JPH10172619A - Air zinc battery - Google Patents

Air zinc battery

Info

Publication number
JPH10172619A
JPH10172619A JP8336981A JP33698196A JPH10172619A JP H10172619 A JPH10172619 A JP H10172619A JP 8336981 A JP8336981 A JP 8336981A JP 33698196 A JP33698196 A JP 33698196A JP H10172619 A JPH10172619 A JP H10172619A
Authority
JP
Japan
Prior art keywords
air
positive electrode
battery
plate thickness
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8336981A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Honda
一良 本田
Takeshi Hosoya
健 細谷
Norishige Yamaguchi
典重 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8336981A priority Critical patent/JPH10172619A/en
Publication of JPH10172619A publication Critical patent/JPH10172619A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an air zinc battery in which discharge capacity can be enlarged without impairing the reliability of liquid leak resistance. SOLUTION: A negative electrode active material-filled negative electrode case and a positive electrode can 3 having air holes are integrated via an insulation gasket 4, the plate thickness (a) of at least one part of a positive electrode can 3 bottom portion is made to be thinner comparing with the plate thickness (b) of the other part, and an air diffusion layer 11 is disposed in a recessed portion formed thereby. Preferably, the ratio a/b of the plate thickness (a) to the plate thickness (b) is 0.4 to 0.8. Preferably, the inner diameter (c) of the recessed portion is d-1.0mm<=c<=d+0.5mm against the inner diameter (d) of an insulation gasket opening portion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、補聴器やページャ
ー等の小型電子機器に使用される空気亜鉛電池に関する
ものであり、特に正極缶の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zinc-air battery used for a small electronic device such as a hearing aid and a pager, and more particularly to an improvement in a positive electrode can.

【0002】[0002]

【従来の技術】酸素を活物質として使用する電極を用い
た電池として、空気亜鉛電池や燃料電池等が知られてい
る。近年では、地球環境や資源の有効利用に大きな関心
が集まっており、その観点からも酸素を利用するこれら
の電池系はクリーンな電源として注目を集めている。例
えば、補聴器用の電池として従来水銀電池が使用されて
いたが、活物質として酸化水銀を使用する水銀電池が問
題視されるようになり、その代替として空気亜鉛電池が
使用されるようなった。
2. Description of the Related Art Zinc-air batteries and fuel cells are known as batteries using electrodes using oxygen as an active material. In recent years, great attention has been given to the effective use of the global environment and resources, and from this viewpoint, these battery systems that use oxygen have attracted attention as clean power sources. For example, a mercury battery has conventionally been used as a battery for a hearing aid. However, a mercury battery using mercury oxide as an active material has been regarded as a problem, and an air zinc battery has been used as a substitute for the mercury battery.

【0003】空気亜鉛電池は、他の電池系と比較して体
積当たりのエネルギー密度が高く、アルカリマンガン電
池の約5倍、酸化銀電池の約3倍、水銀電池やリチウム
電池の約2倍と格段に優れている。よって、この空気亜
鉛電池は、小型で大電流を必要とし、かつ電池交換の手
間が省けることが望まれるものとして、ペジャーや携帯
用医療機器にもその用途が広がっている。そして、空気
亜鉛電池を使用する電子機器の小型化に伴って電池サイ
ズの小型化が要望され、かつユーザーに使いやすいよう
に、作動時間の長期化が要望されている。
[0003] Zinc air batteries have a higher energy density per volume than other battery systems, and are about five times as large as alkaline manganese batteries, about three times as much as silver oxide batteries, and about twice as much as mercury and lithium batteries. It is much better. Therefore, this zinc-air battery is required to have a small size, require a large current, and to save the trouble of battery replacement, and its use has been spread to a pegger and a portable medical device. With the miniaturization of electronic devices using the zinc-air battery, there is a demand for a reduction in the size of the battery and a prolongation of the operating time so that the user can use the battery.

