JPH10173476A - Tuning fork piezoelectric oscillator - Google Patents

Tuning fork piezoelectric oscillator

Info

Publication number
JPH10173476A
JPH10173476A JP32734196A JP32734196A JPH10173476A JP H10173476 A JPH10173476 A JP H10173476A JP 32734196 A JP32734196 A JP 32734196A JP 32734196 A JP32734196 A JP 32734196A JP H10173476 A JPH10173476 A JP H10173476A
Authority
JP
Japan
Prior art keywords
electrode
tuning
cantilever
fork type
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32734196A
Other languages
Japanese (ja)
Inventor
Masaki Moronuki
正樹 諸貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP32734196A priority Critical patent/JPH10173476A/en
Publication of JPH10173476A publication Critical patent/JPH10173476A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the oscillating amplitude of a tuning fork piezoelectric oscillator and to average resonant frequency. SOLUTION: A substrate 1 formed in nearly a U-shape having a pair of cantilever parts 3, and piezoelectric objects 6 fixed to each cantilever part 3 are provided in the tuning fork piezoelectric oscillator. In this tuning fork piezoelectric oscillator, the cantilever part 3 of the substrate 1 is formed of monocrystal silicon, a conductor pattern 7 is provided in each cantilever part 3, and in the piezoelectric object 6 having one electrode 8a and another electrode 8b, the one of electrode 8a is fastened to the cantilever part 3. By forming the cantilever part 3 to be an oscillating part of the monocrystal silicon, the oscillating amplitude of the cantilever part 3 increases comparing with a conventional metallic cantilever part 3, so that a small-sized and lightweight tuning fork type piezoelectric oscillator is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、圧電振動子、特
に大きな振動変位量を発生する音叉型圧電振動子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric vibrator, and more particularly to a tuning-fork type piezoelectric vibrator which generates a large amount of vibration displacement.

【0002】[0002]

【従来の技術】圧電体に電界を印加すると機械的歪が生
じ、応力を加えると分極が生ずる。圧電体を用いること
により電気的な信号又はエネルギを機械的な信号又はエ
ネルギに効率よく変換することが可能である。従来の圧
電振動子は、エリンバー等の恒弾性率金属材料を用いた
基板に圧電体を接着した圧電音叉及び水晶等の圧電体自
身を加工した圧電音叉が用いられている。例えば、特公
昭47−15639号公報に示されるように、バイモル
フの駆動用電歪磁器上に片持梁振動子を配置し、振動子
上に抽出用半導体を接着して、その振動子の固有振動数
が電歪磁器の影響を受けない低周波振動子が知られてい
る。この低周波振動子では、駆動用電歪磁器と抽出用半
導体とを含む無接点形であり、半永久的な寿命を有する
堅牢な構造が得られる。また、特開昭55−41088
号公報に示される屈曲振動子は、恒弾性材料により振動
子基板を形成し、振動子基板に水晶薄板を貼付け、水晶
薄板に電極を形成し電界を印加したときの水晶の歪によ
って振動する。この屈曲振動子では、恒弾性材料の厚み
に比較して十分に薄い水晶薄板を振動源として使用する
ため、水晶による周波数温度特性の影響が少なくなり、
恒弾性材料の周波数温度特性となり、常温付近において
ほぼ平坦な周波数温度特性が得られる。
2. Description of the Related Art When an electric field is applied to a piezoelectric body, a mechanical strain occurs, and when a stress is applied, polarization occurs. By using the piezoelectric body, it is possible to efficiently convert an electric signal or energy into a mechanical signal or energy. As a conventional piezoelectric vibrator, a piezoelectric tuning fork in which a piezoelectric body is adhered to a substrate using a constant elastic modulus metal material such as Elinvar and a piezoelectric tuning fork in which a piezoelectric body itself such as quartz is processed are used. For example, as shown in Japanese Patent Publication No. 47-15639, a cantilever vibrator is arranged on a bimorph driving electrostrictive porcelain, an extraction semiconductor is adhered on the vibrator, and a unique A low-frequency vibrator whose frequency is not affected by electrostrictive porcelain is known. This low-frequency vibrator is a non-contact type including a driving electrostrictive porcelain and an extraction semiconductor, and provides a robust structure having a semi-permanent life. Also, Japanese Patent Application Laid-Open No. 55-41088
In the bending oscillator disclosed in Japanese Patent Application Laid-Open No. H10-207, a vibrator substrate is formed from a constant elastic material, a thin quartz plate is adhered to the vibrator substrate, electrodes are formed on the quartz thin plate, and the crystal vibrates due to distortion of the quartz when an electric field is applied. In this flexural vibrator, since the quartz thin plate which is sufficiently thin compared to the thickness of the constant elastic material is used as the vibration source, the influence of the frequency temperature characteristics by the quartz is reduced,
The frequency-temperature characteristic of the constant elastic material is obtained, and a substantially flat frequency-temperature characteristic is obtained near normal temperature.

