JPH10170906A - Reflection-type liquid crystal display device - Google Patents

Reflection-type liquid crystal display device

Info

Publication number
JPH10170906A
JPH10170906A JP8328211A JP32821196A JPH10170906A JP H10170906 A JPH10170906 A JP H10170906A JP 8328211 A JP8328211 A JP 8328211A JP 32821196 A JP32821196 A JP 32821196A JP H10170906 A JPH10170906 A JP H10170906A
Authority
JP
Japan
Prior art keywords
liquid crystal
δnd
plate
phase plate
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8328211A
Other languages
Japanese (ja)
Other versions
JP3380696B2 (en
Inventor
Shinichi Komura
真一 小村
Osamu Ito
理 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32821196A priority Critical patent/JP3380696B2/en
Publication of JPH10170906A publication Critical patent/JPH10170906A/en
Application granted granted Critical
Publication of JP3380696B2 publication Critical patent/JP3380696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to execute a good black display, which is low in reflectivity and is colorless, by using two sheets of phase plates and specifying the relation between each of the optical axes of these phase plates, the product of refractive index anisotropy and thickness, and the absorption axis of a polarizing plate. SOLUTION: This liquid crystal display device is constituted by successively laminating the polarizing plate 4, the phase plate 2, the phase plate 1, STN liquid crystals 3 and a reflection plate 5 from an external light incident side. The liquid crystal molecules in an liquid crystal layer has a twisted structure of 220 to 260 deg. in twist angle θ. The product Δnd of the refractive index anisotropy of Δn of the liquid crystals and the thickness d of the liquid crystal layer 3 is 0.5 to 0.8μm. The conditions, such as -105 deg.<ϕ1 -ϕ0 <-10 deg., -85 deg.<ϕ2 -ϕ1 <-20 deg., -50 deg.<γ-ϕ2 <-80 deg., 0.02μm<Δnd1 <0.18μm, 0.32μm<Δnd2 <0.42μm are satisfied when the orientation direction of the liquid crystal molecules on the substrate surface on a first refractive film side is defined as ϕ0 , the direction of the absorption axis of the polarizing plate 4 as γ, the directions of the optical axes of the two double refractive films as ϕ1 , ϕ2 , and the Δnd of the two double refractive films as Δnd1 and Δnd2 .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液晶表示素子に係
り、特に、時分割駆動が可能で、バックライトを用いず
に明るい表示を実現する反射型液晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a reflection type liquid crystal display device which can be driven in a time-division manner and realizes a bright display without using a backlight.

【0002】[0002]

【従来の技術】現在、STN(Super Twisted Nemti
c)−LCDを用いた反射型液晶表示装置が市販されて
いる。しかし、この方式には反射率が低い、表示に影が
生じると云った問題がある。
2. Description of the Related Art At present, STN (Super Twisted Nemti) is used.
c) A reflective liquid crystal display device using -LCD is commercially available. However, this method has a problem that the reflectance is low and a shadow appears on the display.

【0003】STN−LCDでは、反射板と液晶の間に
は厚さ1mm程度のガラス基板が介在する。一方、画素
の大きさは300×100μm程度なので、液晶パネル
に斜めに入射する光は、入射するときと反射された後で
は異なる画素を通過する。従って、この液晶表示装置を
斜めから見ると、あたかも表示物の影が反射板に映って
いるかのように見えてしまう。
In the STN-LCD, a glass substrate having a thickness of about 1 mm is interposed between the reflection plate and the liquid crystal. On the other hand, since the size of the pixel is about 300 × 100 μm, light that is obliquely incident on the liquid crystal panel passes through different pixels when it is incident and after it is reflected. Therefore, when the liquid crystal display device is viewed obliquely, it looks as if the shadow of the display object is reflected on the reflector.

【0004】上記の対策として、偏光板一枚で表示が可
能な反射型STN−LCD(単偏光板型STN−LC
D)を用いる方法が提案(94年液晶討論会予稿集,p
p.206−207)されている。
As a countermeasure, a reflective STN-LCD (single polarizing plate type STN-LC) capable of displaying with a single polarizing plate is used.
D) The method using (Proposal for Liquid Crystal Symposium in 1994, p.
pp. 206-207).

【0005】従来のSTN−LCDでは、所定の直線偏
光以外の光を吸収する偏光板が二枚必要なのに対し、単
偏光板型STN−LCDでは一枚で表示が可能であるた
め、反射率を向上させることができる。
A conventional STN-LCD requires two polarizing plates for absorbing light other than a predetermined linearly polarized light, whereas a single polarizing plate type STN-LCD can display a single sheet. Can be improved.

【0006】また、従来のSTN−LCDでは、液晶パ
ネルに貼り付けた偏光板の外側に反射板を設ける必要が
あったが、単偏光板型STN−LCDでは反射板側の偏
光板が省略されるので、反射板を液晶パネル内に設け
て、前記の影の問題を解決することが可能である。
Further, in the conventional STN-LCD, it was necessary to provide a reflection plate outside the polarizing plate attached to the liquid crystal panel. However, in the single polarizing plate type STN-LCD, the polarizing plate on the reflection plate side was omitted. Therefore, it is possible to solve the above-mentioned shadow problem by providing a reflection plate in the liquid crystal panel.

【0007】この方式は一枚の偏光板、反射板を内蔵し
たSTN液晶セル、偏光板と液晶セルの間に設けた複屈
折性を有するフィルム(位相板)からなる。位相板はモ
ノクロ表示を実現するように最適化されている。
This method comprises a single polarizing plate, an STN liquid crystal cell incorporating a reflecting plate, and a birefringent film (phase plate) provided between the polarizing plate and the liquid crystal cell. The phase plate is optimized to realize a monochrome display.

【0008】[0008]

【発明が解決しようとする課題】前記従来技術には、良
好な黒表示が実現できないと云う問題がある。良好な黒
表示を実現するためには、400〜700nmの可視波
長域において十分に低い反射率を実現する必要がある。
The above prior art has a problem that good black display cannot be realized. In order to realize good black display, it is necessary to realize a sufficiently low reflectance in the visible wavelength range of 400 to 700 nm.

【0009】しかしながら、従来技術のように位相板を
一枚用いた単偏光板型STN−LCDでは、特定の波長
に対してのみ低い反射率が実現され、全ての波長域にわ
たり低い反射率を実現することはできない。通常は視感
度の高い緑の波長に対して、低い反射率が実現できるよ
う位相板を最適化してあるが、他の波長に対しては必ず
しも低い反射率は実現されていない。その結果、青みが
かった黒や茶色となってしまい、良好な黒色表示は実現
できなかった。
However, in the single-polarizer type STN-LCD using one phase plate as in the prior art, a low reflectance is realized only for a specific wavelength, and a low reflectance is realized over all wavelength ranges. I can't. Usually, the phase plate is optimized so that a low reflectance can be realized for a green wavelength having high visibility, but a low reflectance is not necessarily realized for other wavelengths. As a result, the color became bluish black or brown, and good black display could not be realized.

【0010】本発明の目的は前記従来技術の課題を解決
し、反射率が低く、かつ、無彩色である良好な黒表示を
実現する反射型液晶表示装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a reflection type liquid crystal display device which realizes a good black display which is low in reflectance and achromatic.