【0004】ところで、空気亜鉛電池は、電池外部の空
気中から取り込む酸素を正極活物質として利用するた
め、その放電容量が電池内部に充填される負極活物質の
量で決定される。よって、放電容量の向上には、いかに
電池の内容積を大きくして負極活物質を多く充填できる
かが重要である。
[0004] Incidentally, in a zinc-air battery, since oxygen taken in from the air outside the battery is used as a positive electrode active material, the discharge capacity is determined by the amount of the negative electrode active material filled in the battery. Therefore, in order to improve the discharge capacity, it is important how the inner volume of the battery can be increased and the negative electrode active material can be filled more.

【0005】従来の空気亜鉛電池の放電容量を向上させ
る方法としては、電池を構成する負極ケースや正極缶の
板厚全体を薄くし、その分負極活物質の充填空間に充て
る方法がある。また、特公平5−72072号公報に見
られるように、正極缶の底部内側に空気孔に接して配置
される空気拡散層を省くことにより、その収納部分の空
間をなくし、その分負極活物質の充填空間に充てる方法
がある。
As a method for improving the discharge capacity of a conventional zinc-air battery, there is a method in which the entire thickness of the negative electrode case or the positive electrode can constituting the battery is made thinner and the entire space is filled with the negative electrode active material. Further, as shown in Japanese Patent Publication No. 5-72072, by eliminating the air diffusion layer disposed in contact with the air hole inside the bottom of the positive electrode can, the space of the storage portion is eliminated, and the negative electrode active material is accordingly reduced. There is a method that can be used for filling space.

【0006】しかしながら、空気亜鉛電池は、電解液に
強アルカリ水溶液を使用しているため、容量向上と同時
に充分な耐漏液性を確保する必要がある。ところが、上
述した放電容量向上のための方法は、耐漏液性が犠牲に
なる欠点を有している。前者の方法は、部品の板厚を減
ずることにより部品強度の低下が余儀なくされ、結果と
して封口強度が低下して耐漏液性も低下してしまう。後
者の方法は、空気拡散層を省くことにより正極缶の底部
に段差がなくなるため、電極と正極缶との密着強度が従
来の段差を設けた構造に比べて劣る欠点がある。
However, a zinc-air battery uses a strong alkaline aqueous solution as an electrolytic solution, so it is necessary to secure sufficient leakage resistance while improving the capacity. However, the above-described method for improving the discharge capacity has a disadvantage that the liquid leakage resistance is sacrificed. In the former method, the strength of the component is inevitably reduced by reducing the thickness of the component, and as a result, the sealing strength is reduced and the liquid leakage resistance is also reduced. The latter method has a drawback that the step of eliminating the air diffusion layer eliminates a step at the bottom of the positive electrode can, so that the adhesion strength between the electrode and the positive electrode can is inferior to a conventional structure having a step.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上述のよう
な問題点を解決するために提案されたものであり、耐漏
液性の信頼性を損なうことなく、放電容量を大きくでき
る空気亜鉛電池を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been proposed to solve the above-mentioned problems, and it has been proposed that the discharge capacity be increased without impairing the reliability of leakage resistance. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明に係る空気亜鉛電
池は、負極活物質を充填した負極ケースと空気孔を有す
る正極缶とが絶縁ガスケットを介して一体化されてな
り、上記正極缶の底部の少なくとも一部の板厚aが他の
部分の板厚bに比べて薄くされ、これによって形成され
た凹部に空気拡散層が配置されていることを特徴とする
ものである。
The zinc-air battery according to the present invention comprises a negative electrode case filled with a negative electrode active material and a positive electrode can having an air hole integrated through an insulating gasket. The thickness a of at least a part of the bottom portion is made thinner than the thickness b of the other portion, and an air diffusion layer is disposed in a recess formed by the thickness a.

【0009】このように、本発明に係る空気亜鉛電池
は、正極缶の底部の少なくとも一部の板厚aが他の部分
の板厚bに比べて薄くされていることから、耐漏液性に
有効な部分の板厚がそのままで部品強度が保たれ、耐漏
液性の信頼性を維持するとともに、電池の有効内容積を
増やして放電容量を向上させることができる。
As described above, in the zinc-air battery according to the present invention, since the plate thickness a of at least a part of the bottom of the positive electrode can is made smaller than the plate thickness b of the other parts, the battery is resistant to liquid leakage. The strength of the component is maintained with the plate thickness of the effective portion as it is, the reliability of leakage resistance is maintained, and the discharge capacity can be improved by increasing the effective internal volume of the battery.

【0010】ところで、板厚aの板厚bに対する比a/
bは、0.4〜0.8であることが好ましい。この比率
が0.4未満になると、部品強度が低下するため好まし
くない。また、0.8を越えると、放電容量を向上させ
る効果が少なくなる。
By the way, the ratio of the thickness a to the thickness b, a /
b is preferably 0.4 to 0.8. If this ratio is less than 0.4, the strength of the component is undesirably reduced. On the other hand, when it exceeds 0.8, the effect of improving the discharge capacity is reduced.

【0011】また、凹部の内径cは、絶縁ガスケットの
開口部の内径dに対してd−1.0mm≦c≦d+0.
5mmであることが好ましい。凹部の内径が大きいほど
有効な空気拡散層を確保でき重負荷特性を向上できる
が、耐漏液性の観点から上記範囲が好ましい。
The inner diameter c of the recess is d-1.0 mm ≦ c ≦ d + 0.
It is preferably 5 mm. As the inner diameter of the concave portion is larger, an effective air diffusion layer can be secured and the heavy load characteristic can be improved, but the above range is preferable from the viewpoint of liquid leakage resistance.

【0012】[0012]

【発明の実施の形態】以下、本発明に係る空気亜鉛電池
の好適な実施例を図面を参照しながら詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a zinc-air battery according to the present invention will be described below in detail with reference to the drawings.

【0013】本発明を適用した空気亜鉛電池は、図1に
示すように、負極活物質として亜鉛を充填した負極ケー
ス1と、空気孔2を有する正極缶3とが絶縁ガスケット
4を介して一体化されてなるものである。すなわち、こ
の空気亜鉛電池は、粉末状亜鉛を含有するゲル状負極合
剤5が収納されてなる負極ケース1と、多孔質膜6、電
極7、セパレータ8、電解液保持層9がこの順に積層さ
れて収納されてなる正極缶3とが一体化されてなるもの
である。そして、この空気亜鉛電池は、空気孔2から空
気を取り入れ、酸素を活物質として用いる。なお、空気
孔2は、少なくとも1つ以上適宜に設けられるものであ
り、その数、形状、及び配置は特に限定されるものでは
ない、また、電池使用前には、この空気孔2はシール1
0で密閉されている。
As shown in FIG. 1, a zinc-air battery to which the present invention is applied comprises a negative electrode case 1 filled with zinc as a negative electrode active material and a positive electrode can 3 having air holes 2 via an insulating gasket 4. It is something that has been made. That is, in this zinc-air battery, a negative electrode case 1 containing a gelled negative electrode mixture 5 containing powdered zinc, a porous film 6, an electrode 7, a separator 8, and an electrolyte holding layer 9 are laminated in this order. The positive electrode can 3 formed and stored is integrated with the positive electrode can 3. And this zinc-air battery takes in air from the air hole 2 and uses oxygen as an active material. At least one air hole 2 is appropriately provided, and the number, shape, and arrangement thereof are not particularly limited. Before the battery is used, the air hole 2 is sealed with a seal 1.
0 is sealed.

【0014】上述した正極缶3は、図2に示すように、
その底部の中央部分12の板厚aがその外周部分13の
板厚bに比べて薄くされ、これによって形成される凹部
14に空気拡散層11が配置されている。これにより、
この正極缶3は、板厚b−aの分だけ、電池の有効内容
積を増やすことができ、負極活物質の充填量を増やすこ
とができる。
The above-mentioned positive electrode can 3 is, as shown in FIG.
The plate thickness a of the central portion 12 at the bottom is made thinner than the plate thickness b of the outer peripheral portion 13, and the air diffusion layer 11 is disposed in a concave portion 14 formed thereby. This allows
In the positive electrode can 3, the effective internal volume of the battery can be increased by the plate thickness ba, and the filling amount of the negative electrode active material can be increased.

【0015】なお、正極缶3の底部の板厚aの板厚bに
対する比a/bは、0.4〜0.8であることが好まし
い。中央部分12の板厚aが薄いほど電池の有効内容積
を増やすことができるが、この比率が0.4未満になる
と、部品強度が低下し耐漏液性が低下するため好ましく
ない。また、この比率が0.8を越えると本発明の目的
とする効果が得にくくなる。
The ratio a / b of the thickness a of the bottom portion of the positive electrode can 3 to the thickness b is preferably 0.4 to 0.8. Although the effective internal volume of the battery can be increased as the plate thickness a of the central portion 12 is smaller, it is not preferable that the ratio is less than 0.4 because the component strength is reduced and the liquid leakage resistance is reduced. On the other hand, if this ratio exceeds 0.8, it is difficult to obtain the desired effects of the present invention.

【0016】また、図1に示すように、凹部14の内径
cは、絶縁ガスケット4の開口部分の内径dに対してd
−1.0mm≦c≦d+0.5mmであることが好まし
い。凹部14の内径cが大きいほど、有効な空気拡散層
を確保でき、特に重負荷特性を向上できる。ただし、こ
の比率が上記範囲をはずれると、耐漏液性が低下するた
め好ましくない。なお、ここで言う絶縁ガスケット4の
開口部は、セパレータ8と対向する面側を開口部とし
た。
As shown in FIG. 1, the inner diameter c of the recess 14 is smaller than the inner diameter d of the opening of the insulating gasket 4 by d.
It is preferable that −1.0 mm ≦ c ≦ d + 0.5 mm. As the inner diameter c of the concave portion 14 is larger, an effective air diffusion layer can be secured, and in particular, heavy load characteristics can be improved. However, if the ratio is out of the above range, the liquid leakage resistance is undesirably reduced. The opening of the insulating gasket 4 referred to here is the opening on the side facing the separator 8.

【0017】このように、上述した空気亜鉛電池は、正
極缶3のカシメ封口部分や底部の外周部分13等の耐漏
液性に大きく影響する部分の板厚を厚いままにし、正極
缶3の中央部分の板厚aが外周部分13の板厚bよりも
小さくなるようにしている。したがって、この空気亜鉛
電池は、部品強度を保って耐漏液性の信頼性を維持する
とともに、電池の有効内容積を増やし、放電容量を向上
させることができる。
As described above, in the above-described zinc-air battery, the thickness of the portion of the positive electrode can 3 that greatly affects the leakage resistance, such as the swaged sealing portion and the outer peripheral portion 13 at the bottom, is kept large, and the center of the positive electrode can 3 The plate thickness a of the portion is made smaller than the plate thickness b of the outer peripheral portion 13. Therefore, this zinc-air battery can maintain the strength of components, maintain the reliability of liquid leakage resistance, increase the effective internal volume of the battery, and improve the discharge capacity.

【0018】[0018]

【実施例】以下、本発明の好適な実施例について、実験
結果に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below based on experimental results.

【0019】最初に、正極缶3の中央部分12の板厚a
と、外周部分13の板厚bとの比率の検討を行った。
First, the thickness a of the central portion 12 of the positive electrode can 3
The ratio of the thickness to the thickness b of the outer peripheral portion 13 was examined.

【0020】実施例1 先ず始めに、図1及び図2に示すように、凹部14の内
径cが8.0mmであり、中央部分12の板厚aが0.
12mmであり、外周部分13の板厚bが0.20mm
となるように、スチール等の板材をプレス加工して正極
缶3を作製する。板厚aの板厚bに対する比a/bは、
0.6となる。そして、正極端子を兼ねる正極缶3の中
央部分12の内側の凹部14に不織布の空気拡散層11
を設置する。その上に、ポリテトラフルオロエチレン製
多孔質膜6を直径11.0mmに打ち抜いて挿入する。
Embodiment 1 First, as shown in FIGS. 1 and 2, the inner diameter c of the concave portion 14 is 8.0 mm, and the thickness a of the central portion 12 is 0.1 mm.
12 mm, and the thickness b of the outer peripheral portion 13 is 0.20 mm
The positive electrode can 3 is manufactured by pressing a plate material such as steel so that The ratio a / b of the thickness a to the thickness b is
0.6. The air diffusion layer 11 made of a nonwoven fabric is provided in the concave portion 14 inside the central portion 12 of the positive electrode can 3 also serving as the positive electrode terminal.
Is installed. On top of that, a porous polytetrafluoroethylene membrane 6 is punched out to a diameter of 11.0 mm and inserted.

【0021】次に、金属触媒と炭素材料と水性のポリテ
トラフルオロエチレンディスパージョンを充分に混練す
る。その後、これをニッケル製メッシュに塗布乾燥さ
せ、プレスにて圧延し、片側にポリテトラフルオロエチ
レン製の多孔質膜を圧着し、酸素還元電極7を作製す
る。そして、この酸素還元電極7を直径11.0mmに
なるように打ち抜き、多孔質膜6が空気孔2側になるよ
うにして正極缶3内に挿入する。
Next, the metal catalyst, the carbon material and the aqueous polytetrafluoroethylene dispersion are sufficiently kneaded. Thereafter, this is applied to a mesh made of nickel, dried and rolled by a press, and a porous film made of polytetrafluoroethylene is pressed on one side to produce an oxygen reduction electrode 7. Then, the oxygen reduction electrode 7 is punched so as to have a diameter of 11.0 mm, and is inserted into the positive electrode can 3 so that the porous film 6 faces the air hole 2.

【0022】続いて、セルロースフィルムからなるセパ
レータ8と、セルロース繊維からなる不織布の電解液保
持層9を直径11.0mmに打ち抜いて、酸素還元電極
7の上に挿入する。
Subsequently, the separator 8 made of a cellulose film and the electrolyte holding layer 9 made of a non-woven fabric made of a cellulose fiber are punched out to a diameter of 11.0 mm and inserted on the oxygen reduction electrode 7.

【0023】次に、正極缶3と同様に、ニッケル−SU
S−銅の3層材よりなる板材を銅面が内側になるよう
に、所定の形状にプレス加工して負極ケース1を作製
し、負極端子を兼ねる負極ケース1に開口部の内径dが
8.5mmとなる絶縁ガスケット4を組み込み一体化す
る。そして、この負極ケース1と絶縁ガスケット4との
一体化物の内側に、ゲル状負極合剤5を注入する。この
ゲル状負極合剤5は、粒状亜鉛と水酸化カリウム水溶液
の電解液をカルボキシメチルセルロース等のゲル化剤で
混合したものである。
Next, as in the case of the positive electrode can 3, nickel-SU
A negative electrode case 1 is prepared by pressing a plate made of a three-layered material of S-copper into a predetermined shape so that the copper surface is on the inside, and the inner diameter d of the opening is 8 in the negative electrode case 1 also serving as a negative electrode terminal. A 0.5 mm insulating gasket 4 is incorporated and integrated. Then, a gelled negative electrode mixture 5 is injected into the integrated body of the negative electrode case 1 and the insulating gasket 4. The gelled negative electrode mixture 5 is a mixture of granular zinc and an aqueous solution of potassium hydroxide aqueous solution with a gelling agent such as carboxymethyl cellulose.

【0024】そして、絶縁ガスケットの開口部がセパレ
ータ8と向き合うようにして、ゲル状負極合剤5を注入
した負極ケース1に電解液保持層9までを挿入した正極
缶3をかぶせ、正極缶3の開口部の全周を負極ケース1
側へ機械的に屈曲させて電池を封口する。最後に、正極
缶3の中央部分12の空気孔2にシール10を貼り、電
池が完成する。
Then, with the opening of the insulating gasket facing the separator 8, the positive electrode can 3 into which the electrolyte holding layer 9 has been inserted is placed over the negative electrode case 1 into which the gel negative electrode mixture 5 has been injected. Negative case 1
Bent mechanically to the side to seal the battery. Finally, a seal 10 is attached to the air hole 2 in the central portion 12 of the positive electrode can 3 to complete the battery.

【0025】実施例2〜実施例5 実施例1における正極缶3の板厚aの板厚bに対する比
a/bが0.8,0.4,0.3,0.2となるように
それぞれ変更して正極缶3を作製した。これ以外は、実
施例1と同様に電池を作製した。
Examples 2 to 5 The ratio a / b of the thickness a of the positive electrode can 3 to the thickness b of the positive electrode can 3 in Example 1 was set to 0.8, 0.4, 0.3 and 0.2. The positive electrode can 3 was produced by changing each of them. Except for this, a battery was fabricated in the same manner as in Example 1.

【0026】比較例1 図3に示すように、実施例1における正極缶3の板厚a
の板厚bに対する比a/bが、1となるように変更した
以外は、実施例1と同様に電池を作製した。
Comparative Example 1 As shown in FIG. 3, the plate thickness a of the positive electrode can 3 in Example 1
A battery was fabricated in the same manner as in Example 1, except that the ratio a / b to the plate thickness b was changed to 1.

【0027】電池の特性評価 実施例1〜実施例5、比較例1の電池を620Ωの負荷
で放電させ、その放電容量を調べた。また、実施例1〜
実施例5、比較例1の電池を、温度45℃相対湿度95
%の雰囲気にて40日放置した時の漏液発生数を調べ
た。その結果を表1に示す。
Battery Characteristics Evaluation The batteries of Examples 1 to 5 and Comparative Example 1 were discharged under a load of 620 Ω, and the discharge capacities were examined. Further, Examples 1 to
The batteries of Example 5 and Comparative Example 1 were subjected to a temperature of 45 ° C. and a relative humidity of 95.
%, And the number of liquid leaks when left for 40 days in an atmosphere was examined. Table 1 shows the results.

【0028】[0028]

【表1】 [Table 1]

【0029】表1の結果から、実施例1〜実施例5の電
池は、比較例1の電池に比べ、放電容量が向上している
ことがわかる。これは、各実施例の電池は、中央部分1
2の板厚aが薄く形成されていることから、その分電池
の有効内容積を増やすことが出来るためである。また、
板厚aの板厚bに対する比a/bが小さいほど、放電容
量が向上していることがわかる。ただし、板厚aの板厚
bに対する比a/bが0.3以下になると、耐漏液性が
低下している。これは、比率が0.3以下になると、部
品強度が低下してしまうためである。このことから、板
厚aの板厚bに対する比率は、0.4〜0.8が好まし
く、この範囲において、放電容量が向上し、かつ耐漏液
性にも優れることがわかる。
From the results shown in Table 1, it can be seen that the batteries of Examples 1 to 5 have improved discharge capacity as compared with the battery of Comparative Example 1. This is because the batteries of the respective embodiments have the central part 1
This is because the effective internal volume of the battery can be increased correspondingly because the plate thickness a of the second is formed thin. Also,
It can be seen that the smaller the ratio a / b of the plate thickness a to the plate thickness b, the higher the discharge capacity. However, when the ratio a / b of the plate thickness a to the plate thickness b is 0.3 or less, the liquid leakage resistance is reduced. This is because when the ratio becomes 0.3 or less, the component strength is reduced. From this, it is understood that the ratio of the plate thickness a to the plate thickness b is preferably 0.4 to 0.8, and within this range, the discharge capacity is improved and the liquid leakage resistance is excellent.

【0030】次に、正極缶3の凹部14の内径cと、絶
縁ガスケット4の開口部の内径dとの比率の検討を行っ
た。
Next, the ratio of the inner diameter c of the concave portion 14 of the positive electrode can 3 to the inner diameter d of the opening of the insulating gasket 4 was examined.

【0031】実施例6〜実施例14 実施例1における正極缶3の凹部14の内径cが絶縁ガ
スケット4の開口部の内径dに対して、表2に示すよう
に、d−2.0mm≦c≦d+2.0mmとなるように
それぞれ変更して正極缶3を作製した。これ以外は、実
施例1と同様にして電池を作製した。
Examples 6 to 14 As shown in Table 2, the inner diameter c of the concave portion 14 of the positive electrode can 3 in the first embodiment was smaller than the inner diameter d of the opening of the insulating gasket 4 by d−2.0 mm ≦ The cathode can 3 was manufactured by changing each such that c ≦ d + 2.0 mm. Except for this, the battery was fabricated in the same manner as in Example 1.

【0032】電池特性の評価 実施例6〜実施例14の電池を100Ωの負荷で放電さ
せ、その放電容量を調べた。また、実施例6〜実施例1
4の電池を、温度45℃、相対湿度95%の雰囲気にて
40日放置した時の漏液発生数を調べた。その結果を表
2に併せて示す。
Evaluation of Battery Characteristics The batteries of Examples 6 to 14 were discharged under a load of 100Ω, and the discharge capacities were examined. Examples 6 to 1
The number of leaks when the battery of No. 4 was left for 40 days in an atmosphere at a temperature of 45 ° C. and a relative humidity of 95% was examined. The results are also shown in Table 2.

【0033】[0033]

【表2】 [Table 2]

【0034】表2の結果から、正極缶3の凹部14の内
径cが大きい方が放電容量に優れ、特に重負荷特性に有
利であることがわかる。これは、凹部14の内径cが大
きい方が有効な空気拡散層11の容積を確保できるため
である。但し、凹部14の内径cが絶縁ガスケット4の
内径dより1.0mm以上大きくなると、耐漏液特性が
著しく低下する。このことから、中央部分12の内径c
と、絶縁ガスケット4の内径dとの関係は、d−2.0
mm≦c≦d+2.0mmが好ましく、d−1.0mm
≦c≦d+0.5mmがより好ましい。この範囲におい
て、放電容量が向上し、かつ耐漏液性にも優れることが
わかる。
From the results shown in Table 2, it is understood that the larger the inner diameter c of the concave portion 14 of the positive electrode can 3 is, the more excellent the discharge capacity is, and it is particularly advantageous for the heavy load characteristics. This is because the larger the inner diameter c of the concave portion 14 can secure an effective volume of the air diffusion layer 11. However, when the inner diameter c of the concave portion 14 is larger than the inner diameter d of the insulating gasket 4 by 1.0 mm or more, the leakage resistance is significantly reduced. From this, the inner diameter c of the central portion 12
And the inner diameter d of the insulating gasket 4 is d−2.0.
mm ≦ c ≦ d + 2.0 mm is preferable, and d−1.0 mm
≦ c ≦ d + 0.5 mm is more preferable. It can be seen that in this range, the discharge capacity is improved and the liquid leakage resistance is also excellent.

【0035】[0035]

【発明の効果】以上の説明からも明らかなように、本発
明に係る空気亜鉛電池は、耐漏液性に有効な部分は板厚
をそのままにし、正極缶の少なくとも一部の板厚を他の
部分の板厚に比べて薄くしていることから、部品強度を
保って耐漏液性の信頼性を維持するとともに、電池の有
効内容積を増やして放電容量を向上させることができ
る。
As is clear from the above description, in the zinc-air battery according to the present invention, the plate thickness of the portion effective for liquid leakage resistance is kept as it is, and the plate thickness of at least a part of the positive electrode can is changed to another plate thickness. Since it is thinner than the plate thickness of the part, it is possible to maintain the strength of the parts, maintain the reliability of the liquid leakage resistance, and increase the effective internal volume of the battery to improve the discharge capacity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した空気亜鉛電池の断面図であ
る。
FIG. 1 is a sectional view of a zinc-air battery to which the present invention is applied.

【図2】同空気亜鉛電池の正極缶の断面図である。FIG. 2 is a sectional view of a positive electrode can of the zinc-air battery.

【図3】従来の空気亜鉛電池の正極缶の断面図である。FIG. 3 is a cross-sectional view of a positive electrode can of a conventional zinc-air battery.

【符号の説明】[Explanation of symbols]

1 負極ケース、2 空気孔、3 正極缶、4 絶縁ガ
スケット、5 負極合剤、6 多孔質膜、7 電極、8
セパレータ、9 電解液保持層、10 シール、1
1、空気拡散層、12 中央部分、13 外周部分、1
4 凹部
1 negative electrode case, 2 air holes, 3 positive electrode can, 4 insulating gasket, 5 negative electrode mixture, 6 porous membrane, 7 electrodes, 8
Separator, 9 electrolyte holding layer, 10 seals, 1
1, air diffusion layer, 12 central part, 13 outer peripheral part, 1
4 recess

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 典重 福島県郡山市日和田町高倉字下杉下1番地 の1 株式会社ソニー・エナジー・テック 内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Noriyuki Yamaguchi, Inventor 1-1-1 Shimosugishita, Takakura, Hiwada-cho, Koriyama-shi, Fukushima Prefecture Sony Energy Tech Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質を充填した負極ケースと空気
孔を有する正極缶とが絶縁ガスケットを介して一体化さ
れてなり、 上記正極缶の底部の少なくとも一部の板厚aが他の部分
の板厚bに比べて薄くされ、これによって形成された凹
部に空気拡散層が配置されていることを特徴とする空気
亜鉛電池。
1. A negative electrode case filled with a negative electrode active material and a positive electrode can having an air hole are integrated via an insulating gasket, and the thickness a of at least a part of the bottom of the positive electrode can is changed to another part. An air-zinc battery characterized in that the air-diffusion layer is disposed in a concave portion formed by making the thickness smaller than the plate thickness b.
【請求項2】 板厚aの板厚bに対する比a/bが0.
4〜0.8であることを特徴とする請求項1記載の空気
亜鉛電池。
2. The ratio a / b of the thickness a to the thickness b is 0.
The zinc-air battery according to claim 1, wherein the ratio is 4 to 0.8.
【請求項3】 凹部の内径cが絶縁ガスケットの開口部
の内径dに対してd−1.0mm≦c≦d+0.5mm
であることを特徴とする請求項1記載の空気亜鉛電池。
3. The inner diameter c of the recess is d−1.0 mm ≦ c ≦ d + 0.5 mm with respect to the inner diameter d of the opening of the insulating gasket.
The zinc-air battery according to claim 1, wherein:
JP8336981A 1996-12-17 1996-12-17 Air zinc battery Withdrawn JPH10172619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8336981A JPH10172619A (en) 1996-12-17 1996-12-17 Air zinc battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8336981A JPH10172619A (en) 1996-12-17 1996-12-17 Air zinc battery

Publications (1)

Publication Number Publication Date
JPH10172619A true JPH10172619A (en) 1998-06-26

Family

ID=18304385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8336981A Withdrawn JPH10172619A (en) 1996-12-17 1996-12-17 Air zinc battery

Country Status (1)

Country Link
JP (1) JPH10172619A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026175A1 (en) * 1999-10-06 2001-04-12 Sarnoff Corporation Metal-air battery device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026175A1 (en) * 1999-10-06 2001-04-12 Sarnoff Corporation Metal-air battery device

Similar Documents

Publication Publication Date Title
US4957826A (en) Rechargeable metal-air battery
US2554504A (en) Rechargeable cell
US4450211A (en) Electrochemical generator comprising a thin gas electrode
JP2512019B2 (en) Electrochemical battery
JPS63294672A (en) Button type air-zinc cell
JP2006302597A (en) Button type alkaline battery
JPH11185767A (en) Manufacture of nickel-hydrogen secondary battery and electrode
JPH10172619A (en) Air zinc battery
JPH11339865A (en) Air electrode and air cell
US20050019663A1 (en) Coin-shaped all solid battery
JPS58135569A (en) Nonaqueous electrolyte cell
JPH11185835A (en) Cylindrical electrode and air zinc battery using it
JP4395899B2 (en) Air battery
JP2020061224A (en) Method of manufacturing nickel metal hydride storage battery
JP2000082503A (en) Air cell
CN1332893A (en) Reduced leakage metal-air electrochemical cell
JPH0766811B2 (en) Air battery
JP2005019145A (en) Air battery
JPH08306398A (en) Cylindrical air cell
JPH0982372A (en) Button type air-zinc battery
JPH11191440A (en) Air electrode and air battery using the same
JPH10302808A (en) Oxygen reduction electrode and zinc air cell
JPH09306509A (en) Manufacture of oxygen-reduced electrode, and battery therewith
JP3642298B2 (en) Cylindrical air battery
JPS6149379A (en) Zinc alkali cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040302