【0003】[0003]

【発明が解決しようとする課題】他面、図7及び図8に
示す従来の圧電振動子20は、U字状の金属により形成
された金属製の基板21の各カンチレバー部21a、2
1bに圧電体22を接着して固定した音叉型構造を有す
る。圧電体22に形成された一方の電極23は各カンチ
レバー部21aに固着され、圧電体22に形成された他
方の電極24は図示しない導体に接続される。互いに対
称的な形状を有するカンチレバー部21a、21bの厚
さ、長さ、ヤング率、密度をそれぞれt、l、E、ρと
し、αを定数とすると、音叉型構造の振動子のn次の共
振周波数Fnは、次式によって求まる。 Fn=α・(t/l2)・(E/ρ)1/2 t=3mm程度の厚さとl=10mm程度の短い基板2
1を20kHz程度の共振周波数で駆動すると、従来の
圧電振動子では、カンチレバー部21a、21bの剛性
が高く、振動振幅が小さくなりQ値が低下する問題があ
った。また、金属加工により基板21を形成するため、
加工精度が悪く、共振周波数が著しく不均一となる問題
もあった。そこで、この発明は、振動振幅が大きくかつ
均一な共振周波数が得られる音叉型圧電振動子を提供す
ることを目的とする。
On the other hand, the conventional piezoelectric vibrator 20 shown in FIGS. 7 and 8 is composed of a metal substrate 21 made of a U-shaped metal and each of the cantilevers 21a, 21a.
1b has a tuning fork type structure in which the piezoelectric body 22 is bonded and fixed. One electrode 23 formed on the piezoelectric body 22 is fixed to each cantilever portion 21a, and the other electrode 24 formed on the piezoelectric body 22 is connected to a conductor (not shown). When the thicknesses, lengths, Young's moduli, and densities of the cantilever portions 21a and 21b having mutually symmetric shapes are respectively t, l, E, and ρ, and α is a constant, the n-th order of the vibrator of the tuning fork type structure is obtained. The resonance frequency Fn is obtained by the following equation. Fn = α · (t / l 2 ) · (E / ρ) 1/2 The thickness of t = about 3 mm and the short substrate 2 of about l = 10 mm
When 1 is driven at a resonance frequency of about 20 kHz, the conventional piezoelectric vibrator has a problem that the rigidity of the cantilever portions 21a and 21b is high, the vibration amplitude is reduced, and the Q value is reduced. Further, since the substrate 21 is formed by metal working,
There is also a problem that the processing accuracy is poor and the resonance frequency is extremely non-uniform. Therefore, an object of the present invention is to provide a tuning-fork type piezoelectric vibrator in which a vibration amplitude is large and a uniform resonance frequency is obtained.

【0004】[0004]

【課題を解決するための手段】この発明による音叉型圧
電振動子は、一対のカンチレバー部を有するほぼU字状
に形成された基板と、各カンチレバー部に固定された圧
電体とを備えている。この音叉型圧電振動子では、基板
のカンチレバー部を単結晶シリコンにより形成し、一方
の電極及び他方の電極を有する圧電体の一方の電極をカ
ンチレバー部に固着する。また、圧電体に電圧を印加し
てシリコンカンチレバー部を振動させるために、カンチ
レバー部上に形成した導体パターン上に圧電体の一方の
電極を固着し、圧電体の他方の電極と端子電極とをワイ
ヤにより接続する。音叉型圧電振動子の一方の電極に交
流電圧を印加して、材料物性と形状とにより決定される
固有振動数でカンチレバー部を機械的に振動させると、
印加電圧の変化に同期して圧電体が伸縮する。カンチレ
バー部の機械的振動は単結晶シリコン中を伝播し、他方
のカンチレバー部に伝達され、他方のカンチレバー部に
伝達された機械的振動により他方のカンチレバー部に固
着された圧電体に変位を生じさせる。他方のカンチレバ
ー部では、その変位に比例する電圧が圧電体に発生す
る。この場合に、一対のカンチレバー部の間を伝播する
際の機械的振動の減衰が小さく、基板の振動変位が大き
いほど、圧電共振子の特性は良好である。例えば、この
発明の音叉型圧電振動子は、液体中で発振させて発振周
波数を検出することにより、液体の粘度に対応する発振
周波数を検出できるため、粘度等の液体性状の検知に使
用することができる。
A tuning-fork type piezoelectric vibrator according to the present invention includes a substantially U-shaped substrate having a pair of cantilever portions, and a piezoelectric body fixed to each cantilever portion. . In this tuning-fork type piezoelectric vibrator, the cantilever portion of the substrate is formed of single crystal silicon, and one electrode of a piezoelectric body having one electrode and the other electrode is fixed to the cantilever portion. Also, in order to apply a voltage to the piezoelectric body and vibrate the silicon cantilever part, one electrode of the piezoelectric body is fixed on a conductor pattern formed on the cantilever part, and the other electrode of the piezoelectric body and the terminal electrode are connected. Connect with wires. When an AC voltage is applied to one electrode of the tuning-fork type piezoelectric vibrator to mechanically vibrate the cantilever portion at a natural frequency determined by material properties and shape,
The piezoelectric body expands and contracts in synchronization with the change in the applied voltage. The mechanical vibration of the cantilever propagates through the single-crystal silicon, is transmitted to the other cantilever, and the mechanical vibration transmitted to the other cantilever causes a displacement in the piezoelectric body fixed to the other cantilever. . In the other cantilever portion, a voltage proportional to the displacement is generated in the piezoelectric body. In this case, the characteristics of the piezoelectric resonator are better as the attenuation of mechanical vibration during propagation between the pair of cantilevers is smaller and the vibration displacement of the substrate is larger. For example, the tuning fork type piezoelectric vibrator of the present invention can detect an oscillation frequency corresponding to the viscosity of a liquid by oscillating in a liquid and detecting the oscillation frequency. Can be.

【0005】カンチレバー部に取り付けた圧電体の先端
部は楕円軌道を描き、圧電体の振動に伴うカンチレバー
部の歪は、カンチレバー部の剛性に反比例する。即ち、
カンチレバー部の縦弾性係数をE、断面2次モーメント
をIとすると、カンチレバー部の剛性は、縦弾性係数E
と断面2次モーメントIとの積EIで与えられる。従っ
て、カンチレバー部の先端部の振幅(振動変位量)は、
剛性即ちEI値が小さいほど大きくなる。そこで、振動
部となるカンチレバー部を単結晶シリコンで構成する
と、従来の金属製のカンチレバー部に比べて、カンチレ
バー部の振動振幅が大きくなり、小型で軽量の音叉型圧
電振動子を得ることができる。因に、鉄の縦弾性係数
は、2.1×106kg/cm2であるのに対し、ガラス
の縦弾性係数は7〜8×105kg/cm2である。単結
晶シリコンで構成される2つのカンチレバー部を異方性
エッチングにより形成するため、量産性に優れている。
フォトリソグラフィーにより一対のカンチレバー部の形
状を高精度に同一寸法で加工できるため、均一な共振周
波数の振動を発生する小さい圧電共振子を作ることがで
きる。単結晶シリコンの異方性エッチングによりカンチ
レバー部を表裏一対に形成することも可能である。圧電
体の一方の電極は各カンチレバー部に形成した導体パタ
ーン又は又はカンチレバー部に形成された導体パターン
に固着された電極である。圧電体は、チタン酸ジルコン
酸鉛(Pb(Zr,Ti)O3)、チタン酸バリウム
(BaTiO3)、複合ペロブスカイト(A(B1
H)O3−PZT)、チタン酸鉛(PbTiO3)、ナ
イオベイト(PbNb26)等の圧電セラミックス、酸
化亜鉛(ZnO)、窒化アルミニウム(AlN)等の薄
膜圧電体、ポリフッ化ビニリデン(PVDF)、フッ化
ビニリデンとトリフルオロエチレンの共重合体等の有機
圧電高分子材料チタン酸ジルコン酸鉛(PZT)、チタ
ン酸バリウム、酸化亜鉛薄膜のいずれかから選択され
る。
The tip of the piezoelectric body attached to the cantilever has an elliptical orbit, and the distortion of the cantilever due to the vibration of the piezoelectric is inversely proportional to the rigidity of the cantilever. That is,
Assuming that the longitudinal elastic modulus of the cantilever portion is E and the second moment of area is I, the rigidity of the cantilever portion is represented by a longitudinal elastic modulus E
And the second moment of area I. Therefore, the amplitude (vibration displacement) of the tip of the cantilever portion is
It becomes larger as the rigidity, that is, the EI value becomes smaller. Therefore, when the cantilever portion serving as the vibrating portion is made of single-crystal silicon, the vibration amplitude of the cantilever portion becomes larger than that of a conventional metal cantilever portion, and a small and lightweight tuning-fork type piezoelectric vibrator can be obtained. . Incidentally, the longitudinal elastic modulus of iron is 2.1 × 10 6 kg / cm 2 , whereas the longitudinal elastic modulus of glass is 7 to 8 × 10 5 kg / cm 2 . Since the two cantilevers made of single-crystal silicon are formed by anisotropic etching, mass productivity is excellent.
Since the shape of the pair of cantilevers can be processed with the same dimensions with high precision by photolithography, a small piezoelectric resonator that generates vibration at a uniform resonance frequency can be manufactured. It is also possible to form a pair of front and back cantilevers by anisotropic etching of single crystal silicon. One electrode of the piezoelectric body is a conductor pattern formed on each cantilever portion or an electrode fixed to a conductor pattern formed on the cantilever portion. The piezoelectric body is made of lead zirconate titanate (Pb (Zr, Ti) O 3 ), barium titanate (BaTiO 3 ), composite perovskite (A (B 1 ,
B H) O 3 -PZT), lead titanate (PbTiO 3), Naiobeito (PbNb 2 O 6) piezoelectric ceramics such as, zinc oxide (ZnO), thin-film piezoelectric material such as aluminum nitride (AlN), polyvinylidene fluoride ( PVDF), an organic piezoelectric polymer material such as a copolymer of vinylidene fluoride and trifluoroethylene, selected from the group consisting of lead zirconate titanate (PZT), barium titanate, and a zinc oxide thin film.

【0006】[0006]

【発明の実施の形態】以下、この発明による音叉型圧電
振動子の実施の形態を図1〜図6について説明する。図
1及び図2に示すように、単結晶シリコンにより所定の
寸法に形成したカンチレバー部3の一方の主面に導体パ
ターン7を予め形成し、カンチレバー部3の他方の主面
が互いに対向する状態で一対のカンチレバー部3をそれ
ぞれ片持ち梁状に基板1を構成するスペーサ2の両端部
に対向して、エポキシ接着剤により接着して固定する。
パイレックスガラス等のガラス質によりスペーサ2を形
成する場合、スペーサ2にカンチレバー部3を陽極接合
により直接接合することができる。次に、カンチレバー
部3の導体パターン7上に一対の圧電体6をエポキシ接
着剤により接着固定する。この場合、導体パターン7は
圧電体6の一方の電極8aを構成する。導体パターン7
はカンチレバー部3の端部に設けられた端子電極9aに
接続されると共に、圧電体6の他方の電極8bはワイヤ
11により端子電極9と並行に形成された端子電極9b
に接続される。電圧印加により長さ方向に変位を生じる
電歪特性を持つ圧電体6は、チタン酸ジルコン酸鉛(P
b(Zr,Ti)O3)、チタン酸バリウム(BaTi
3)、複合ペロブスカイト(A(B1,BH)O3−PZ
T)、チタン酸鉛(PbTiO3)、ナイオベイト(P
bNb26)等の圧電セラミックス、酸化亜鉛(Zn
O)、窒化アルミニウム(AlN)等の薄膜圧電体、ポ
リフッ化ビニリデン(PVDF)、フッ化ビニリデンと
トリフルオロエチレンの共重合体等の有機圧電高分子材
料等の種々の材料を使用できるが、例えばチタン酸ジル
コン酸鉛(PZT)が適切である。カンチレバー部3の
適当な個所に圧電体6を固着できるが、カンチレバー部
3の先端部に最大の振幅を与えるため、特にカンチレバ
ー部3のスペーサ部2との接続部付近に圧電体6を固着
すると有効である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a tuning-fork type piezoelectric vibrator according to the present invention will be described below with reference to FIGS. As shown in FIGS. 1 and 2, a conductor pattern 7 is previously formed on one main surface of a cantilever portion 3 formed to a predetermined size by single crystal silicon, and the other main surfaces of the cantilever portion 3 face each other. Then, the pair of cantilever portions 3 are respectively fixed to the both ends of the spacer 2 constituting the substrate 1 in a cantilever manner by bonding with an epoxy adhesive.
When the spacer 2 is formed of glass such as Pyrex glass, the cantilever portion 3 can be directly bonded to the spacer 2 by anodic bonding. Next, a pair of piezoelectric bodies 6 are bonded and fixed on the conductor pattern 7 of the cantilever portion 3 with an epoxy adhesive. In this case, the conductor pattern 7 constitutes one electrode 8a of the piezoelectric body 6. Conductor pattern 7
Is connected to a terminal electrode 9a provided at an end of the cantilever portion 3, and the other electrode 8b of the piezoelectric body 6 is connected to a terminal electrode 9b formed in parallel with the terminal electrode 9 by a wire 11.
Connected to. The piezoelectric body 6 having an electrostrictive property in which displacement is caused in the length direction by applying a voltage is made of lead zirconate titanate (P
b (Zr, Ti) O 3 ), barium titanate (BaTi
O 3 ), composite perovskite (A (B 1 , B H ) O 3 -PZ
T), lead titanate (PbTiO 3 ), niobate (P
bNb 2 O 6 ) and other piezoelectric ceramics, zinc oxide (Zn)
O), thin-film piezoelectric materials such as aluminum nitride (AlN), and organic piezoelectric polymer materials such as polyvinylidene fluoride (PVDF) and a copolymer of vinylidene fluoride and trifluoroethylene. Lead zirconate titanate (PZT) is suitable. The piezoelectric body 6 can be fixed to an appropriate portion of the cantilever 3. However, in order to give the maximum amplitude to the tip of the cantilever 3, especially when the piezoelectric body 6 is fixed near the connection of the cantilever 3 to the spacer 2. It is valid.

【0007】図3に示す実施の形態では、(100)面
方向の単結晶シリコンをエッチングして基板1内部に空
隙5を形成し、基板1と一体に一対のカンチレバー部3
を設ける。このような形状の基板1を形成するには、例
えば、予め鏡面仕上げした単結晶シリコンの基板1の上
下両面にSiO2酸化膜(図示せず)を熱酸化、CVD
法等により形成し、図4に示す溝4の部分のSiO2
化膜をフォトリソグラフィーにより除去する。その後、
加熱したKOH等のアルカリ水溶液に単結晶シリコン1
を浸漬する。単結晶シリコンの結晶方位によりエッチン
グ速度が異なるため、異方性エッチングされカンチレバ
ー部3を形成できる。カンチレバー部3の形成後、Si
2酸化膜を除去し、蒸着又はスパッタリングによりア
ルミニウム等の導電性金属薄膜を形成し、フォトリソグ
ラフィーにより導体パターン7及び端子電極9を形成す
る。図5及び図6に示す実施の形態では、チタン酸ジル
コン酸鉛(PZT)又はチタン酸バリウムにより構成さ
れる圧電体6の表面に一方の電極8a、他方の電極8b
を銀又は金で予め形成する。圧電体6の一方の電極8a
を導体パターン上7に半田等の導電性ろう材により接着
する。その後、アルミニウム細線又は金細線等のワイヤ
11により、他方の電極8bと端子電極9bとを接続す
る。図3に示す実施の形態では、酸化亜鉛薄膜で圧電体
6を形成する場合、一方の電極8aに対応する部分以外
の領域をマスキングした状態でスパッタリングにより導
体パターン7上に酸化亜鉛薄膜を選択的に形成した後
に、導体パターン7の形成と同様に、蒸着又はスパッタ
リングによりアルミニウム等の導電性金属薄膜を形成
し、フォトリソグラフィーにより他方の電極8bを形成
する。エルコロイの基板1を用いた従来の音叉型圧電振
動子と図1に示す実施の形態のこの発明による音叉型圧
電振動子を10kHzの共振周波数で発振させた場合、
表1に示す結果が得られた。
In the embodiment shown in FIG. 3, a single crystal silicon in the (100) plane direction is etched to form a gap 5 inside the substrate 1, and a pair of cantilever portions 3 are formed integrally with the substrate 1.
Is provided. In order to form the substrate 1 having such a shape, for example, a SiO 2 oxide film (not shown) is thermally oxidized on both upper and lower surfaces of the single crystal silicon substrate 1 which has been mirror-finished in advance, and CVD is performed.
The SiO 2 oxide film in the groove 4 shown in FIG. 4 is removed by photolithography. afterwards,
Single crystal silicon 1 in heated alkaline aqueous solution such as KOH
Immerse. Since the etching rate differs depending on the crystal orientation of the single crystal silicon, the cantilever portion 3 can be formed by anisotropic etching. After the formation of the cantilever 3, Si
The O 2 oxide film is removed, a conductive metal thin film such as aluminum is formed by vapor deposition or sputtering, and the conductor pattern 7 and the terminal electrode 9 are formed by photolithography. In the embodiment shown in FIGS. 5 and 6, one electrode 8a and the other electrode 8b are provided on the surface of a piezoelectric body 6 made of lead zirconate titanate (PZT) or barium titanate.
Is previously formed of silver or gold. One electrode 8a of the piezoelectric body 6
Is adhered to the conductive pattern 7 with a conductive brazing material such as solder. After that, the other electrode 8b and the terminal electrode 9b are connected by a wire 11 such as an aluminum wire or a gold wire. In the embodiment shown in FIG. 3, when the piezoelectric body 6 is formed of a zinc oxide thin film, the zinc oxide thin film is selectively formed on the conductor pattern 7 by sputtering in a state where a region other than the portion corresponding to the one electrode 8a is masked. After that, similarly to the formation of the conductive pattern 7, a conductive metal thin film such as aluminum is formed by vapor deposition or sputtering, and the other electrode 8b is formed by photolithography. When the conventional tuning fork type piezoelectric vibrator using the Herculoy substrate 1 and the tuning fork type piezoelectric vibrator according to the embodiment of the present invention shown in FIG. 1 are oscillated at a resonance frequency of 10 kHz,
The results shown in Table 1 were obtained.

【0008】[0008]

【表1】 [Table 1]

【0009】表1から明かなように、従来の音叉型圧電
振動子に比べて、この発明の音叉型圧電振動子では1.
68倍の大きな振動変位を得ることができる。また、単
結晶シリコンの基板1の異方性エッチングによりカンチ
レバー部3を厚さ数10μmで形成する図2及び図3に
示す構造では、カンチレバー部3の長さも大幅に減少す
ることができ、全体として小型化及び軽量化が可能とな
る。また、単結晶シリコン板1の異方性エッチングによ
りカンチレバー部3を形成する場合にはフォトリソグラ
フィーにより一枚のシリコンウエハーから複数個を同時
に作製することが可能であり、生産性が向上する。さら
に、フォトリソグラフィー、異方性エッチングによりカ
ンチレバー部3の幅、長さ、厚さを高精度に加工できる
ため、共振周波数のバラツキの小さい音叉型圧電振動子
を作ることができる。
As is clear from Table 1, the tuning-fork type piezoelectric vibrator of the present invention is 1. compared with the conventional tuning-fork type piezoelectric vibrator.
A 68 times larger vibration displacement can be obtained. In addition, in the structure shown in FIGS. 2 and 3 in which the cantilever portion 3 is formed with a thickness of several tens of μm by anisotropic etching of the substrate 1 of single crystal silicon, the length of the cantilever portion 3 can be greatly reduced, and As a result, the size and weight can be reduced. Further, when the cantilever portion 3 is formed by anisotropic etching of the single crystal silicon plate 1, a plurality of cantilevers can be simultaneously manufactured from one silicon wafer by photolithography, thereby improving productivity. Further, since the width, length, and thickness of the cantilever portion 3 can be processed with high precision by photolithography and anisotropic etching, a tuning-fork type piezoelectric vibrator having a small variation in resonance frequency can be manufactured.

【0010】本実施の形態での作用効果を列挙すれば次
の通りである。 [1] 音叉型圧電振動子で大きな振動変位を得ること
ができる。 [2] 音叉型圧電振動子を小型かつ軽量に形成するこ
とができる。 [3] 高い寸法精度でカンチレバー部3を形成でき、
共振周波数が均一となる。 [4] 音叉型圧電振動子を液体性状の検知に利用でき
る。
The operation and effect of this embodiment are as follows. [1] A large vibration displacement can be obtained by the tuning fork type piezoelectric vibrator. [2] The tuning fork type piezoelectric vibrator can be formed small and lightweight. [3] Cantilever part 3 can be formed with high dimensional accuracy,
The resonance frequency becomes uniform. [4] The tuning fork type piezoelectric vibrator can be used for detecting liquid properties.

【0011】[0011]

【発明の効果】前記のように、振動振幅が大きくかつ均
一な共振周波数で駆動されるこの発明による音叉型圧電
振動子は種々の測定器及びアクチュエータの性能を向上
することができる。
As described above, the tuning fork type piezoelectric vibrator according to the present invention driven at a large vibration amplitude and a uniform resonance frequency can improve the performance of various measuring instruments and actuators.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明による音叉型圧電振動子の正面図FIG. 1 is a front view of a tuning-fork type piezoelectric vibrator according to the present invention.

【図2】 図1の音叉型圧電振動子の側面図FIG. 2 is a side view of the tuning-fork type piezoelectric vibrator of FIG.

【図3】 図4のA−A線に沿う断面図FIG. 3 is a sectional view taken along line AA in FIG. 4;

【図4】 この発明の他の実施の形態を示す平面図FIG. 4 is a plan view showing another embodiment of the present invention.

【図5】 図6のA−A線に沿う断面図FIG. 5 is a sectional view taken along the line AA in FIG. 6;

【図6】 一方の電極を導体パターンとは別に形成した
実施の形態を示す平面図
FIG. 6 is a plan view showing an embodiment in which one electrode is formed separately from a conductor pattern.

【図7】 従来の音叉型圧電振動しの側面図FIG. 7 is a side view of a conventional tuning-fork type piezoelectric vibrator.

【図8】 図7の側面図FIG. 8 is a side view of FIG. 7;

【符号の説明】[Explanation of symbols]

1・・基板、 2・・スペーサ、 3・・カンチレバー
部、 4・・溝、 5・・空隙、 6・・圧電体、 7
・・導体パターン、 8・・一方の電極、 8・・他方
の電極、 9a、9b・・端子電極、 11・・ワイ
ヤ、
1. substrate, 2. spacer, 3. cantilever part, 4. groove, 5. gap, 6. piezoelectric body, 7.
..Conductor pattern, 8 ... one electrode, 8 ... the other electrode, 9a, 9b ... terminal electrode, 11 ... wire,

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一対のカンチレバー部を有するほぼU字
状に形成された基板と、各カンチレバー部に固定された
圧電体とを備えた音叉型圧電振動子において、 基板のカンチレバー部を単結晶シリコンにより形成し、 一方の電極及び他方の電極を有する圧電体の一方の電極
をカンチレバー部に固着したことを特徴とする音叉型圧
電振動子。
1. A tuning-fork type piezoelectric vibrator comprising: a substantially U-shaped substrate having a pair of cantilever portions; and a piezoelectric body fixed to each cantilever portion. A tuning-fork type piezoelectric vibrator characterized in that one electrode of a piezoelectric body having one electrode and the other electrode is fixed to a cantilever portion.
【請求項2】 圧電体の一方の電極はカンチレバー部に
形成された導体パターン又はカンチレバー部に形成され
た導体パターンに固着された電極である請求項1に記載
の音叉型圧電振動子。
2. The tuning-fork type piezoelectric vibrator according to claim 1, wherein the one electrode of the piezoelectric body is a conductor pattern formed on the cantilever portion or an electrode fixed to the conductor pattern formed on the cantilever portion.
【請求項3】 2つのカンチレバー部を異方性エッチン
グにより形成した請求項1又は請求項2のいずれかに記
載の音叉型圧電振動子。
3. The tuning-fork type piezoelectric vibrator according to claim 1, wherein the two cantilevers are formed by anisotropic etching.
【請求項4】 圧電体は、チタン酸ジルコン酸鉛(Pb
(Zr,Ti)O3)、チタン酸バリウム(BaTi
3)、複合ペロブスカイト(A(B1,BH)O3−PZ
T)、チタン酸鉛(PbTiO3)、ナイオベイト(P
bNb26)等の圧電セラミックス、酸化亜鉛(Zn
O)、窒化アルミニウム(AlN)等の薄膜圧電体、ポ
リフッ化ビニリデン(PVDF)、フッ化ビニリデンと
トリフルオロエチレンの共重合体等の有機圧電高分子材
料チタン酸ジルコン酸鉛(PZT)、チタン酸バリウ
ム、酸化亜鉛薄膜のいずれかから選択される請求項1〜
請求項3のいずれかに記載の音叉型圧電振動子。
4. The piezoelectric body is made of lead zirconate titanate (Pb).
(Zr, Ti) O 3 ), barium titanate (BaTi)
O 3 ), composite perovskite (A (B 1 , B H ) O 3 -PZ
T), lead titanate (PbTiO 3 ), niobate (P
bNb 2 O 6 ) and other piezoelectric ceramics, zinc oxide (Zn)
O), a thin film piezoelectric material such as aluminum nitride (AlN), an organic piezoelectric polymer material such as polyvinylidene fluoride (PVDF), a copolymer of vinylidene fluoride and trifluoroethylene, lead zirconate titanate (PZT), titanic acid Barium, selected from any one of zinc oxide thin film
A tuning-fork type piezoelectric vibrator according to claim 3.
【請求項5】 液体性状の検知に使用する請求項1〜請
求項3のいずれか1項に記載の音叉型圧電振動子。
5. The tuning-fork type piezoelectric vibrator according to claim 1, which is used for detecting a property of a liquid.
JP32734196A 1996-12-06 1996-12-06 Tuning fork piezoelectric oscillator Pending JPH10173476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32734196A JPH10173476A (en) 1996-12-06 1996-12-06 Tuning fork piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32734196A JPH10173476A (en) 1996-12-06 1996-12-06 Tuning fork piezoelectric oscillator

Publications (1)

Publication Number Publication Date
JPH10173476A true JPH10173476A (en) 1998-06-26

Family

ID=18198062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32734196A Pending JPH10173476A (en) 1996-12-06 1996-12-06 Tuning fork piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JPH10173476A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7176604B2 (en) * 2001-08-27 2007-02-13 Matsushita Electric Industrial Co., Ltd. Piezoelectric device and method of manufacturing the device
JP2008199570A (en) * 2007-01-18 2008-08-28 Seiko Epson Corp Piezoelectric vibrator and manufacturing method thereof, oscillator, real-time clock, and radio-controlled timepiece reception module
KR100918380B1 (en) 2007-12-12 2009-09-22 한국전자통신연구원 Power generating device array and system, and method for manufacturing the same
JP2011058810A (en) * 2009-09-07 2011-03-24 Konica Minolta Holdings Inc Translation mechanism, method of manufacturing translation mechanism, interferometer and spectroscope
JP2011250572A (en) * 2010-05-26 2011-12-08 Konica Minolta Holdings Inc Actuator drive device, translational parallel mechanism using the same, interferometer and spectrometer
JP2012042257A (en) * 2010-08-17 2012-03-01 Konica Minolta Holdings Inc Parallel moving mechanism, interferometer, and spectrometer
JP2012107961A (en) * 2010-11-16 2012-06-07 Konica Minolta Holdings Inc Interferometer and spectrograph equipped with the same
US10644222B2 (en) 2015-12-03 2020-05-05 Seiko Epson Corporation Piezoelectric drive apparatus for motor and method for manufacturing the same, motor, robot, and pump

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7176604B2 (en) * 2001-08-27 2007-02-13 Matsushita Electric Industrial Co., Ltd. Piezoelectric device and method of manufacturing the device
US7380320B2 (en) 2001-08-27 2008-06-03 Matsushita Electric Industrial Co., Ltd. Piezoelectric device and method of manufacturing the device
JP2008199570A (en) * 2007-01-18 2008-08-28 Seiko Epson Corp Piezoelectric vibrator and manufacturing method thereof, oscillator, real-time clock, and radio-controlled timepiece reception module
KR100918380B1 (en) 2007-12-12 2009-09-22 한국전자통신연구원 Power generating device array and system, and method for manufacturing the same
JP2011058810A (en) * 2009-09-07 2011-03-24 Konica Minolta Holdings Inc Translation mechanism, method of manufacturing translation mechanism, interferometer and spectroscope
JP2011250572A (en) * 2010-05-26 2011-12-08 Konica Minolta Holdings Inc Actuator drive device, translational parallel mechanism using the same, interferometer and spectrometer
JP2012042257A (en) * 2010-08-17 2012-03-01 Konica Minolta Holdings Inc Parallel moving mechanism, interferometer, and spectrometer
JP2012107961A (en) * 2010-11-16 2012-06-07 Konica Minolta Holdings Inc Interferometer and spectrograph equipped with the same
US10644222B2 (en) 2015-12-03 2020-05-05 Seiko Epson Corporation Piezoelectric drive apparatus for motor and method for manufacturing the same, motor, robot, and pump

Similar Documents

Publication Publication Date Title
US10291202B2 (en) Vibration device and manufacturing method of the same
JP4930381B2 (en) Piezoelectric vibration device
US5438231A (en) Thin film micromechanical resonator gyro
CN101847978B (en) Flexural vibration piece and oscillator using the same
JP2015201887A (en) Devices with mechanical resonating structures
WO2014042020A2 (en) Oscillating device and manufacturing method therefor
WO2015025716A1 (en) Piezo-resonator and process for production thereof
KR20020001577A (en) Piezoelectric resonator and piezoelectric filter using the same
JP6550070B2 (en) Piezoelectric measuring element for measuring dynamic and static pressure and / or temperature
JP2012019441A (en) Vibration piece, vibrator, and oscillator
JP2011004035A (en) Flexural vibration piece, and method for manufacturing flexural vibration piece
KR20130003017A (en) Vibration power generation device
US11824521B2 (en) Vibration substrate having a pair of holding portions and a beam portion connecting the holding portions, vibrator, and vibrator unit
JP2010233204A (en) Resonator element and oscillator
JPH10173476A (en) Tuning fork piezoelectric oscillator
JP5057148B2 (en) Piezoelectric vibration device
CN113037245A (en) Quartz resonator based on piezoelectric thin film transduction and electronic equipment
JPH0365046B2 (en)
JP2000278078A (en) Piezoelectric resonator
JP2000332570A (en) Piezoelectric resonator
US20220184660A1 (en) Lithium-based piezoelectric micromachined ultrasonic transducer
US20240022186A1 (en) Piezoelectric device comprising flexible single crystalline piezoelectric linbo3 and/or litao3 films integrated on flexible substrate and methods for producing the same
WO2019012960A1 (en) Laminated substrate provided with piezoelectric film, element provided with piezoelectric film, and method for producing laminated substrate provided with piezoelectric film
JP2007500478A (en) Multilayer resonator and time base incorporating the resonator
JPH10173477A (en) Tuning fork piezoelectric oscillator