【0011】[0011]

【課題を解決するための手段】前記課題を解決するため
に、位相板を二枚用い、かつ、位相板の光学軸、屈折率
異方性Δnと厚さdの積(Δnd)、偏光板の吸収軸と
の関係を特定した。
In order to solve the above-mentioned problems, two phase plates are used, the optical axis of the phase plate, the product of the refractive index anisotropy Δn and the thickness d (Δnd), and the polarizing plate are used. The relationship with the absorption axis was determined.

【0012】即ち、反射板、電極を有する一対の基板間
に液晶層を挿入した液晶セル、第1の複屈折性フィル
ム、第2の複屈折性フィルム、偏光板が前記の順に配置
され、前記液晶層内の液晶分子が反射板側基板から対向
基板に向かってツイスト角θが220°〜260°のツ
イスト構造を有し、前記液晶の屈折率異方性Δnと前記
液晶層の厚さdとの積Δndが0.5〜0.8μmであ
り、前記第1の複屈折性フィルム側の基板面上の液晶分
子の配向方向をφ0、偏光板の吸収軸の方向をγ、第
1,第2の複屈折性フィルムの光学軸の方向をφ1
φ2、また、第1,第2の複屈折性フィルムのΔndを
それぞれΔnd1,Δnd2とすると、(I)−105°
<φ1−φ0<−10°、−85°<φ2−φ1<−20
°、50°<γ−φ2<80°、0.02μm<Δnd1
<0.18μm、0.32μm<Δnd2<0.42μm、
または、(II)−10°<φ1−φ0<40°、−75°
<φ2−φ1<−55°、10°<γ−φ2<30°、0.
12μm<Δnd1<0.24μm、0.32μm<Δn
2<0.42μm、または、(III)−105°<φ1
φ0<−50°、55°<φ2−φ1<80°、−60°
<γ−φ2<−20°、0.32μm<Δnd1<0.46
μm、0.32μm<Δnd2<0.42μm、または、
(IV)25°<φ1−φ0<75°、60°<φ2−φ1
80°、5°<γ−φ2<55°、0.32μm<Δnd
1<0.42μm、0.32μm<Δnd2<0.42μ
m、または、(V)5°<φ1−φ0<90°、−75°
<φ2−φ1<−10°、−75°<γ−φ2<−10
°、0.04μm<Δnd1<0.22μm、0.04μm
<Δnd2<0.22μm、または、(VI)60°<φ1
−φ0<90°、55°<φ2−φ1<80°、−35°
<γ−φ2<−10°、0.32μm<Δnd1<0.42
μm、0.12μm<Δnd2<0.22μm、のいずれ
かの条件を満足するよう構成されていることを特徴とす
る反射型液晶表示装置にある。
That is, a liquid crystal cell in which a liquid crystal layer is inserted between a pair of substrates having a reflector and an electrode, a first birefringent film, a second birefringent film, and a polarizing plate are arranged in this order. The liquid crystal molecules in the liquid crystal layer have a twist structure in which the twist angle θ is from 220 ° to 260 ° from the substrate on the reflection plate side to the opposite substrate, and the refractive index anisotropy Δn of the liquid crystal and the thickness d of the liquid crystal layer Is 0.5 to 0.8 μm, the orientation direction of liquid crystal molecules on the substrate surface on the first birefringent film side is φ 0 , the direction of the absorption axis of the polarizing plate is γ, , The direction of the optical axis of the second birefringent film is φ 1 ,
φ 2 and Δnd of the first and second birefringent films are Δnd 1 and Δnd 2 , respectively, and (I) −105 °
1 −φ 0 <−10 °, −85 ° <φ 2 −φ 1 <−20
°, 50 ° <γ-φ 2 <80 °, 0.02 μm <Δnd 1
<0.18 μm, 0.32 μm <Δnd 2 <0.42 μm,
Or (II) −10 ° <φ 1 −φ 0 <40 °, −75 °
2 −φ 1 <−55 °, 10 ° <γ−φ 2 <30 °, 0.1 °
12 μm <Δnd 1 <0.24 μm, 0.32 μm <Δn
d 2 <0.42 μm or (III) −105 ° <φ 1
φ 0 <−50 °, 55 ° <φ 2 −φ 1 <80 °, −60 °
<Γ-φ 2 <-20 °, 0.32 μm <Δnd 1 <0.46
μm, 0.32 μm <Δnd 2 <0.42 μm, or
(IV) 25 ° <φ 1 −φ 0 <75 °, 60 ° <φ 2 −φ 1 <
80 °, 5 ° <γ−φ 2 <55 °, 0.32 μm <Δnd
1 <0.42 μm, 0.32 μm <Δnd 2 <0.42 μ
m or (V) 5 ° <φ 1 −φ 0 <90 °, -75 °
2 −φ 1 <−10 °, −75 ° <γ−φ 2 <−10
°, 0.04 μm <Δnd 1 <0.22 μm, 0.04 μm
<Δnd 2 <0.22 μm or (VI) 60 ° <φ 1
−φ 0 <90 °, 55 ° <φ 2 −φ 1 <80 °, −35 °
<Γ−φ 2 <−10 °, 0.32 μm <Δnd 1 <0.42
μm, and 0.12 μm <Δnd 2 <0.22 μm.

【0013】また、前記液晶セルがカラーフィルタを有
し、前記反射板を液晶セル内部に備えた反射型液晶表示
装置にある。
[0013] Further, there is provided a reflection type liquid crystal display device in which the liquid crystal cell has a color filter and the reflection plate is provided inside the liquid crystal cell.

【0014】上記において、暗表示時の電圧が前記電極
間に印加されている状態で、反射板から液晶セルに円偏
光を入射したとき、その光が偏光板へ入射する際に、少
なくとも赤、緑、青の波長に対してほぼ直線偏光にな
り、かつ、その偏光方向が偏光板の吸収軸とほぼ一致す
るように、前記位相板の光学軸、Δndを特定する。
In the above, when circularly polarized light is incident on the liquid crystal cell from the reflector in a state where a voltage for dark display is applied between the electrodes, when the light is incident on the polarizer, at least red, The optical axis, Δnd, of the phase plate is specified so that the light becomes substantially linearly polarized light with respect to the wavelengths of green and blue, and its polarization direction substantially matches the absorption axis of the polarizing plate.

【0015】これによって、高反射率で、かつ、影の生
じない反射型液晶表示装置で、暗表示時の反射率が低
く、かつ、無彩色の黒表示を実現することができる。そ
の作用,効果の詳細については、後に述べる。
[0015] This makes it possible to realize an achromatic black display with a low reflectance at the time of dark display and a reflective liquid crystal display device having a high reflectance and producing no shadow. The details of the operation and effect will be described later.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施例を図面を用
いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】〔実施例1〕図1は本発明の反射型液晶表
示装置の一実施例の構成を示すものである。外光の入射
する側から偏光板4、位相板2、位相板1、STN液晶
3、反射板5が順次積層された構成となっている。な
お、図1には表示を省略したが、STN液晶3を駆動表
示する電圧印加手段を備えている。
Embodiment 1 FIG. 1 shows the structure of an embodiment of the reflection type liquid crystal display device of the present invention. The polarizing plate 4, the phase plate 2, the phase plate 1, the STN liquid crystal 3, and the reflection plate 5 are sequentially laminated from the side where external light is incident. Although illustration is omitted in FIG. 1, a voltage application unit for driving and displaying the STN liquid crystal 3 is provided.

【0018】図2は、図1の液晶表示装置の各光学部材
の光学角度を示す。偏光板4の吸収軸14、位相板1の
光学軸11、位相板2の光学軸12、STN液晶3の位
相板側の液晶分子の配向方向10をそれぞれ、γ、
φ1、φ2、φ0で定義する。
FIG. 2 shows an optical angle of each optical member of the liquid crystal display device of FIG. The absorption axis 14 of the polarizing plate 4, the optical axis 11 of the phase plate 1, the optical axis 12 of the phase plate 2, and the orientation direction 10 of the liquid crystal molecules on the phase plate side of the STN liquid crystal 3 are denoted by γ,
Defined by φ 1 , φ 2 , φ 0 .

【0019】STN液晶3の液晶分子は、反射板5側か
ら位相板1側に向けてツイスト構造を有し、位相板1側
の液晶分子の配向方向10と、反射板5側の液晶分子の
配向方向13とのなす角はツイスト角θで定義される。
The liquid crystal molecules of the STN liquid crystal 3 have a twisted structure from the reflection plate 5 side to the phase plate 1 side, and the alignment direction 10 of the liquid crystal molecules on the phase plate 1 side and the liquid crystal molecules on the reflection plate 5 side. The angle formed with the orientation direction 13 is defined by the twist angle θ.

【0020】本実施例では、反射板5側から、位相板1
側に向かって、反時計回りに液晶分子がねじれて配向し
ている場合を例に説明する。
In the present embodiment, the phase plate 1 is
The case where liquid crystal molecules are twisted and aligned counterclockwise toward the side will be described as an example.

【0021】各素子の角度はx方向を基準として反時計
回りに定義する。さらに、φ0=(θ/2)+90°とし
た。
The angle of each element is defined counterclockwise with respect to the x direction. Further, φ 0 = (θ / 2) + 90 °.

【0022】次に、本実施例の液晶表示装置が暗表示時
に、赤、緑、青の波長に対して十分に低い反射率を実現
するための条件、および、その際の動作について説明す
る。
Next, conditions for the liquid crystal display device of the present embodiment to realize a sufficiently low reflectance for red, green, and blue wavelengths at the time of dark display and the operation at that time will be described.

【0023】偏光板4側から入射した外光が、偏光板
4、位相板2、位相板1、STN液晶3を透過した後、
反射板5上、即ち、図1におけるA点において円偏光で
あれば、この素子の反射率は0となることが知られてい
る。この場合、逆に、A点から円偏光をSTN液晶3に
向かって入射するとD点における偏光方向が、偏光板4
の吸収軸に平行な直線偏光となる。
After external light incident from the polarizing plate 4 side passes through the polarizing plate 4, the phase plate 2, the phase plate 1, and the STN liquid crystal 3,
It is known that the reflectance of this element becomes 0 if the light is circularly polarized on the reflection plate 5, that is, at the point A in FIG. In this case, conversely, when circularly polarized light is incident from the point A toward the STN liquid crystal 3, the polarization direction at the point D is changed to the polarization plate 4.
Becomes linearly polarized light parallel to the absorption axis.

【0024】従って、STN液晶3に暗表示時の電圧が
印加されている状態で、A点から円偏光を入射したとき
に、D点における偏光状態が、赤、緑、青の波長に対し
て、ほぼ同一の直線偏光となり、その偏光方向が偏光板
4の吸収軸とほぼ平行になるように、位相板1,2およ
び偏光板4を選択すれば、赤、緑、青の波長に対して十
分に低い反射率を実現することができる。
Therefore, when circularly polarized light is incident from the point A in a state where a voltage for dark display is applied to the STN liquid crystal 3, the polarization state at the point D changes with respect to the red, green, and blue wavelengths. If the phase plates 1 and 2 and the polarizing plate 4 are selected so that they become substantially the same linearly polarized light and the direction of polarization becomes substantially parallel to the absorption axis of the polarizing plate 4, the wavelengths of red, green and blue can be obtained. A sufficiently low reflectance can be realized.

【0025】楕円偏光が、位相板1,2を透過したと
き、位相板の光学軸に平行な成分と垂直な成分に位相差
が生じるが、両成分の絶対値は変化しない。従って、長
辺あるいは短辺が位相板の光学軸に平行で、かつ、位相
板を透過する前の楕円偏光を表す楕円を内接する長方形
を仮定すると、位相板を透過した後の楕円偏光も、その
長方形に内接することになる。このとき位相板で生じる
位相差を選べば直線偏光が得られるが、この直線偏光も
前記長方形に内接するので、偏光方向は前記長方形の対
角方向となる。
When the elliptically polarized light passes through the phase plates 1 and 2, a phase difference occurs between a component parallel to the optical axis of the phase plate and a component perpendicular thereto, but the absolute values of both components do not change. Therefore, assuming a rectangle whose long side or short side is parallel to the optical axis of the phase plate, and inscribes an ellipse representing elliptically polarized light before passing through the phase plate, elliptically polarized light after passing through the phase plate is also You will be inscribed in the rectangle. At this time, if the phase difference generated by the phase plate is selected, linearly polarized light can be obtained. However, since this linearly polarized light is also inscribed in the rectangle, the polarization direction is the diagonal direction of the rectangle.

【0026】図3は図1におけるC点の赤、緑、青の波
長の楕円偏光を示す図である。上記において、同一の直
線偏光を得るためには、C点において赤、緑、青の楕円
偏光が、D点で赤、緑、青の波長にかかわらず同一の直
線偏光を得るためには、図3に示すように、C点での
赤、緑、青の楕円偏光が同一の長方形に内接する必要が
ある。
FIG. 3 is a diagram showing elliptically polarized light having red, green, and blue wavelengths at point C in FIG. In the above description, to obtain the same linearly polarized light, red, green, and blue elliptically polarized light are obtained at the point C, and the same linearly polarized light is obtained at the point D regardless of the red, green, and blue wavelengths. As shown in FIG. 3, the red, green, and blue elliptically polarized lights at point C need to be inscribed in the same rectangle.

【0027】STN液晶の透過直後の偏光状態、即ち、
B点では一般にこの条件は満たされていない。従って、
一枚の位相板では、波長の違いに拘らず同一の直線偏光
を得ることはできない。
The polarization state immediately after transmission of the STN liquid crystal, that is,
At point B, this condition is generally not satisfied. Therefore,
With a single phase plate, the same linearly polarized light cannot be obtained regardless of the difference in wavelength.

【0028】そこで、本実施例では、C点において前記
条件を満たすように位相板1を選定する。位相板1のΔ
ndは、B点における楕円偏光を表す複素電界ベクトル
の位相板1の光学軸に平行な成分の絶対値Ex、垂直な
成分の絶対値Ey、平行な成分と垂直な成分の位相差
δ0、位相板1の光学軸φ1、位相板2の光学軸φ2、偏
光板の吸収軸γ、光の波長λを用いて、次式〔1〕で決
定される。
Therefore, in the present embodiment, the phase plate 1 is selected so as to satisfy the above condition at the point C. Δ of phase plate 1
nd is the absolute value Ex of the component parallel to the optical axis of the phase plate 1 of the complex electric field vector representing the elliptically polarized light at the point B, the absolute value Ey of the vertical component, the phase difference δ 0 between the parallel component and the vertical component, optical axes phi 1 of the phase plate 1, the optical axis phi 2 of the phase plate 2 and the absorption axis of the polarizing plate gamma, using a wavelength of light lambda, it is determined by the following formula (1).

【0029】[0029]

【数1】 (Equation 1)

【0030】次に、位相板1を透過後のC点における偏
光が、位相板2を透過後に、D点において、少なくとも
赤、緑、青の波長に対して、その偏光方向が偏光板4の
吸収軸に平行な同一の直線偏光となるよう位相板2を選
定する。
Next, the polarized light at point C after passing through the phase plate 1 passes through the phase plate 2 and at point D at least with respect to the wavelengths of red, green, and blue, the polarization direction of the polarizing plate 4. The phase plate 2 is selected so as to have the same linearly polarized light parallel to the absorption axis.

【0031】位相板2のΔndは、C点における偏光状
態を表す複素電界ベクトルの位相板2の光学軸に平行な
成分と垂直な成分の位相差δ1、光の波長λを用いて次
式〔2〕で決定される。
The Δnd of the phase plate 2 is expressed by the following equation using the phase difference δ 1 between the component parallel to and perpendicular to the optical axis of the phase plate 2 of the complex electric field vector representing the polarization state at the point C, and the wavelength λ of light. Determined in [2].

【0032】[0032]

【数2】 (Equation 2)

【0033】赤、緑、青の各波長に対して、前記式
〔1〕で位相板1のΔndを、式〔2〕で位相板2のΔ
ndをそれぞれ独立に決定すれば、任意のγ、φ1、φ2
の組み合わせに対して、赤、緑、青の波長の反射率を0
とすることが可能である。
For each of the red, green, and blue wavelengths, Δnd of the phase plate 1 is calculated by the above equation [1], and Δnd of the phase plate 2 is calculated by the equation [2].
If nd are determined independently, any γ, φ 1 , φ 2
Of the red, green, and blue wavelengths for the combination of
It is possible.

【0034】しかしながら、赤、緑、青の波長のΔnd
の間には、材料によって決まる一定の関係がある。例え
ば、ポリカーボネートフィルムの場合、赤の波長のΔn
dは緑の波長のΔndの約0.97倍、青の波長のΔn
dは緑の波長のΔndの約1.07倍である。従って、
一般には赤、緑、青の全ての波長に対して反射率を0と
することはできない。
However, Δnd of red, green and blue wavelengths
There is a certain relationship between them that depends on the material. For example, in the case of a polycarbonate film, the red wavelength Δn
d is about 0.97 times the green wavelength Δnd and the blue wavelength Δn
d is about 1.07 times Δnd of the green wavelength. Therefore,
Generally, the reflectance cannot be set to 0 for all the red, green, and blue wavelengths.

【0035】そこで、本実施例では、視感度の高い緑の
波長に対して、位相板のΔndの値を式〔1〕および式
〔2〕から決定し、これを満足する光学部材(材料)を
用いることで、赤および青の反射率が十分低くできる
γ、φ1、φ2、Δnd1、Δnd2の条件を求めた。
Therefore, in the present embodiment, the value of Δnd of the phase plate is determined from the equations [1] and [2] for the green wavelength having high visibility, and the optical member (material) satisfying this is determined. Are used, the conditions of γ, φ 1 , φ 2 , Δnd 1 , and Δnd 2 at which the red and blue reflectances can be sufficiently reduced are determined.

【0036】本発明の目的は、位相板が一枚では実現で
きない暗表示時の良好な黒表示を達成することにあるの
で、十分に低い反射率としては、位相板が一枚で得られ
る反射率よりも低い反射率と定義した。
Since the object of the present invention is to achieve a good black display at the time of dark display which cannot be realized by a single phase plate, a sufficiently low reflectivity can be obtained by a single phase plate. It was defined as a reflectance lower than the reflectance.

【0037】図4は、位相板一枚により実現できる暗表
示の赤の反射率RRと青の反射率Rの平均値(RR+R
B)/2(%)と、STN液晶のΔndとの関係を示した
ものである。
[0037] Figure 4, the reflectance of the reflectance R R and blue dark display red can be realized by a single phase plate average value of R B (R R + R
B ) / 2 (%) and Δnd of the STN liquid crystal.

【0038】STN液晶3のツイスト角は220°、2
40°、260°の場合を示す。位相板のΔndの値は
緑の波長に対して、STN液晶透過後の偏光が、位相板
を透過した後に直線偏光となるように選び、偏光板の吸
収軸の方向を直線偏光の偏光方向に一致させた。
The twist angle of the STN liquid crystal 3 is 220 °, 2
40 ° and 260 ° are shown. The value of Δnd of the phase plate is selected so that the polarization after transmission through the STN liquid crystal becomes linear polarization after transmission through the phase plate with respect to the green wavelength, and the direction of the absorption axis of the polarization plate is changed to the polarization direction of the linear polarization. Matched.

【0039】この場合、(RR+RB)/2の値は位相板の
光学軸に依存するので、光学軸を変えたときに得られる
(RR+RB)/2の最小値をプロットした。
In this case, the value of (R R + R B ) / 2 depends on the optical axis of the phase plate, and is obtained when the optical axis is changed.
The minimum value of (R R + R B ) / 2 was plotted.

【0040】ここで、反射率は素子に垂直に光を入射し
たときの垂直方向の反射光で定義した。この条件では、
240°ツイストのSTN液晶セルでΔnd=0.58
μmのとき暗表示の反射率が最小となる。そこで、この
反射率を基準反射率と定義して、赤、青の反射率がこの
基準反射率よりも低くなる条件を求めた。
Here, the reflectivity was defined as the reflected light in the vertical direction when the light was vertically incident on the element. In this condition,
Δnd = 0.58 in a 240 ° twisted STN liquid crystal cell
In the case of μm, the reflectance of dark display becomes minimum. Therefore, this reflectance was defined as a reference reflectance, and a condition that the red and blue reflectances were lower than the reference reflectance was determined.

【0041】本実施例において、赤、青の反射率が基準
反射率よりも低くなるときのφ1、φ2、γ、Δnd1
Δnd2の組み合わせは以下に示すcase I〜VIの6つの
ケースに分類できる。なお、STN液晶セルのツイスト
角を220°〜260°、Δndを0.5〜0.8μmま
で変えて検討した。
In this embodiment, when the reflectance of red and blue becomes lower than the reference reflectance, φ 1 , φ 2 , γ, Δnd 1 ,
The combinations of Δnd 2 can be classified into the following six cases I to VI. The STN liquid crystal cell was studied by changing the twist angle from 220 ° to 260 ° and Δnd from 0.5 to 0.8 μm.

【0042】図5は、case Iのφ1、φ2、γの関係を
示す図である。また、図6はΔnd1、Δnd2の関係を
示す図である。
FIG. 5 is a diagram showing the relationship among φ 1 , φ 2 , and γ of case I. FIG. 6 is a diagram showing the relationship between Δnd 1 and Δnd 2 .

【0043】パラメータとして、位相板1の光学軸11
が位相板側の液晶分子の配向方向10に対してなす角φ
1−φ0、位相板2の光学軸12が位相板1の光学軸11
に対してなす角φ2−φ1、偏光板4の吸収軸14が位相
板2の光学軸12に対してなす角γ−φ2をとってプロ
ットすると、赤、青の反射率が基準反射率よりも低くな
る条件は図5、6に示すように、次のとおりである。
As parameters, the optical axis 11 of the phase plate 1
Makes an angle φ with the orientation direction 10 of the liquid crystal molecules on the phase plate side.
1− φ 0 , the optical axis 12 of the phase plate 2 is
Reference reflection angle phi 2 -.phi 1, the absorption axis 14 of the polarizing plate 4 is plotted by taking the angle gamma-phi 2 to the optical axis 12 of the phase plate 2, red, blue reflectance of relative The conditions for lowering the rate are as follows, as shown in FIGS.

【0044】[0044]

【数3】(I) −105°<φ1−φ0<−10° −85°<φ2−φ1<−20° 50°<γ−φ2<80° 0.02μm<Δnd1<0.18μm 0.32μm<Δnd2<0.42μm 同様に、case II〜VIのφ1、φ2、γ、Δnd1、Δnd
2の関係を図7〜16に示す。
(I) −105 ° <φ 1 −φ 0 <−10 ° −85 ° <φ 2 −φ 1 <−20 ° 50 ° <γ−φ 2 <80 ° 0.02 μm <Δnd 1 < 0.18 μm 0.32 μm <Δnd 2 <0.42 μm Similarly, φ 1 , φ 2 , γ, Δnd 1 , Δnd of cases II to VI
The relationship of 2 is shown in FIGS.

【0045】[0045]

【数4】(II) −10°<φ1−φ0<40° −75°<φ2−φ1<−55° 10°<γ−φ2<30° 0.12μm<Δnd1<0.24μm 0.32μm<Δnd2<0.42μm (III) −105°<φ1−φ0<−50° 55°<φ2−φ1<80° −60°<γ−φ2<−20° 0.32μm<Δnd1<0.46μm 0.32μm<Δnd2<0.42μm (IV) 25°<φ1−φ0<75° 60°<φ2−φ1<80° 5°<γ−φ2<55° 0.32μm<Δnd1<0.42μm 0.32μm<Δnd2<0.42μm (V) 5°<φ1−φ0<90° −75°<φ2−φ1<−10° −75°<γ−φ2<−10° 0.04μm<Δnd1<0.22μm 0.04μm<Δnd2<0.22μm (VI) 60°<φ1−φ0<90° 55°<φ2−φ1<80° −35°<γ−φ2<−10° 0.32μm<Δnd1<0.42μm 0.12μm<Δnd2<0.22μm 以上のように、φ1、φ2、γ、Δnd1、Δnd2を、上
記のcase I〜VIのいずれかの条件に設定することによ
って、暗表示における赤、緑、青の反射率が十分に低い
反射型液晶表示装置を実現することができる。
(II) −10 ° <φ 1 −φ 0 <40 ° −75 ° <φ 2 −φ 1 <−55 ° 10 ° <γ−φ 2 <30 ° 0.12 μm <Δnd 1 <0 .24 μm 0.32 μm <Δnd 2 <0.42 μm (III) −105 ° <φ 1 −φ 0 <−50 ° 55 ° <φ 2 −φ 1 <80 ° −60 ° <γ−φ 2 <−20 ° 0.32 μm <Δnd 1 <0.46 μm 0.32 μm <Δnd 2 <0.42 μm (IV) 25 ° <φ 1 −φ 0 <75 ° 60 ° <φ 2 −φ 1 <80 ° 5 ° <γ −φ 2 <55 ° 0.32 μm <Δnd 1 <0.42 μm 0.32 μm <Δnd 2 <0.42 μm (V) 5 ° <φ 1 −φ 0 <90 ° −75 ° <φ 2 −φ 1 < −10 ° −75 ° <γ−φ 2 <−10 ° 0.04 μm <Δnd 1 <0.22 μm 0.04 μm <Δnd 2 <0.22 μm (VI) 60 ° <φ 1 −φ 0 <90 ° 55 ° <φ 2 -φ 1 <80 ° -35 ° <γ-φ 2 <-1 ° 0.32μm <Δnd 1 <0.42μm 0.12μm <Δnd 2 < As described above 0.22μm, φ 1, φ 2, γ, Δnd 1, the [Delta] nd 2, any of the above Case I through Vl By setting these conditions, it is possible to realize a reflective liquid crystal display device having sufficiently low red, green, and blue reflectances in dark display.

【0046】以下に、case I〜VIの代表的な例をとっ
て、その反射率−印加電圧特性、および、反射率−波長
特性について説明する。
Hereinafter, the reflectance-applied voltage characteristics and the reflectance-wavelength characteristics will be described with reference to typical examples of cases I to VI.

【0047】case I、II、III、IV、V、VIの反射率−
印加電圧特性を図17,19,21,23,25,27
に、また、その反射率−波長特性を図18,20,2
2,24,26,28に示す。
Reflectivity of case I, II, III, IV, V, VI
Applied voltage characteristics are shown in FIGS.
FIG. 18, FIG. 20, and FIG.
2, 24, 26 and 28.

【0048】なお、反射率−波長特性では、液晶表示装
置を1/240デューティ駆動のときの明表示、暗表示
時の特性を示した。それぞれの場合のSTN液晶3のツ
イスト角θ,Δnd、位相板1の光学軸φ1,Δnd1
位相板2の光学軸φ2,Δnd2、偏光板4の吸収軸γを
表1に示す。
In the reflectance-wavelength characteristics, the characteristics at the time of bright display and dark display when the liquid crystal display device is driven at 1/240 duty are shown. In each case, the twist angles θ and Δnd of the STN liquid crystal 3, the optical axes φ 1 and Δnd 1 of the phase plate 1 ,
Table 1 shows the optical axes φ 2 and Δnd 2 of the phase plate 2 and the absorption axis γ of the polarizing plate 4.

【0049】[0049]

【表1】 [Table 1]

【0050】図17〜28において、破線は位相板が一
枚の場合に(RR+RB)/2が最も低くなるときの特性で
本実施例と比較のために示した。
17 to 28, the broken lines show the characteristics when (R R + R B ) / 2 becomes the lowest when one phase plate is used, and are shown for comparison with the present embodiment.

【0051】位相板が一枚の時も二枚の時も、緑の波長
に対して反射率が0となるように位相板のΔndが選ば
れているので、緑の波長0.55μm近傍では、どちら
の場合も暗表示は十分低い反射率となっている。しか
し、赤および青の波長の0.62μm近傍および0.45
μm近傍では、位相板が一枚の場合に比べ低い反射率に
抑えられていることが分かる。
When one or two phase plates are used, Δnd of the phase plate is selected so that the reflectivity becomes 0 with respect to the green wavelength. Therefore, in the vicinity of the green wavelength of 0.55 μm, In both cases, the dark display has a sufficiently low reflectance. However, the red and blue wavelengths around 0.62 μm and 0.45 μm
It can be seen that in the vicinity of μm, the reflectivity is suppressed to a lower value than in the case where only one phase plate is used.

【0052】以上のように、ツイスト角θが220°〜
260°で、Δndが0.5〜0.8μmのSTN液晶を
用いた図1に示す構成の反射型液晶表示装置において、
位相板1の光学軸φ1,Δnd1、位相板2の光学軸
φ2,Δnd2、偏光板4の吸収軸γを、図5〜図16に
示すcase I〜VIのいずれかの範囲に設定することによ
って、位相板を一枚だけ用いた場合よりも反射率が低
く、かつ、無彩色である良好な暗表示が実現できる。
As described above, the twist angle θ is 220 ° or more.
In the reflection type liquid crystal display device having the configuration shown in FIG. 1 using an STN liquid crystal having 260 ° and Δnd of 0.5 to 0.8 μm,
The optical axes φ 1 , Δnd 1 of the phase plate 1 , the optical axes φ 2 , Δnd 2 of the phase plate 2, and the absorption axis γ of the polarizing plate 4 are set in any range of cases I to VI shown in FIGS. By setting, it is possible to realize a favorable dark display with a lower reflectance and achromatic color than when only one phase plate is used.

【0053】なお、本実施例においては、γを偏光板4
の吸収軸と定義して説明したが、透過軸としても同等の
効果が得られる。
In the present embodiment, γ is set to
Although the description is made with the absorption axis defined as, the same effect can be obtained as the transmission axis.

【0054】〔実施例2〕次に、カラーフィルタを組み
合わせた例を図29により説明する。
Embodiment 2 Next, an example in which color filters are combined will be described with reference to FIG.

【0055】図29の液晶表示装置は、ガラス基板7
2、反射板5、透明絶縁体82、透明電極62、STN
液晶3、透明電極61、平坦化層81、カラーフィルタ
90、ガラス基板71、位相板1、位相板2、偏光板4
を順次積層した構成となっている。
The liquid crystal display device shown in FIG.
2, reflector 5, transparent insulator 82, transparent electrode 62, STN
Liquid crystal 3, transparent electrode 61, flattening layer 81, color filter 90, glass substrate 71, phase plate 1, phase plate 2, polarizing plate 4
Are sequentially laminated.

【0056】カラーフィルタ90と反射板5は、それぞ
れ対向するガラス基板71と72上のSTN液晶3側
(内側)にそれぞれ設けたが、基板72上に反射板5そ
の上にカラーフィルタ90を設けても同等の効果が得ら
れる。
The color filter 90 and the reflecting plate 5 are provided on the STN liquid crystal 3 side (inside) on the glass substrates 71 and 72 facing each other, but the color filter 90 is provided on the reflecting plate 5 on the substrate 72. The same effect can be obtained.

【0057】また、反射板5の代わりに透明電極62を
アルミ等の光を反射する部材にしても同等の効果が得ら
れる。
Further, the same effect can be obtained by using the transparent electrode 62 instead of the reflector 5 as a member reflecting light such as aluminum.

【0058】本実施例のSTN液晶3のツイスト角θは
220°〜260°、Δndは0.5〜0.8μmの範囲
である。位相板1の光学軸φ1,Δnd1、位相板2の光
学軸φ2,Δnd2、偏光板4の吸収軸γは、図5〜図1
6に示したcase I〜VIの範囲のいずれかに設定されて
いる。
The twist angle θ of the STN liquid crystal 3 of this embodiment is in the range of 220 ° to 260 °, and Δnd is in the range of 0.5 to 0.8 μm. The optical axes φ 1 and Δnd 1 of the phase plate 1 , the optical axes φ 2 and Δnd 2 of the phase plate 2, and the absorption axis γ of the polarizing plate 4 are shown in FIGS.
It is set in any of the ranges of case I to VI shown in FIG.

【0059】反射板5はアルミ等をガラス基板72に蒸
着等によって形成する。さらに、表面が鏡面とならない
ように拡散性を付与してある。この拡散性付与手段は蒸
着前のガラス基板72の表面を粗化するなどによって達
成できる。
The reflection plate 5 is formed by depositing aluminum or the like on a glass substrate 72 by vapor deposition or the like. Further, the surface is provided with a diffusivity so as not to be a mirror surface. This diffusibility imparting means can be achieved by, for example, roughening the surface of the glass substrate 72 before vapor deposition.

【0060】カラーフィルタ90と反射板5の間には、
透明絶縁体82、透明電極62、STN液晶3、透明電
極61、平坦化層81が介在するが、いずれも通常の画
素の大きさ(300×100μm程度)に比べて数μm
と薄いので、従来技術で述べたような影の問題は生じな
い。
Between the color filter 90 and the reflection plate 5,
The transparent insulator 82, the transparent electrode 62, the STN liquid crystal 3, the transparent electrode 61, and the flattening layer 81 are interposed, all of which are several μm larger than a normal pixel size (about 300 × 100 μm).
Therefore, the problem of shadow as described in the related art does not occur.

【0061】さらに、位相板1の光学軸φ1,Δnd1
位相板2の光学軸φ2,Δnd2、偏光板4の吸収軸γ
を、図5〜図16に示すcase I〜VIの範囲のいずれか
に設定しているため、緑の波長だけではなく、赤、青の
波長に対しても暗表示時の反射率を低くすることができ
る。
Further, the optical axes φ 1 , Δnd 1 ,
The optical axes φ 2 and Δnd 2 of the phase plate 2 and the absorption axis γ of the polarizing plate 4
Is set to one of the ranges of cases I to VI shown in FIGS. 5 to 16, so that the reflectance in dark display is reduced not only for the green wavelength but also for the red and blue wavelengths. be able to.

【0062】本実施例では、例えば、緑の表示を行なう
場合に赤、青の画素からの漏れ光を十分に低く抑えるこ
とができるので、色純度の高いカラー表示が可能であ
る。これに対し、従来技術では、赤、青の波長に対し暗
表示時に十分に低い反射率とできないため、緑の光に対
して赤、青の画素からの漏れ光が混色し、色純度が悪く
なってしまう。
In the present embodiment, for example, when displaying green, the leakage light from the red and blue pixels can be suppressed sufficiently low, so that color display with high color purity is possible. On the other hand, in the related art, since the reflectance cannot be sufficiently low at the time of dark display with respect to the wavelengths of red and blue, the leakage light from the red and blue pixels is mixed with the green light, resulting in poor color purity. turn into.

【0063】このように本発明はカラーフィルタを組み
合わせた反射型カラー液晶表示装置において、特に、色
純度の高いカラー表示を行なうのに非常に有効である。
As described above, the present invention is very effective in a color display having a high color purity, particularly in a reflection type color liquid crystal display device in which color filters are combined.

【0064】[0064]

【発明の効果】本発明によれば、高反射率で、かつ、影
の生じない反射型液晶表示装置において、暗表示時の反
射率が低く、かつ、無彩色の良好な黒表示を実現するこ
とができる。
According to the present invention, in a reflection type liquid crystal display device having a high reflectance and no shadow, a good black display with low reflectance at the time of dark display and achromatic color is realized. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の液晶表示素子の構成を示す模
式断面図である。
FIG. 1 is a schematic cross-sectional view illustrating a configuration of a liquid crystal display device according to an example of the present invention.

【図2】図1の液晶表示素子の各光学部材の光学角度を
示す図である。
FIG. 2 is a view showing optical angles of respective optical members of the liquid crystal display device of FIG.

【図3】図1のC点における赤、緑、青の波長の楕円偏
光を示す図である。
FIG. 3 is a diagram showing elliptically polarized light having red, green, and blue wavelengths at point C in FIG. 1;

【図4】位相板一枚により実現できる暗表示の赤と青の
反射率と位相板のΔndの関係を示す図である。
FIG. 4 is a diagram showing the relationship between the reflectance of red and blue for dark display and the Δnd of the phase plate, which can be realized by a single phase plate.

【図5】本発明の実施例のcase Iのφ1、φ2、γの関
係を示す図である。
FIG. 5 is a diagram showing a relationship among φ 1 , φ 2 , and γ of case I according to the embodiment of the present invention.

【図6】本発明の実施例のcase Iのφ1、φ2、Δn
1、Δnd2の関係を示す図である。
FIG. 6 shows φ 1 , φ 2 , and Δn of case I according to the embodiment of the present invention.
d 1, is a diagram showing the relationship between [Delta] nd 2.

【図7】本発明の実施例のcase IIのφ1、φ2、γの関
係を示す図である。
FIG. 7 is a diagram showing the relationship among φ 1 , φ 2 , and γ in case II of the example of the present invention.

【図8】本発明の実施例のcase IIのφ1、φ2、Δn
1、Δnd2の関係を示す図である。
FIG. 8 shows φ 1 , φ 2 , Δn of case II according to the embodiment of the present invention.
d 1, is a diagram showing the relationship between [Delta] nd 2.

【図9】本発明の実施例のcase IIIのφ1、φ2、γの関
係を示す図である。
FIG. 9 is a diagram showing the relationship among φ 1 , φ 2 , and γ in case III of the example of the present invention.

【図10】本発明の実施例のcase IIIのφ1、φ2、Δn
1、Δnd2の関係を示す図である。
FIG. 10 shows φ 1 , φ 2 , and Δn of case III of the embodiment of the present invention.
d 1, is a diagram showing the relationship between [Delta] nd 2.

【図11】本発明の実施例のcase IVのφ1、φ2、γの
関係を示す図である。
FIG. 11 is a diagram showing the relationship among φ 1 , φ 2 , and γ in case IV of the example of the present invention.

【図12】本発明の実施例のcase IVのφ1、φ2、Δn
1、Δnd2の関係を示す図である。
FIG. 12 shows φ 1 , φ 2 , and Δn of case IV of the embodiment of the present invention.
d 1, is a diagram showing the relationship between [Delta] nd 2.

【図13】本発明の実施例のcase Vのφ1、φ2、γの
関係を示す図である。
FIG. 13 is a diagram showing a relationship among φ 1 , φ 2 , and γ of case V according to the embodiment of the present invention.

【図14】本発明の実施例のcase Vのφ1、φ2、Δn
1、Δnd2の関係を示す図である。
FIG. 14 shows φ 1 , φ 2 , and Δn of case V according to the embodiment of the present invention.
d 1, is a diagram showing the relationship between [Delta] nd 2.

【図15】本発明の実施例のcase VIのφ1、φ2、γの
関係を示す図である。
FIG. 15 is a diagram showing the relationship among φ 1 , φ 2 , and γ in case VI of the example of the present invention.

【図16】本発明の実施例のcase VIのφ1、φ2、Δn
1、Δnd2の関係を示す図である。
FIG. 16 shows φ 1 , φ 2 , and Δn of case VI of the embodiment of the present invention.
d 1, is a diagram showing the relationship between [Delta] nd 2.

【図17】本発明の実施例のcase Iの反射率−印加電
圧特性を示す図である。
FIG. 17 is a diagram showing a reflectance-applied voltage characteristic of case I of the example of the present invention.

【図18】本発明の実施例のcase Iの反射率−波長特
性を示す図である。
FIG. 18 is a diagram showing a reflectance-wavelength characteristic of case I of the example of the present invention.

【図19】本発明の実施例のcase IIの反射率−印加電
圧特性を示す図である。
FIG. 19 is a diagram showing a reflectance-applied voltage characteristic of case II of the example of the present invention.

【図20】本発明の実施例のcase IIの反射率−波長特
性を示す図である。
FIG. 20 is a diagram showing the reflectance-wavelength characteristics of case II of the example of the present invention.

【図21】本発明の実施例のcase IIIの反射率−印加電
圧特性を示す図である。
FIG. 21 is a diagram showing the reflectance-applied voltage characteristic of case III of the example of the present invention.

【図22】本発明の実施例のcase IIIの反射率−波長特
性を示す図である。
FIG. 22 is a diagram showing the reflectance-wavelength characteristics of case III of the example of the present invention.

【図23】本発明の実施例のcase IVの反射率−印加電
圧特性を示す図である。
FIG. 23 is a diagram showing the reflectance-applied voltage characteristics of case IV of the example of the present invention.

【図24】本発明の実施例のcase IVの反射率−波長特
性を示す図である。
FIG. 24 is a diagram showing the reflectance-wavelength characteristics of case IV of the example of the present invention.

【図25】本発明の実施例のcase Vの反射率−印加電
圧特性を示す図である。
FIG. 25 is a diagram showing a reflectance-applied voltage characteristic of case V according to the example of the present invention.

【図26】本発明の実施例のcase Vの反射率−波長特
性を示す図である。
FIG. 26 is a diagram showing a reflectance-wavelength characteristic of case V of the example of the present invention.

【図27】本発明の実施例のcase VIの反射率−印加電
圧特性を示す図である。
FIG. 27 is a diagram showing the reflectance-applied voltage characteristics of case VI of the example of the present invention.

【図28】本発明の実施例のcase VIの反射率−波長特
性を示す図である。
FIG. 28 is a diagram showing a reflectance-wavelength characteristic of case VI of the example of the present invention.

【図29】本発明の実施例のカラー液晶表示素子の構成
を示す模式断面図である。
FIG. 29 is a schematic cross-sectional view illustrating a configuration of a color liquid crystal display element according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1…位相板、2…位相板、3…STN液晶、4…偏光
板、5…反射板、10…STN液晶分子の位相板側の配
向方向、11…位相板1の光学軸の方向、12…位相板
2の光学軸の方向、13…STN液晶分子の偏光板側の
配向方向、14…偏光板の吸収軸、61,62…透明電
極、71,72…ガラス基板、81…平坦化膜、82…
透明絶縁膜、90…カラーフィルタ。
DESCRIPTION OF SYMBOLS 1 ... Phase plate, 2 ... Phase plate, 3 ... STN liquid crystal, 4 ... Polarizing plate, 5 ... Reflection plate, 10 ... Orientation direction of STN liquid crystal molecule on the phase plate side, 11 ... Direction of optical axis of phase plate 1, 12 ... the direction of the optical axis of the phase plate 2, 13 ... the orientation direction of the STN liquid crystal molecules on the polarizing plate side, 14 ... the absorption axis of the polarizing plate, 61, 62 ... transparent electrodes, 71, 72 ... the glass substrate, 81 ... the flattening film , 82 ...
Transparent insulating film, 90 ... color filter.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 反射板、電極を有する一対の基板間に液
晶層を挿入した液晶セル、第1の複屈折性フィルム、第
2の複屈折性フィルム、偏光板が前記の順に配置され、
前記液晶層内の液晶分子が反射板側基板から対向基板に
向かってツイスト角θが220°〜260°のツイスト
構造を有し、前記液晶の屈折率異方性Δnと前記液晶層
の厚さdとの積Δndが0.5〜0.8μmであり、前記
第1の複屈折性フィルム側の基板面上の液晶分子の配向
方向をφ0、偏光板の吸収軸の方向をγ、第1,第2の
複屈折性フィルムの光学軸の方向をφ1,φ2、また、第
1,第2の複屈折性フィルムのΔndをそれぞれΔnd
1,Δnd2とすると、(I)−105°<φ1−φ0<−
10°、−85°<φ2−φ1<−20°、50°<γ−
φ2<80°、0.02μm<Δnd1<0.18μm、
0.32μm<Δnd2<0.42μm、または、(II)
−10°<φ1−φ0<40°、−75°<φ2−φ1<−
55°、10°<γ−φ2<30°、0.12μm<Δn
1<0.24μm、0.32μm<Δnd2<0.42μ
m、または、(III)−105°<φ1−φ0<−50
°、55°<φ2−φ1<80°、−60°<γ−φ2
−20°、0.32μm<Δnd1<0.46μm、0.3
2μm<Δnd2<0.42μm、または、(IV)25°
<φ1−φ0<75°、60°<φ2−φ1<80°、5°
<γ−φ2<55°、0.32μm<Δnd1<0.42μ
m、0.32μm<Δnd2<0.42μm、または、
(V)5°<φ1−φ0<90°、−75°<φ2−φ1
−10°、−75°<γ−φ2<−10°、0.04μm
<Δnd1<0.22μm、0.04μm<Δnd2<0.
22μm、または、(VI)60°<φ1−φ0<90°、
55°<φ2−φ1<80°、−35°<γ−φ2<−1
0°、0.32μm<Δnd1<0.42μm、0.12μ
m<Δnd2<0.22μm、のいずれかの条件を満足す
るよう構成されていることを特徴とする反射型液晶表示
装置。
1. A liquid crystal cell in which a liquid crystal layer is inserted between a pair of substrates having a reflector and an electrode, a first birefringent film, a second birefringent film, and a polarizing plate are arranged in this order.
The liquid crystal molecules in the liquid crystal layer have a twist structure in which the twist angle θ is from 220 ° to 260 ° from the substrate on the reflection plate side to the opposite substrate, and the refractive index anisotropy Δn of the liquid crystal and the thickness of the liquid crystal layer The product Δnd with d is 0.5 to 0.8 μm, the orientation direction of liquid crystal molecules on the substrate surface on the first birefringent film side is φ 0 , the direction of the absorption axis of the polarizing plate is γ, The directions of the optical axes of the first and second birefringent films are φ 1 and φ 2 , and Δnd of the first and second birefringent films is Δnd.
1 and Δnd 2 , (I) −105 ° <φ 1 −φ 0 <−
10 °, −85 ° <φ 2 −φ 1 <−20 °, 50 ° <γ−
φ 2 <80 °, 0.02 μm <Δnd 1 <0.18 μm,
0.32 μm <Δnd 2 <0.42 μm, or (II)
−10 ° <φ 1 −φ 0 <40 °, −75 ° <φ 2 −φ 1 <−
55 °, 10 ° <γ−φ 2 <30 °, 0.12 μm <Δn
d 1 <0.24 μm, 0.32 μm <Δnd 2 <0.42 μ
m or (III) −105 ° <φ 1 −φ 0 <−50
°, 55 ° <φ 21 <80 °, -60 ° <γ-φ 2 <
−20 °, 0.32 μm <Δnd 1 <0.46 μm, 0.3
2 μm <Δnd 2 <0.42 μm or (IV) 25 °
1 −φ 0 <75 °, 60 ° <φ 2 −φ 1 <80 °, 5 °
<Γ-φ 2 <55 °, 0.32 μm <Δnd 1 <0.42 μ
m, 0.32 μm <Δnd 2 <0.42 μm, or
(V) 5 ° <φ 1 −φ 0 <90 °, −75 ° <φ 2 −φ 1 <
−10 °, −75 ° <γ−φ 2 <−10 °, 0.04 μm
<Δnd 1 <0.22 μm, 0.04 μm <Δnd 2 <0.2
22 μm, or (VI) 60 ° <φ 1 −φ 0 <90 °,
55 ° <φ 2 −φ 1 <80 °, −35 ° <γ−φ 2 <−1
0 °, 0.32 μm <Δnd 1 <0.42 μm, 0.12 μ
A reflection type liquid crystal display device characterized by satisfying one of the following conditions: m <Δnd 2 <0.22 μm.
【請求項2】 前記液晶セルがカラーフィルタを有し、
前記反射板を液晶セル内部に備えてなる請求項1に記載
の反射型液晶表示装置。
2. The liquid crystal cell has a color filter,
2. The reflection type liquid crystal display device according to claim 1, wherein the reflection plate is provided inside a liquid crystal cell.
【請求項3】 前記反射板の上にカラーフィルタが設け
られている請求項2に記載の反射型液晶表示装置。
3. The reflection type liquid crystal display device according to claim 2, wherein a color filter is provided on the reflection plate.
JP32821196A 1996-12-09 1996-12-09 Reflective liquid crystal display Expired - Fee Related JP3380696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32821196A JP3380696B2 (en) 1996-12-09 1996-12-09 Reflective liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32821196A JP3380696B2 (en) 1996-12-09 1996-12-09 Reflective liquid crystal display

Publications (2)

Publication Number Publication Date
JPH10170906A true JPH10170906A (en) 1998-06-26
JP3380696B2 JP3380696B2 (en) 2003-02-24

Family

ID=18207700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32821196A Expired - Fee Related JP3380696B2 (en) 1996-12-09 1996-12-09 Reflective liquid crystal display

Country Status (1)

Country Link
JP (1) JP3380696B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000057240A1 (en) * 1999-03-19 2000-09-28 Hitachi, Ltd. Liquid crystal display
US6429920B1 (en) 1999-06-04 2002-08-06 Sharp Kabushiki Kaisha Reflecting type liquid crystal display device
US6661483B1 (en) 1999-07-21 2003-12-09 Sharp Kabushiki Kaisha Liquid crystal display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000057240A1 (en) * 1999-03-19 2000-09-28 Hitachi, Ltd. Liquid crystal display
US6429920B1 (en) 1999-06-04 2002-08-06 Sharp Kabushiki Kaisha Reflecting type liquid crystal display device
US6661483B1 (en) 1999-07-21 2003-12-09 Sharp Kabushiki Kaisha Liquid crystal display device

Also Published As

Publication number Publication date
JP3380696B2 (en) 2003-02-24

Similar Documents

Publication Publication Date Title
TWI247922B (en) Circular polarization plate, vertically-aligned liquid crystal display panel and manufacturing method thereof
JP3406242B2 (en) Liquid crystal display
EP0393191B1 (en) Liquid crystal display
US5400158A (en) Liquid crystal display with optically anisotropic member having a twisted structure and phase plate
JP3806104B2 (en) Transflective liquid crystal display device and manufacturing method thereof
JPH10161110A (en) Reflection type liquid crystal display element
JPH07244284A (en) Liquid crystal display
JP3096383B2 (en) Reflective liquid crystal display
JP2000029010A (en) Liquid crystal display device
JP3380696B2 (en) Reflective liquid crystal display
JP3575607B2 (en) Liquid crystal display
EP1058149B1 (en) Normally Black Mode STN Reflective Liquid Crystal Display having a single polariser and two Retarder Layers
JP2000171788A (en) Reflective liquid crystal display device
JP3143271B2 (en) Liquid crystal display
JP2796212B2 (en) Liquid crystal display
US6801282B2 (en) Reflection LCD device having an improved image quality
JP3774575B2 (en) Reflective liquid crystal display
JPH09258214A (en) Color liquid crystal display device
JPH11295720A (en) Reflection type liquid crystal display device
JP2003149636A (en) Liquid crystal display device
JP3405337B2 (en) Liquid crystal display device
JP3575608B2 (en) Liquid crystal display
JP3297606B2 (en) Color liquid crystal display panel
JPH03263013A (en) Liquid crystal panel
JP3235912B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071213

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121213

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees