JPH10172595A - Method and device for monitoring carbon deposit of molten carbonate type fuel cell - Google Patents

Method and device for monitoring carbon deposit of molten carbonate type fuel cell

Info

Publication number
JPH10172595A
JPH10172595A JP8353327A JP35332796A JPH10172595A JP H10172595 A JPH10172595 A JP H10172595A JP 8353327 A JP8353327 A JP 8353327A JP 35332796 A JP35332796 A JP 35332796A JP H10172595 A JPH10172595 A JP H10172595A
Authority
JP
Japan
Prior art keywords
anode
carbon deposition
rate
concentration
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8353327A
Other languages
Japanese (ja)
Inventor
Tadayuki Kataoka
忠幸 片岡
Toru Shimizu
徹 清水
Kenichiro Kondo
健一郎 近藤
Joshi Shinohara
譲司 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP8353327A priority Critical patent/JPH10172595A/en
Publication of JPH10172595A publication Critical patent/JPH10172595A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To respond quickly to carbon deposit by monitoring carbon deposit automatically. SOLUTION: Flow meters 9 and 10 and concentration meters for CO2 , H2 O, CH4 11 and 12 are arranged in a gas supply path 7 and exhaust path 8 leading to/from the anode 3 of a fuel cell FC. The rates of gas flow at the inlet to and outlet from the anode 3 are determined by a gas rate-of-flow measuring gauge 13 on the basis of the flow signals 9a and 10a given by the flow meters 9 and 10. The concentrations of CO2 , H2 O, CH4 are determined by a concentration measuring gauge 14 on the basis of the concentration signals 11a and 12a given by the concentration meters 11 and 12. The carbon deposition reaction time and carbon eliminating reaction time are determined from the obtained data of the rates of gas flow and the concentration, and on the basis of these reaction times the carbon eduction time is determined by a calculation device 15. A positive carbon deposit time indicates occurrence of carbon deposition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は燃料の有する化学エ
ネルギーを直接電気エネルギーに変換させるエネルギー
部門で用いる燃料電池のうち、溶融炭酸塩型燃料電池の
炭素析出を監視する方法と装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for monitoring carbon deposition of a molten carbonate fuel cell among fuel cells used in an energy sector for directly converting chemical energy of fuel into electric energy. .

【0002】[0002]

【従来の技術】燃料電池のうち、溶融炭酸塩型燃料電池
は、図5に概略を示す如く、電解質としての溶融炭酸塩
を多孔質物質にしみ込ませてなる電解質板(タイル)1
の両面をカソード(酸素極)2とアノード(燃料極)3
の両電極で挟んでなるセルIを、セパレータ4を介し多
層に積層してスタックとし、各セルIのカソード2側に
形成されたガス通路5に酸化ガスOGを供給すると共
に、アノード3側に形成されたガス通路6に燃料ガスF
Gを供給するようにし、カソード2側では、 CO2 + 1/2O2 +2e- →CO3 -- の反応が行われ、生成された炭酸イオンCO3 --が電解
質板1を泳動してアノード3側へ達し、アノード3側で
は、供給される燃料ガスにより、 CO3 --+H2 →CO2 +H2 O+2e- CO3 --+CO→2CO2 +2e- の反応が行われ、この間にカソード2、アノード3間に
電圧が発生して発電が行われるようにしてある。
2. Description of the Related Art Among molten fuel cells, a molten carbonate type fuel cell, as schematically shown in FIG. 5, is an electrolyte plate (tile) 1 in which a molten carbonate as an electrolyte is impregnated into a porous material.
The cathode (oxygen electrode) 2 and anode (fuel electrode) 3
The cells I sandwiched between the two electrodes are stacked in a multilayer structure with a separator 4 interposed therebetween to form a stack. An oxidizing gas OG is supplied to a gas passage 5 formed on the cathode 2 side of each cell I, and the cell I is supplied to the anode 3 side. The fuel gas F passes through the formed gas passage 6.
G is supplied, and on the cathode 2 side, a reaction of CO 2 + 1 / 2O 2 + 2e → CO 3 is performed, and the generated carbonate ion CO 3 migrates through the electrolyte plate 1 to form an anode. Then, on the anode 3 side, a reaction of CO 3 + H 2 → CO 2 + H 2 O + 2e CO 3 + CO → 2CO 2 + 2e is performed by the supplied fuel gas. A voltage is generated between the anodes 3 to generate power.

【0003】このような炭素、酸素、水素系ガスが流さ
れる溶融炭酸塩型燃料電池のアノード3側での反応にお
いて、炭素析出が発生すると、燃料電池の各セル内のア
ノード側ガス通路6の閉塞や、多孔質のアノード電極3
の閉塞等によって電池性能が低下するという問題があ
る。
In the reaction on the anode 3 side of the molten carbonate fuel cell through which such a carbon, oxygen, and hydrogen based gas flows, when carbon deposition occurs, the anode-side gas passage 6 in each cell of the fuel cell is opened. Blockage or porous anode electrode 3
There is a problem that battery performance is reduced due to blockage of the battery.

【0004】従来では、かかる炭素析出を監視して、炭
素析出が発生するとこれを防止するようにして電池性能
の低下を生じさせないようにすることは行われてはおら
ず、上述の如きガス通路の閉塞、電極の閉塞等に伴う電
池性能の低下の問題が発生してから炭素析出の確認をし
ているのが実状である。
Hitherto, it has not been practiced to monitor such carbon deposition and to prevent the occurrence of carbon deposition so as not to cause a decrease in battery performance. Actually, carbon deposition has been confirmed after the problem of deterioration in battery performance due to blockage, electrode blockage, and the like.

【0005】炭素析出を防止する方法としては、蒸気注
入方式、アノード排ガス再循環方式等が知られている
が、その前提として、炭素析出の有無を知ることが必要
である。
[0005] As a method for preventing carbon deposition, a steam injection method, an anode exhaust gas recirculation method, and the like are known, but it is necessary to know the presence or absence of carbon deposition as a premise.

【0006】従来では、炭素析出発生を予測する方法と
して、C、O、H系ガスの炭素析出関与の基本反応式で
ある ブダー (Boudouard)反応 :2CO→C+CO2 コーキング反応 :CO+H2 →C+H2 O メタン生成反応 :C+2H2 →CH4 を用いて、燃料電池のアノード側に流れるガス組成(初
期ガス組成)から平衡計算で炭素析出発生を予測するよ
うにしていた。
Conventionally, as a method of predicting the occurrence of carbon deposition, a Boudouard reaction: 2CO → C + CO 2 caulking reaction: CO + H 2 → C + H 2 which is a basic reaction formula involving carbon deposition of C, O and H-based gases. O 4 methane production reaction: C + 2H 2 → CH 4 was used to predict the occurrence of carbon deposition by equilibrium calculation from the gas composition (initial gas composition) flowing to the anode side of the fuel cell.

【0007】[0007]

【発明が解決しようとする課題】ところが、上記平衡計
算で炭素析出発生を予測する従来の方法では、初期ガス
組成として、与えられた一定の温度、圧力条件で最終的
に落着く組成が与えられるものであるが、実際に生じて
いる炭素析出現象は、温度勾配下で、しかも不均一反応
である。したがって、上記の反応が燃料電池内で
どれだけ進行したか、すなわち、燃料電池内で実際に生
じた各反応の反応速度を測定し、炭素析出の評価を行う
ことが必要である。
However, in the conventional method of predicting the occurrence of carbon precipitation by the above-mentioned equilibrium calculation, a composition that finally settles under given constant temperature and pressure conditions is given as an initial gas composition. However, the carbon deposition phenomenon actually occurring is a heterogeneous reaction under a temperature gradient. Therefore, it is necessary to measure how much the above reaction has progressed in the fuel cell, that is, to measure the reaction rate of each reaction actually occurring in the fuel cell and evaluate carbon deposition.

【0008】そこで、本発明は、前記した炭素析出に関
する基本反応式、、が燃料電池内で生じたときの
反応速度を測定して炭素析出の有無を自動的に監視し、
迅速に対処できるようにしようとするものである。
Accordingly, the present invention measures the reaction rate when the above-mentioned basic reaction formula relating to carbon deposition occurs in a fuel cell, and automatically monitors the presence or absence of carbon deposition.
They want to be able to respond quickly.

【0009】[0009]

【課題を解決するための手段】本発明は、上記課題を解
決するために、燃料電池の各セルのアノード側に供給さ
れるガスの該アノード入口とアノード出口における流速
と、CO2 、H2 O、CH4 の濃度とから上記アノード
側での炭素析出反応速度及び炭素消失反応速度を求め、
次いで、上記炭素析出反応速度と炭素消失反応速度から
上記セル内のアノード側で生じた炭素析出速度を求めて
出力し、該炭素析出速度が正か負かを判断して炭素析出
の有無を監視するようにする方法とし、又、燃料電池の
各セルのアノード入口側のガス流路とアノード出口側の
ガス流路に、それぞれ流量計とCO2 、H2 O、CH4
の濃度計とを設け、且つ上記アノード入口側とアノード
出口側のガス流路に設けられた流量計からの流量信号を
基に該アノード入口とアノード出口のガス流速を計測す
るガス流速測定器と、上記アノード入口側とアノード出
口側の濃度計からの濃度信号によりCO2 、H2 O、C
4 の濃度を計測する濃度測定器とを備え、更に、上記
ガス流速測定器で計測した上記アノード入口と出口のガ
ス流速と上記濃度測定器で計測したCO2 、H2 O、C
4 の濃度データとから求めた炭素析出反応速度、炭素
消失反応速度により上記アノード側で生じた炭素析出速
度を求めて出力する演算装置と、該演算装置から出力さ
れた炭素析出速度が正か負かを判断する比較器を備えた
構成とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a fuel cell in which the flow rate of gas supplied to the anode side of each cell at the anode inlet and the anode outlet, CO 2 , H 2 O, determine the carbon deposition reaction rate and carbon disappearance kinetics at the anode side and a concentration of CH 4,
Then, the rate of carbon deposition generated on the anode side in the cell is obtained and output from the rate of carbon deposition reaction and the rate of carbon disappearance, and the presence or absence of carbon deposition is monitored by judging whether the rate of carbon deposition is positive or negative. In addition, a flow meter and CO 2 , H 2 O, and CH 4 are respectively provided in the gas flow path on the anode inlet side and the gas flow path on the anode outlet side of each cell of the fuel cell.
A gas flow rate measuring device that measures the gas flow rate at the anode inlet and the anode outlet based on a flow signal from a flow meter provided in the gas flow path on the anode inlet side and the anode outlet side. , CO 2 , H 2 O, and C 2 based on concentration signals from the concentration meters on the anode inlet side and the anode outlet side.
A concentration measuring device for measuring the concentration of H 4 , and further, gas flow rates at the anode inlet and outlet measured by the gas flow measuring device and CO 2 , H 2 O, C measured by the concentration measuring device.
An arithmetic unit for obtaining and outputting the carbon deposition rate generated on the anode side based on the carbon deposition reaction rate and the carbon elimination reaction rate obtained from the H 4 concentration data, and whether the carbon deposition rate output from the arithmetic unit is correct. It is configured to include a comparator for determining whether it is negative.

【0010】アノード入口とアノード出口のガス流速と
CO2 、H2 O、CH4 の濃度が得られると、これを基
にして炭素析出反応速度と炭素消失反応速度が測定で
き、この各反応速度から燃料電池内で生じた炭素析出速
度が求められるので、この炭素析出速度が正であれば、
炭素析出の発生を示し、負であれば、炭素析出はないこ
とが確認できる。したがって、上記炭素析出速度を求め
て炭素析出を監視することができて、CO2 やH2 Oを
増やして入口ガス組成を変更する等の対処が迅速にでき
ることになる。
When the gas flow rates at the anode inlet and the anode outlet and the concentrations of CO 2 , H 2 O and CH 4 are obtained, the carbon deposition reaction rate and the carbon elimination reaction rate can be measured based on the obtained gas flow rates. Since the carbon deposition rate generated in the fuel cell is determined from the above, if this carbon deposition rate is positive,
It indicates the occurrence of carbon deposition, and if negative, it can be confirmed that there is no carbon deposition. Therefore, the carbon deposition rate can be obtained and the carbon deposition can be monitored, and measures such as changing the inlet gas composition by increasing CO 2 or H 2 O can be taken promptly.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1は本発明の実施の一形態を示すもの
で、図5に示した場合と同様に、電解質板1の両面をカ
ソード2とアノード3の両電極で挟み、カソード2側へ
酸化ガスを供給し、アノード3側に燃料ガスを供給する
ようにして、カソード2側及びアノード3側でそれぞれ
反応を行わせるようにしたセルIをセパレータを介し積
層してスタックとするようにした溶融炭酸塩型燃料電池
FCにおいて、上記アノード3の供給側ガス流路7とア
ノード3の排出側ガス流路8に、流量計9及び10と、
CO2 、H2 O、CH4 の濃度計11及び12をそれぞ
れ設け、上記供給側ガス流路7の流量計9からの流量信
号9aと、上記排出側ガス流路8の流量計10からの流
量信号10aとを入力して入口側と出口側の流量比から
アノード入口と出口の全ガス流速を求めるようにするガ
ス流速測定器13を設け、又、上記供給側ガス流路7の
濃度計11からの濃度信号11aと、上記排出側ガス流
路8の濃度計12からの濃度信号12aとを入力して前
記した基本反応式におけるCO2 、H2 O、CH4 の濃
度を求めるようにする濃度測定器14を設け、上記ガス
流速測定器13からのアノード入口と出口の全ガス流速
と上記濃度測定器14からのCO2 、H2 O、CH4
濃度値とにより、燃料電池FC内での前記基本反応式の
及び反応の炭素析出反応速度R(CO2 )、R(H
2 O)、の反応による炭素消失反応速度R(CH4
を求めて炭素析出速度RC=R(CO2)+R(H
2 O)−R(CH4 )を出力する演算装置15を備え
る。更に、上記演算装置15より出力された炭素析出速
度RCが正であるか負であるかを比較する比較器16を
設け、炭素析出速度RCがRC>0で炭素析出の発生を
示し、RC<0で炭素析出なしを示すようにする。
FIG. 1 shows an embodiment of the present invention. As shown in FIG. 5, both surfaces of an electrolyte plate 1 are sandwiched between a cathode 2 and an anode 3 and oxidized to the cathode 2 side. A gas is supplied, a fuel gas is supplied to the anode 3 side, and a cell I that causes a reaction on each of the cathode 2 side and the anode 3 side is stacked via a separator to form a stack. In the carbonate fuel cell FC, flow meters 9 and 10 are provided in the supply gas flow path 7 of the anode 3 and the discharge gas flow path 8 of the anode 3.
Concentration meters 11 and 12 for CO 2 , H 2 O, and CH 4 are provided, respectively, and a flow signal 9a from a flow meter 9 in the supply gas flow path 7 and a flow signal 9 from a flow meter 10 in the discharge gas flow path 8 are provided. A gas flow rate measuring device 13 for inputting the flow rate signal 10a and obtaining the total gas flow rate at the anode inlet and the outlet from the flow rate ratio between the inlet side and the outlet side is provided. The concentration signal 11a from the exhaust gas flow path 11 and the concentration signal 12a from the concentration meter 12 in the discharge side gas flow path 8 are input to obtain the concentrations of CO 2 , H 2 O, and CH 4 in the above basic reaction formula. A fuel cell FC is provided based on the total gas flow rate at the anode inlet and outlet from the gas flow rate measuring device 13 and the concentration values of CO 2 , H 2 O, and CH 4 from the concentration measuring device 14. Of the above basic reaction formula and the reaction of carbon deposition応速degree R (CO 2), R ( H
2 O), the reaction rate of carbon elimination R (CH 4 )
And the carbon deposition rate RC = R (CO 2 ) + R (H
Comprises 2 O) -R (CH 4) arithmetic unit 15 for outputting. Further, a comparator 16 for comparing whether the carbon deposition rate RC output from the arithmetic unit 15 is positive or negative is provided. When the carbon deposition rate RC is RC> 0, the occurrence of carbon deposition is indicated. Zero indicates no carbon deposition.

【0013】本発明により炭素析出を監視する場合、燃
料電池FC内での前記した炭素析出関与の基本反応式
、、の各反応の反応速度を基にし、燃料電池のア
ノード3の入口と出口のCO2 、H2 O、CH4 の流速
と、濃度を常時採取して、炭素析出の発生を知るように
する。
When monitoring carbon deposition according to the present invention, the inlet and outlet of the anode 3 of the fuel cell are determined based on the reaction rates of the respective reactions of the above-mentioned basic reaction involving carbon deposition in the fuel cell FC. The flow rates and concentrations of CO 2 , H 2 O, and CH 4 are constantly sampled so that the occurrence of carbon deposition is known.

【0014】すなわち、燃料電池FCのアノード3の入
口側の流量計9からの流量信号9aと、アノード3出口
側の流量計10からの流量信号10aをガス流速測定器
13に入力して、入口と出口のCO2 、H2 O、CH4
の全ガス流速を求める。又、アノード3の入口側の濃度
計11からの濃度信号11aと、出口側の濃度計12か
らの濃度信号12aを濃度測定器14に入力して、CO
2 、H2 O、CH4 の濃度を測定する。
That is, the flow signal 9a from the flow meter 9 on the inlet side of the anode 3 of the fuel cell FC and the flow signal 10a from the flow meter 10 on the outlet side of the anode 3 are input to the gas flow rate measuring device 13, And outlet CO 2 , H 2 O, CH 4
Is determined. Further, a concentration signal 11a from the concentration meter 11 on the inlet side of the anode 3 and a concentration signal 12a from the concentration meter 12 on the exit side are input to the concentration measuring device 14, and CO 2 is supplied.
2. Measure the concentrations of H 2 O and CH 4 .

【0015】上記のようにして燃料電池FCのアノード
3の入口と出口の全ガス流速と、CO2 、H2 O、CH
4 の濃度データが求められると、これらの値を演算装置
15に入力して、前記した基本反応式、、のう
ち、燃料電池FC内での及びの炭素析出反応速度R
(CO2 )、R(H2 O)と、燃料電池FC内でのの
反応による炭素消失反応速度R(CH4 )を次式で求め
るようにする。
As described above, the total gas flow rates at the inlet and outlet of the anode 3 of the fuel cell FC, CO 2 , H 2 O, CH
When the concentration data of 4 is obtained, these values are input to the arithmetic unit 15, and among the basic reaction formulas described above, the carbon deposition reaction rate R in and out of the fuel cell FC is calculated.
(CO 2 ), R (H 2 O), and the carbon elimination reaction rate R (CH 4 ) due to the reaction in the fuel cell FC are determined by the following equation.

【0016】 R(CO2 )=Ux・Vx(CO2 )−Uy・Vy(CO2 ) (g/min) R(H2 O)=Ux・Vx(H2 O)−Uy・Vy(H2 O) (g/min) R(CH4 )=Ux・Vx(CH4 )−Uy・Vy(CH4 ) (g/min) ここで、Uは全流速、Vは濃度、xは出口、yは入口を
示す。
R (CO 2 ) = Ux · Vx (CO 2 ) −Uy · Vy (CO 2 ) (g / min) R (H 2 O) = Ux · Vx (H 2 O) −Uy · Vy (H 2 O) (g / min) R (CH 4) = Ux · Vx (CH 4) -Uy · Vy (CH 4) (g / min) here, U is the total flow rate, V is the concentration, x is the outlet, y indicates an entrance.

【0017】図2は、上記式で求めた炭素析出反応速度
と時間との関係を示すもので、図中、○印は基本反応式
における2CO→C+CO2 であるR(CO2 )を示
し、●印は基本反応式におけるCO+H2 →C+H2
であるR(H2 O)を示し、又、□印は基本反応式にお
けるC+2H2 →CH4 であるR(CH4 )を示す。
FIG. 2 shows the relationship between the carbon deposition reaction rate and the time determined by the above equation. In the figure, a circle indicates R (CO 2 ) which is 2CO → C + CO 2 in the basic reaction equation. ● indicates CO + H 2 → C + H 2 O in the basic reaction formula.
In it indicates R (H 2 O), also, □ mark indicates the R (CH 4) is a C + 2H 2 → CH 4 in the basic reaction scheme.

【0018】更に、演算装置15では、上記炭素析出反
応速度R(CO2 )、R(H2 O)と、炭素消失反応速
度R(CH4 )を基にして、燃料電池FC内で生じた炭
素析出速度RCを、 RC=R(CO2 )+R(H2 O)−R(CH4 ) (g/min) で求めて比較器16へ出力させるようにする。
Further, in the arithmetic unit 15, the carbon deposition reaction rate R (CO 2 ), R (H 2 O) and the carbon elimination reaction rate R (CH 4 ) are generated in the fuel cell FC based on the above. The carbon deposition rate RC is obtained by RC = R (CO 2 ) + R (H 2 O) −R (CH 4 ) (g / min) and output to the comparator 16.

【0019】図3は炭素析出モニター結果の一例を示す
もので、炭素析出速度RCが、図3の如く正(RC>
0)であれば、炭素析出の発生を示し、この場合に、測
定間隔時間で積分すれば、炭素析出量が得られる。若
し、図3で炭素析出速度RCがRC<0であれば、炭素
析出がないこと、すなわち、燃料電池構成材料の脱炭を
意味する。
FIG. 3 shows an example of the results of monitoring the carbon deposition. When the carbon deposition rate RC is positive (RC>
If 0), it indicates the occurrence of carbon deposition, and in this case, the amount of carbon deposition can be obtained by integrating over the measurement interval time. If the carbon deposition rate RC in FIG. 3 is RC <0, it means that there is no carbon deposition, that is, decarbonization of the fuel cell constituent material.

【0020】かかる燃料電池の炭素析出の発生や炭素析
出なしをオンラインで検出して監視することができる。
The occurrence and absence of carbon deposition in such a fuel cell can be detected and monitored online.

【0021】これにより、燃料電池FC内の炭素析出を
常時監視することができて、CO2を増やしたり、H2
Oを増やしてアノード3入口のガス組成を変更するとい
う迅速な対処が可能となり、炭素析出を防止することが
できることになる。
[0021] Thus, it is possible to constantly monitor the carbon deposition in the fuel cell FC, or increase the CO 2, H 2
It is possible to quickly deal with changing the gas composition at the inlet of the anode 3 by increasing O, thereby preventing carbon deposition.

【0022】なお、炭素析出の基本反応式として、炭素
消失についてC+2H2 →CH4 を示したが、一般式
は、 C+(n/2m)H2 →(1/m)CmHn であり、メタンの場合は、m=1、n=4である。
As a basic reaction formula for carbon deposition, C + 2H 2 → CH 4 is shown for carbon elimination. The general formula is C + (n / 2m) H 2 → (1 / m) CmHn, In this case, m = 1 and n = 4.

【0023】次に、図4は本発明の他の実施の形態を示
すもので、図1に示す実施の形態における流量計9と1
0からの流量信号9a,10aによる入口側と出口側の
流量比から入口と出口の全ガス流速をガス流速測定器1
3で求めるようにしたものに代えて、入口側と出口側の
差圧でガス流速を計測するようにしたものである。すな
わち、図1における流量計9と10に代えて圧力計17
と18を設け、且つガス流速測定器13を、圧力計17
と18による入口と出口の差圧でガス流速を計測するこ
とができるようにしたものであり、他の構成は図1に示
すものと同じである。
Next, FIG. 4 shows another embodiment of the present invention, and the flow meters 9 and 1 in the embodiment shown in FIG.
From the flow rate ratio between the inlet side and the outlet side based on the flow signals 9a and 10a from 0, the total gas flow velocity at the inlet and the outlet is determined by the gas flow rate measuring device
The gas flow velocity is measured by the differential pressure between the inlet side and the outlet side instead of the one obtained in step 3. That is, instead of the flow meters 9 and 10 in FIG.
And 18 are provided, and the gas flow rate measuring device 13 is
And 18, the gas flow velocity can be measured by the differential pressure between the inlet and the outlet, and the other configuration is the same as that shown in FIG.

【0024】この実施の形態でも図1の実施の形態の場
合と同様に炭素析出の発生を常時監視することができ、
炭素析出の発生に対する迅速な対処が可能である。
In this embodiment, as in the embodiment of FIG. 1, the occurrence of carbon deposition can be constantly monitored.
A quick response to the occurrence of carbon deposition is possible.

【0025】[0025]

【発明の効果】以上述べた如く、本発明の燃料電池の炭
素析出監視方法及び装置によれば、燃料電池内カソード
側を流れるガスの流速と、炭素析出反応におけるC
2 、H2O及び炭素消失反応におけるCH4 の濃度か
ら炭素析出反応速度と炭素消失反応速度を求めて、これ
から炭素析出速度を求めて出力し、該炭素析出速度が正
であれば炭素析出の発生を示すようにして、自動的に炭
素析出を監視することができるようにしてあるので、常
時炭素析出を監視することができて、炭素析出が発生す
ると迅速に対処して炭素発生を防止でき、電池性能を低
下させることがないという優れた効果を奏し得る。
As described above, according to the method and apparatus for monitoring carbon deposition of a fuel cell according to the present invention, the flow rate of gas flowing on the cathode side in the fuel cell and the C
From the concentrations of O 2 , H 2 O and CH 4 in the carbon elimination reaction, the carbon deposition kinetics and the carbon elimination kinetics are determined, and the carbon deposition kinetics are determined and output. If the carbon deposition kinetics are positive, the carbon deposition kinetics are determined. The carbon deposition can be automatically monitored by indicating the occurrence of carbon deposition, so that carbon deposition can be monitored at all times, and if carbon deposition occurs, it can be quickly addressed to prevent carbon generation. And an excellent effect of not lowering the battery performance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態を示す概要図である。FIG. 1 is a schematic diagram showing an embodiment of the present invention.

【図2】炭素析出反応速度を測定した結果を示す図であ
る。
FIG. 2 is a view showing a result of measuring a carbon deposition reaction rate.

【図3】炭素析出をモニターした結果を示す図である。FIG. 3 is a view showing a result of monitoring carbon deposition.

【図4】本発明の他の実施の形態を示す概要図である。FIG. 4 is a schematic diagram showing another embodiment of the present invention.

【図5】溶融炭酸塩型燃料電池の一例の概要を示す断面
図である。
FIG. 5 is a sectional view showing an outline of an example of a molten carbonate fuel cell.

【符号の説明】[Explanation of symbols]

1 電解質板 2 カソード 3 アノード 7 供給側ガス流路 8 排出側ガス流路 9 流量計 10 流量計 11 濃度計 12 濃度計 13 ガス流速測定器 14 濃度測定器 15 演算装置 16 比較器 I セル FC 燃料電池 DESCRIPTION OF SYMBOLS 1 Electrolyte plate 2 Cathode 3 Anode 7 Supply-side gas flow path 8 Discharge-side gas flow path 9 Flow meter 10 Flow meter 11 Densitometer 12 Densitometer 13 Gas flow rate measuring instrument 14 Concentration measuring instrument 15 Arithmetic unit 16 Comparator I Cell FC fuel battery

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 健一郎 東京都江東区豊洲三丁目1番15号 石川島 播磨重工業株式会社東二テクニカルセンタ ー内 (72)発明者 篠原 譲司 東京都江東区豊洲三丁目1番15号 石川島 播磨重工業株式会社技術研究所内 ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Kenichiro Kondo 3-1-1-15 Toyosu, Koto-ku, Tokyo Inside Ishikawajima Harima Heavy Industries Co., Ltd.Higashiji Technical Center (72) Inventor Joji Shinohara Toyosu-san, Koto-ku, Tokyo Ichikawajima Harima Heavy Industries, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池の各セルのアノード側に供給さ
れるガスの該アノード入口とアノード出口における流速
と、CO2 、H2 O、CH4 の濃度とから上記アノード
側での炭素析出反応速度及び炭素消失反応速度を求め、
次いで、上記炭素析出反応速度と炭素消失反応速度から
上記セル内のアノード側で生じた炭素析出速度を求めて
出力し、該炭素析出速度が正か負かを判断して炭素析出
の有無を監視するようにすることを特徴とする溶融炭酸
塩型燃料電池の炭素析出監視方法。
1. A carbon deposition reaction on the anode side based on the flow rates of gas supplied to the anode side of each cell of the fuel cell at the anode inlet and the anode outlet and the concentrations of CO 2 , H 2 O, and CH 4. Determine the rate and the rate of carbon elimination reaction,
Then, the rate of carbon deposition generated on the anode side in the cell is obtained and output from the rate of carbon deposition reaction and the rate of carbon disappearance, and the presence or absence of carbon deposition is monitored by judging whether the rate of carbon deposition is positive or negative. A method for monitoring carbon deposition in a molten carbonate fuel cell.
【請求項2】 燃料電池の各セルのアノード入口側のガ
ス流路とアノード出口側のガス流路に、それぞれ流量計
とCO2 、H2 O、CH4 の濃度計とを設け、且つ上記
アノード入口側とアノード出口側のガス流路に設けられ
た流量計からの流量信号を基に該アノード入口とアノー
ド出口のガス流速を計測するガス流速測定器と、上記ア
ノード入口側とアノード出口側の濃度計からの濃度信号
によりCO2 、H2 O、CH4 の濃度を計測する濃度測
定器とを備え、更に、上記ガス流速測定器で計測した上
記アノード入口と出口のガス流速と上記濃度測定器で計
測したCO2 、H2 O、CH4 の濃度データとから求め
た炭素析出反応速度、炭素消失反応速度により上記アノ
ード側で生じた炭素析出速度を求めて出力する演算装置
と、該演算装置から出力された炭素析出速度が正か負か
を判断する比較器を備えたことを特徴とする溶融炭酸塩
型燃料電池の炭素析出監視装置。
2. A flow meter and a CO 2 , H 2 O, and CH 4 concentration meter are provided in a gas flow path on the anode inlet side and a gas flow path on the anode outlet side of each cell of the fuel cell, respectively. A gas flow rate measuring device for measuring a gas flow rate at the anode inlet and the anode outlet based on a flow signal from a flow meter provided in a gas flow path at the anode inlet side and the anode outlet side; and the anode inlet side and the anode outlet side A concentration measuring device for measuring the concentration of CO 2 , H 2 O, and CH 4 based on a concentration signal from a concentration meter from the above. Further, the gas flow rates at the anode inlet and the outlet measured by the gas flow rate measuring device and the concentration An arithmetic unit for obtaining and outputting a carbon deposition rate generated on the anode side from a carbon deposition reaction rate and a carbon elimination reaction rate obtained from CO 2 , H 2 O, and CH 4 concentration data measured by a measuring device; From the computing device An apparatus for monitoring carbon deposition of a molten carbonate fuel cell, comprising a comparator for determining whether the applied carbon deposition rate is positive or negative.
【請求項3】 流量計に代えて、圧力計を設け、アノー
ド入口とアノード出口のガス圧力の差からアノード入口
とアノード出口のガス流速を求めるようにした請求項2
記載の溶融炭酸塩型燃料電池の炭素析出監視装置。
3. A gas pressure gauge is provided in place of the flow meter, and a gas flow rate between the anode inlet and the anode outlet is obtained from a difference in gas pressure between the anode inlet and the anode outlet.
The apparatus for monitoring carbon deposition of a molten carbonate fuel cell as described in the above.
JP8353327A 1996-12-17 1996-12-17 Method and device for monitoring carbon deposit of molten carbonate type fuel cell Pending JPH10172595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8353327A JPH10172595A (en) 1996-12-17 1996-12-17 Method and device for monitoring carbon deposit of molten carbonate type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8353327A JPH10172595A (en) 1996-12-17 1996-12-17 Method and device for monitoring carbon deposit of molten carbonate type fuel cell

Publications (1)

Publication Number Publication Date
JPH10172595A true JPH10172595A (en) 1998-06-26

Family

ID=18430106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8353327A Pending JPH10172595A (en) 1996-12-17 1996-12-17 Method and device for monitoring carbon deposit of molten carbonate type fuel cell

Country Status (1)

Country Link
JP (1) JPH10172595A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266416A (en) * 2008-04-22 2009-11-12 Nissan Motor Co Ltd Fuel cell system, program used for fuel cell system, and information recording medium
JP2014109474A (en) * 2012-11-30 2014-06-12 Central Research Institute Of Electric Power Industry Evaluation method of carbon deposition and determination method of carbon deposition
KR20150060824A (en) * 2012-09-21 2015-06-03 덴마크스 텍니스케 유니버시테트 A rechargeable carbon-oxygen battery
US9077005B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis
US9077007B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9556753B2 (en) 2013-09-30 2017-01-31 Exxonmobil Research And Engineering Company Power generation and CO2 capture with turbines in series
US9755258B2 (en) 2013-09-30 2017-09-05 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using solid oxide fuel cells
US9819042B2 (en) 2013-09-30 2017-11-14 Exxonmobil Research And Engineering Company Fuel cell integration within a heat recovery steam generator
US11211621B2 (en) 2018-11-30 2021-12-28 Exxonmobil Research And Engineering Company Regeneration of molten carbonate fuel cells for deep CO2 capture
US11335937B2 (en) 2019-11-26 2022-05-17 Exxonmobil Research And Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
US11424469B2 (en) 2018-11-30 2022-08-23 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
US11476486B2 (en) 2018-11-30 2022-10-18 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11664519B2 (en) 2019-11-26 2023-05-30 Exxonmobil Research And Engineering Company Fuel cell module assembly and systems using same
US11695122B2 (en) 2018-11-30 2023-07-04 ExxonMobil Technology and Engineering Company Layered cathode for molten carbonate fuel cell
US11742508B2 (en) 2018-11-30 2023-08-29 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
US11888187B2 (en) 2018-11-30 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with enhanced CO2 utilization

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266416A (en) * 2008-04-22 2009-11-12 Nissan Motor Co Ltd Fuel cell system, program used for fuel cell system, and information recording medium
KR20150060824A (en) * 2012-09-21 2015-06-03 덴마크스 텍니스케 유니버시테트 A rechargeable carbon-oxygen battery
JP2014109474A (en) * 2012-11-30 2014-06-12 Central Research Institute Of Electric Power Industry Evaluation method of carbon deposition and determination method of carbon deposition
US9735440B2 (en) 2013-03-15 2017-08-15 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in fischer-tropsch synthesis
US9553321B2 (en) 2013-03-15 2017-01-24 Exxonmobile Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9077008B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US10676799B2 (en) 2013-03-15 2020-06-09 Exxonmobil Research And Engineering Company Integrated electrical power and chemical production using fuel cells
US9178234B2 (en) 2013-03-15 2015-11-03 Exxonmobil Research And Engineering Company Integrated power generation using molten carbonate fuel cells
US9257711B2 (en) 2013-03-15 2016-02-09 Exxonmobil Research And Engineering Company Integrated carbon capture and chemical production using fuel cells
US9263755B2 (en) 2013-03-15 2016-02-16 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in iron and steel processing
US9343764B2 (en) 2013-03-15 2016-05-17 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in methanol synthesis
US9343763B2 (en) 2013-03-15 2016-05-17 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells for synthesis of nitrogen compounds
US9362580B2 (en) 2013-03-15 2016-06-07 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in a refinery setting
US9419295B2 (en) 2013-03-15 2016-08-16 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells at a reduced electrical efficiency
US9455463B2 (en) 2013-03-15 2016-09-27 Exxonmobil Research And Engineering Company Integrated electrical power and chemical production using fuel cells
US9520607B2 (en) 2013-03-15 2016-12-13 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells with fermentation processes
US9077007B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US10093997B2 (en) 2013-03-15 2018-10-09 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in iron and steel processing
US9647284B2 (en) 2013-03-15 2017-05-09 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis
US9650246B2 (en) 2013-03-15 2017-05-16 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in fischer-tropsch synthesis
US9077005B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis
US9077006B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9786939B2 (en) 2013-03-15 2017-10-10 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9923219B2 (en) 2013-03-15 2018-03-20 Exxonmobile Research And Engineering Company Integrated operation of molten carbonate fuel cells
US9941534B2 (en) 2013-03-15 2018-04-10 Exxonmobil Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9819042B2 (en) 2013-09-30 2017-11-14 Exxonmobil Research And Engineering Company Fuel cell integration within a heat recovery steam generator
US9556753B2 (en) 2013-09-30 2017-01-31 Exxonmobil Research And Engineering Company Power generation and CO2 capture with turbines in series
US10283802B2 (en) 2013-09-30 2019-05-07 Exxonmobil Research And Engineering Company Fuel cell integration within a heat recovery steam generator
US9755258B2 (en) 2013-09-30 2017-09-05 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using solid oxide fuel cells
US11424469B2 (en) 2018-11-30 2022-08-23 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
US11211621B2 (en) 2018-11-30 2021-12-28 Exxonmobil Research And Engineering Company Regeneration of molten carbonate fuel cells for deep CO2 capture
US11476486B2 (en) 2018-11-30 2022-10-18 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11616248B2 (en) 2018-11-30 2023-03-28 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
US11695122B2 (en) 2018-11-30 2023-07-04 ExxonMobil Technology and Engineering Company Layered cathode for molten carbonate fuel cell
US11742508B2 (en) 2018-11-30 2023-08-29 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
US11843150B2 (en) 2018-11-30 2023-12-12 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11888187B2 (en) 2018-11-30 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with enhanced CO2 utilization
US11335937B2 (en) 2019-11-26 2022-05-17 Exxonmobil Research And Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
US11664519B2 (en) 2019-11-26 2023-05-30 Exxonmobil Research And Engineering Company Fuel cell module assembly and systems using same
US11888199B2 (en) 2019-11-26 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level

Similar Documents

Publication Publication Date Title
JPH10172595A (en) Method and device for monitoring carbon deposit of molten carbonate type fuel cell
CA2452789C (en) Diagnostic method for fuel cell
US6841292B2 (en) Hydrogen sensor for fuel processors of a fuel cell
CN107681181B (en) Performance diagnosis method of fuel cell
US7544430B2 (en) Online detection of stack crossover rate for adaptive hydrogen bleed strategy
US20040028967A1 (en) Gas density detector and fuel cell system using the detector
Zamel et al. Measurement of spatially resolved impedance spectroscopy with local perturbation
JP2006516354A (en) Operation method of fuel cell
US6662633B2 (en) Method and apparatus for locating internal transfer leaks within fuel cell stacks
KR20190134357A (en) Fault diagnosis method of fuel cell air supply system
US10622651B2 (en) Methods relating to monitoring fuel cells
JP2006517296A (en) Method for detecting carbon monoxide in a hydrogen-rich gas stream
JP2018538668A (en) Method and apparatus for measuring recirculation rate
JPH08222260A (en) Abnormality monitoring method of fuel cell and device therefof
JPS63310573A (en) Fuel line control system of fuel cell power generating facilities
JP4547603B2 (en) Fuel cell deterioration judgment device
Thawornkuno et al. Estimation of water content in PEM fuel cell
US20240145744A1 (en) Fuel cell evaluation system and fuel cell evaluation method
EP4310965A1 (en) Fuel cell evaluation system and fuel cell evaluation method
JP2008176944A (en) Inspection method of fuel cell
JP2000021432A (en) Flow rate measuring apparatus of fuel cell generating set
JP2008311081A (en) Fuel cell system
CN113432801B (en) Fuel cell stack air tightness detection system
JP2012174397A (en) Life prediction method of solid polymer fuel cell, and solid polymer fuel cell power generating system using the same
O'Brien et al. High-temperature co-electrolysis of carbon dioxide and steam for the production of syngas; equilibrium model and single-cell tests