソー内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hideki Ohashi 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Inventor Hiroyuki Kawai 1 Toyota Town Toyota City, Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Inventor Hiroyoshi Kojima 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Co., Ltd. (72) Inventor Koji Umeno 41 Toyota Chuo R & D Laboratories Co., Ltd. Kenji Tomiita 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture Inside Denso Corporation (72) Inventor Taguchi Health 1-1-1, Showa-cho, Kariya City, Aichi Prefecture Inside DENSO Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】各輪の車輪速を検出する車輪速検出手段
と、各輪の車輪速信号よりタイヤの振動に起因する各輪
の車輪速の振動成分を抽出する振動成分抽出手段と、左
右駆動輪の車輪速の振動成分よりそれらの同相成分を除
去することにより前記左右駆動輪の補正後の車輪速の振
動成分を求める補正手段と、前記補正後の車輪速の振動
成分に基づき前記左右駆動輪のタイヤ空気圧を推定する
駆動輪用推定手段とを有するタイヤ空気圧推定装置に於
いて、左右従動輪の車輪速の振動成分の相違度合を演算
する手段を有し、前記相違度合が基準値を越えるときに
は前記駆動輪用推定手段による前記左右駆動輪のタイヤ
空気圧の推定が禁止されることを特徴とするタイヤ空気
圧推定装置。
A wheel speed detecting means for detecting a wheel speed of each wheel; a vibration component extracting means for extracting a vibration component of a wheel speed of each wheel caused by a tire vibration from a wheel speed signal of each wheel; Correcting means for obtaining a corrected wheel speed vibration component of the left and right drive wheels by removing those in-phase components from the wheel speed vibration components of the drive wheels; and A tire pressure estimating device having driving wheel estimating means for estimating a tire pressure of a driving wheel, comprising: means for calculating a degree of difference between vibration components of wheel speeds of left and right driven wheels, wherein the degree of difference is a reference value. A tire pressure estimation device for prohibiting the estimation of the tire air pressure of the left and right driving wheels by the driving wheel estimation means when the vehicle pressure exceeds the threshold value.
【請求項2】各輪の車輪速を検出する車輪速検出手段
と、各輪の車輪速信号よりタイヤの振動に起因する各輪
の車輪速の振動成分を抽出する振動成分抽出手段と、左
右駆動輪の車輪速の振動成分よりそれらの同相成分を除
去することにより前記左右駆動輪の補正後の車輪速の振
動成分を求める補正手段と、前記補正後の車輪速の振動
成分に基づき前記左右駆動輪のタイヤ空気圧を推定する
駆動輪用推定手段とを有するタイヤ空気圧推定装置に於
いて、左右従動輪の車輪速の振動成分の相違度合を演算
する手段を有し、前記駆動輪用推定手段は前記相違度合
が基準値を越えるときには前記左右駆動輪の補正前の車
輪速の振動成分に基づき前記左右駆動輪のタイヤ空気圧
を推定することを特徴とするタイヤ空気圧推定装置。
2. A wheel speed detecting means for detecting a wheel speed of each wheel, a vibration component extracting means for extracting a vibration component of a wheel speed of each wheel caused by a tire vibration from a wheel speed signal of each wheel, Correcting means for obtaining a corrected wheel speed vibration component of the left and right drive wheels by removing those in-phase components from the wheel speed vibration components of the drive wheels; and A driving wheel estimating device having a driving wheel estimating means for estimating a driving wheel tire pressure, comprising: means for calculating a degree of difference between vibration components of wheel speeds of left and right driven wheels; A tire pressure estimating device for estimating the tire pressure of the left and right drive wheels based on a vibration component of the wheel speed before correction of the left and right drive wheels when the degree of difference exceeds a reference value.
JP35357796A 1996-12-17 1996-12-17 Tire pressure estimation device Expired - Fee Related JP3300620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35357796A JP3300620B2 (en) 1996-12-17 1996-12-17 Tire pressure estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35357796A JP3300620B2 (en) 1996-12-17 1996-12-17 Tire pressure estimation device

Publications (2)

Publication Number Publication Date
JPH10175411A true JPH10175411A (en) 1998-06-30
JP3300620B2 JP3300620B2 (en) 2002-07-08

Family

ID=18431788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35357796A Expired - Fee Related JP3300620B2 (en) 1996-12-17 1996-12-17 Tire pressure estimation device

Country Status (1)

Country Link
JP (1) JP3300620B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768418B2 (en) 2001-02-08 2004-07-27 Denso Corporation Tire air pressure detection device for detecting air pressure based on vehicle speed signal
US6940399B2 (en) 2001-02-08 2005-09-06 Nippon Soken Inc. Tire air pressure detection device for detecting air pressure based on vehicle speed signal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768418B2 (en) 2001-02-08 2004-07-27 Denso Corporation Tire air pressure detection device for detecting air pressure based on vehicle speed signal
US6940399B2 (en) 2001-02-08 2005-09-06 Nippon Soken Inc. Tire air pressure detection device for detecting air pressure based on vehicle speed signal

Also Published As

Publication number Publication date
JP3300620B2 (en) 2002-07-08

Similar Documents

Publication Publication Date Title
JP3300580B2 (en) Tire pressure estimation device
EP1514754B1 (en) Slip angle estimating method and system for a vehicle
US7317982B2 (en) Estimating device and vehicle motion control device using the same
EP1167086B1 (en) Method for alarming decrease in tyre air pressure and apparatus used therefor
EP0695653B1 (en) Tire resonance frequency detecting apparatus
JPH06278419A (en) Car body speed estimating device and tire condition detecting device using estimated car speed
JPH04232469A (en) Method for correcting rotating speed obtained by wheel sensor for wheel of running vehicle
JPH08164833A (en) Apparatus for presuming behavior of vehicle
EP1325821B1 (en) Tire burst prediction device
JP4558395B2 (en) Wheel contact state determination device, wheel contact state determination method, and vehicle motion control device
US20090282906A1 (en) Apparatus and method for detecting decrease in tire air pressure and program for detecting decrease in tire air pressure
EP1145875B1 (en) Apparatus and method for alarming decrease in tyre air pressure
JP3300620B2 (en) Tire pressure estimation device
JP3255108B2 (en) Failure determination device for yaw rate sensor
JP2000318416A (en) Vehicular characteristic detection device and control device of vehicle mounting this device
JP3282449B2 (en) Vehicle skidding state quantity detection device
JP3328533B2 (en) Tire pressure abnormality judgment device
JP3300572B2 (en) Tire pressure estimation device
JPH10281944A (en) Tire judging device for vehicle
JP2000071961A (en) Behavior control device for vehicle
JPH0872514A (en) Tire pressure detecting device
JP3328534B2 (en) Tire pressure abnormality judgment device
JP4953503B2 (en) Method and apparatus for detecting vehicle curving
JP2914048B2 (en) Vehicle front and rear wheel rotational speed difference detection device
JP3435634B2 (en) Tire pressure state estimation device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140419

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees