JPH10170624A - Aircraft flight position detecting device - Google Patents

Aircraft flight position detecting device

Info

Publication number
JPH10170624A
JPH10170624A JP33178596A JP33178596A JPH10170624A JP H10170624 A JPH10170624 A JP H10170624A JP 33178596 A JP33178596 A JP 33178596A JP 33178596 A JP33178596 A JP 33178596A JP H10170624 A JPH10170624 A JP H10170624A
Authority
JP
Japan
Prior art keywords
azimuth
aircraft
sound
signal
elevation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33178596A
Other languages
Japanese (ja)
Other versions
JP3179356B2 (en
Inventor
Noriaki Hayashi
範章 林
Ichiro Yamada
一郎 山田
Koichi Makino
康一 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Kobayashi Institute of Physical Research
Original Assignee
Rion Co Ltd
Kobayashi Institute of Physical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd, Kobayashi Institute of Physical Research filed Critical Rion Co Ltd
Priority to JP33178596A priority Critical patent/JP3179356B2/en
Publication of JPH10170624A publication Critical patent/JPH10170624A/en
Application granted granted Critical
Publication of JP3179356B2 publication Critical patent/JP3179356B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To detect a flight position of an aircraft at observing point of one place by calculating a distance between the observing point and the aircraft from a time difference between a sound wave and a radio wave, and performing an operation on a position of the aircraft from an azimuth angle and an elevation angle of a sound. SOLUTION: A sound from an aircraft is detected by a sound wave system azimuth angle and elevation angle discriminating device 1, and an azimuth angle signal α m according to an azimuth of the aircraft and an elevation angle signal βm according to an elevation angle are measured. A radio wave system position discriminating device 2 outputs an azimuth angle signal α a according to an azimuth of the aircraft by detecting a radio wave emitted by the aircraft. A time difference detecting part 3 finds a time difference (td) between the azimuth angle signal αm of a sound wave and the azimuth angle signal α a of a radio wave, and when the time difference (td) continues on the same value for a prescribed time or more, a judging part 4 judges that a sound source and a radio wave source are the same with each other (the same aircraft). Next, a flight position operation part 5 calculates a distance L between an observing point and the aircraft by multiplying the time difference (td) and sound speed together, and performs an operation on a position of the aircraft from the azimuth angle signal αm and the elevation angle signal βm of the sound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地上から航空機の
飛行位置を計測することができる航空機飛行位置検出装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aircraft flight position detecting device capable of measuring the flight position of an aircraft from the ground.

【0002】[0002]

【従来の技術】従来、航空機の飛行位置検出装置として
は、航空機の航路を挟んで左右に検出装置を配置し、こ
れら左右の検出装置を通って航路を横切る仮想平面でな
る測定平面を航空機が通過したとき、左右の検出装置か
ら航空機を見た時の仰角を演算により求めるものが提案
されている(「音響的方法による航空機の位置標定」、
小畑秀文、石井泰、五十嵐寿一著、宇宙航空研究所報告
第9巻第4号別冊、1973年10月、東京大学発行)。
2. Description of the Related Art Conventionally, as a flight position detection device for an aircraft, a detection device is disposed on the left and right sides of the flight route of the aircraft, and the measurement plane, which is a virtual plane crossing the flight route through the left and right detection devices, is used by the aircraft. When passing, an elevation angle when the aircraft is viewed from the left and right detection devices is calculated by an operation ("Aircraft position localization by acoustic method",
Hidefumi Obata, Yasushi Ishii, and Juichi Igarashi, JAXA, Vol. 9, No. 4, Separate Volume, October 1973, published by The University of Tokyo.)

【0003】また、航空機の航路を挟んで左右にマイク
ロホンを備えた検出装置を配置し、マイクロホンから得
られる検出情報から音速を演算し、当該演算結果に基づ
いて仰角を演算するようにした航空機飛行位置検出装置
が提案されている(特公平7−76789号公報)。
[0003] In addition, an aircraft flight is arranged in which a detection device provided with microphones is arranged on the left and right sides of the aircraft route, the sound velocity is calculated from detection information obtained from the microphones, and the elevation angle is calculated based on the calculation result. A position detecting device has been proposed (Japanese Patent Publication No. 7-76789).

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の技術に
おいては、観測点を航空機の航路を挟んで一対設けなけ
ればならないため、検出装置の設置場所が限定されると
いう問題がある。
However, in the prior art, since a pair of observation points must be provided on both sides of the route of the aircraft, there is a problem that the installation place of the detection device is limited.

【0005】本発明は、従来の技術が有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、一箇所の観測点で航空機の飛行位置を検出する
ことができる航空機飛行位置検出装置を提供しようとす
るものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide an aircraft capable of detecting the flight position of an aircraft at one observation point. It is intended to provide a flight position detecting device.

【0006】[0006]

【課題を解決するための手段】上記課題を解決すべく請
求項1の発明は、航空機の発する音を検出して航空機の
方位に応じた方位角信号と航空機の仰角に応じた仰角信
号を出力する音波式方位角及び仰角識別手段と、航空機
の発する電波を検出して航空機の方位に応じた方位角信
号を出力する電波式方位角識別手段と、前記音波式方位
角及び仰角識別手段による方位角信号と前記電波式方位
角識別手段による方位角信号との時間差を出力する時間
差検出手段と、前記時間差が所定時間以上同一値を継続
した場合には音源と電波源が同一であると判定する判定
手段と、前記時間差に音速を乗じて観測点と航空機との
距離を算出すると共に音による前記方位角信号及び仰角
信号から航空機の位置を演算する飛行位置演算手段を備
えたものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a first aspect of the present invention is to detect a sound emitted from an aircraft and output an azimuth signal according to the azimuth of the aircraft and an elevation signal according to the elevation of the aircraft. Sound wave type azimuth and elevation angle identification means, radio wave type azimuth angle identification means for detecting radio waves emitted by an aircraft and outputting an azimuth signal corresponding to the direction of the aircraft, and azimuth by the sound wave type azimuth and elevation angle identification means. A time difference detecting means for outputting a time difference between the angle signal and the azimuth signal by the radio wave type azimuth discriminating means; and determining that the sound source and the radio wave source are the same when the time difference continues to be the same value for a predetermined time or more. Determination means; and flight position calculation means for calculating the distance between the observation point and the aircraft by multiplying the time difference by the speed of sound and calculating the position of the aircraft from the azimuth signal and the elevation signal by sound.

【0007】請求項2の発明は、航空機の発する音を検
出して航空機の方位に応じた方位角信号を出力する音波
式方位角識別手段と、航空機の発する電波を検出して航
空機の方位に応じた方位角信号と航空機の仰角に応じた
仰角信号を出力する電波式方位角及び仰角識別手段と、
前記音波式方位角識別手段による方位角信号と前記電波
式方位角及び仰角識別手段による方位角信号との時間差
を出力する時間差検出手段と、前記時間差が所定時間以
上同一値を継続した場合には音源と電波源が同一である
と判定する判定手段と、前記時間差に音速を乗じて観測
点と航空機との距離を算出すると共に電波による前記方
位角信号及び仰角信号から航空機の位置を演算する飛行
位置演算手段を備えたものである。
According to a second aspect of the present invention, there is provided a sound wave type azimuth discriminating means for detecting a sound emitted from an aircraft and outputting an azimuth signal according to the direction of the aircraft, and detecting a radio wave emitted from the aircraft to determine the direction of the aircraft. Radio-wave azimuth and elevation identification means for outputting an azimuth signal according to and an elevation signal according to the elevation of the aircraft,
A time difference detecting means for outputting a time difference between the azimuth signal by the sound wave type azimuth discriminating means and the azimuth signal by the radio wave azimuth angle and the elevation angle discriminating means, if the time difference continues the same value for a predetermined time or more, Determination means for determining that the sound source and the radio wave source are the same; and a flight for calculating the distance between the observation point and the aircraft by multiplying the time difference by the speed of sound and calculating the position of the aircraft from the azimuth signal and the elevation signal by radio waves. It has a position calculating means.

【0008】請求項3の発明は、航空機の発する音を検
出して航空機の方位に応じた方位角信号と航空機の仰角
に応じた仰角信号を出力する音波式方位角及び仰角識別
手段と、航空機の発する電波を検出して航空機の方位に
応じた方位角信号を出力する電波式方位角識別手段と、
前記音波式方位角及び仰角識別手段による方位角信号と
前記電波式方位角識別手段による方位角信号との相互相
関関数を演算する相互相関関数演算手段と、前記相互相
関関数の最大値が同じ位置で所定以上の値を持つ場合に
は音源と電波源が同一であると判定する判定手段と、前
記相互相関関数の最大値を与える電波の方位角信号に対
する音の方位角信号の遅れ時間に音速を乗じて観測点と
航空機との距離を算出すると共に音による前記方位角信
号及び仰角信号から航空機の位置を演算する飛行位置演
算手段を備えたものである。
According to a third aspect of the present invention, there is provided a sound wave type azimuth / elevation discriminating means for detecting a sound emitted from an aircraft and outputting an azimuth signal according to the azimuth of the aircraft and an elevation signal according to the elevation of the aircraft, and an aircraft. Radio wave type azimuth identification means for detecting a radio wave emitted by and outputting an azimuth signal according to the azimuth of the aircraft;
A cross-correlation function calculating means for calculating a cross-correlation function between the azimuth signal by the acoustic azimuth and elevation angle discriminating means and the azimuth signal by the radio wave azimuth discriminating means; and a position where the maximum value of the cross-correlation function is the same. And a determining means for determining that the sound source and the radio wave source are the same when the sound source and the radio wave source are the same. And flight position calculation means for calculating the distance between the observation point and the aircraft by multiplying by the azimuth angle signal and the elevation angle signal by sound.

【0009】請求項4の発明は、航空機の発する音を検
出して航空機の方位に応じた方位角信号を出力する音波
式方位角識別手段と、航空機の発する電波を検出して航
空機の方位に応じた方位角信号と航空機の仰角に応じた
仰角信号を出力する電波式方位角及び仰角識別手段と、
前記音波式方位角識別手段による方位角信号と前記電波
式方位角及び仰角識別手段による方位角信号との相互相
関関数を演算する相互相関関数演算手段と、前記相互相
関関数の最大値が同じ位置で所定以上の値を持つ場合に
は音源と電波源が同一であると判定する判定手段と、前
記相互相関関数の最大値を与える電波の方位角信号に対
する音の方位角信号の遅れ時間に音速を乗じて観測点と
航空機との距離を算出すると共に電波による前記方位角
信号及び仰角信号から航空機の位置を演算する飛行位置
演算手段を備えたものである。
According to a fourth aspect of the present invention, there is provided a sound wave type azimuth discriminating means for detecting a sound emitted from an aircraft and outputting an azimuth signal corresponding to the azimuth of the aircraft, and detecting a radio wave emitted from the aircraft to determine the azimuth of the aircraft. Radio-wave azimuth and elevation identification means for outputting an azimuth signal according to and an elevation signal according to the elevation of the aircraft,
A cross-correlation function calculating means for calculating a cross-correlation function between the azimuth signal from the acoustic azimuth discriminating means and the azimuth signal from the radio wave azimuth and elevation angle discriminating means; and a position where the maximum value of the cross-correlation function is the same. And a determining means for determining that the sound source and the radio wave source are the same when the sound source and the radio wave source are the same. And a flight position calculating means for calculating the distance between the observation point and the aircraft by multiplying the distance and calculating the position of the aircraft from the azimuth signal and the elevation signal by radio waves.

【0010】請求項5の発明は、航空機の発する音を検
出して航空機の方位に応じた方位角信号と航空機の仰角
に応じた仰角信号を出力する音波式方位角及び仰角識別
手段と、航空機の発する電波を検出して航空機の方位に
応じた方位角信号を出力する電波式方位角識別手段と、
前記音波式方位角及び仰角識別手段による方位角信号及
び前記電波式方位角識別手段による方位角信号を時間と
方位角の2次元の線画として扱い、この2種の線画の類
似度をパターンマッチングにより評価するパターンマッ
チング手段と、このパターンマッチング手段による相互
相関関数の最大値を与える電波の方位角信号に対する音
の方位角信号の遅れ時間に音速を乗じて観測点と航空機
との距離を算出すると共に音による前記方位角信号及び
仰角信号から航空機の位置を演算する飛行位置演算手段
を備えたものである。
According to a fifth aspect of the present invention, there is provided a sound wave type azimuth and elevation discriminating means for detecting a sound emitted from an aircraft and outputting an azimuth signal corresponding to the azimuth of the aircraft and an elevation signal according to the elevation of the aircraft, and an aircraft. Radio wave type azimuth identification means for detecting a radio wave emitted by and outputting an azimuth signal according to the azimuth of the aircraft;
The azimuth signal from the acoustic azimuth and elevation angle discriminating means and the azimuth signal from the radio wave azimuth discriminating means are treated as two-dimensional line drawings of time and azimuth, and the similarity between these two line drawings is determined by pattern matching. The pattern matching means to be evaluated, and the distance between the observation point and the aircraft is calculated by multiplying the delay time of the sound azimuth signal with respect to the azimuth signal of the radio wave giving the maximum value of the cross-correlation function by the pattern matching means by the speed of sound. A flight position calculating means for calculating a position of the aircraft from the azimuth signal and the elevation signal by sound;

【0011】請求項6の発明は、航空機の発する音を検
出して航空機の方位に応じた方位角信号を出力する音波
式方位角識別手段と、航空機の発する電波を検出して航
空機の方位に応じた方位角信号と航空機の仰角に応じた
仰角信号を出力する電波式方位角及び仰角識別手段と、
前記音波式方位角識別手段による方位角信号及び前記電
波式方位角及び仰角識別手段による方位角信号を時間と
方位角の2次元の線画として扱い、この2種の線画の類
似度をパターンマッチングにより評価するパターンマッ
チング手段と、このパターンマッチング手段による相互
相関関数の最大値を与える電波の方位角信号に対する音
の方位角信号の遅れ時間に音速を乗じて観測点と航空機
との距離を算出すると共に電波による前記方位角信号及
び仰角信号から航空機の位置を演算する飛行位置演算手
段を備えたものである。
According to a sixth aspect of the present invention, there is provided a sound wave type azimuth discriminating means for detecting a sound emitted from an aircraft and outputting an azimuth signal according to the azimuth of the aircraft, and detecting a radio wave emitted from the aircraft to determine the azimuth of the aircraft. Radio-wave azimuth and elevation identification means for outputting an azimuth signal according to and an elevation signal according to the elevation of the aircraft,
The azimuth signal from the sound wave type azimuth discriminating means and the azimuth signal from the radio wave azimuth and elevation angle discriminating means are treated as two-dimensional line drawings of time and azimuth, and the similarity between these two types of line drawings is determined by pattern matching. The pattern matching means to be evaluated, and the distance between the observation point and the aircraft is calculated by multiplying the delay time of the sound azimuth signal with respect to the azimuth signal of the radio wave giving the maximum value of the cross-correlation function by the pattern matching means by the speed of sound. And a flight position calculating means for calculating the position of the aircraft from the azimuth signal and the elevation signal by radio waves.

【0012】[0012]

【発明の実施の形態】以下に本発明の実施の形態を添付
図面に基づいて説明する。ここで、図1は請求項1の発
明に係る航空機飛行位置検出装置の構成図、図2は音波
式方位及び仰角識別装置の構成図、図3はマイクロホン
の配置を示す説明図、図4は電波式方位識別装置の構成
図、図5はアンテナの配置を示す説明図、図6は電波と
音の方位角の変化の違いを示す図、図7は請求項1の発
明に係る航空機飛行位置検出装置の構成図、図8は請求
項3の発明に係る航空機飛行位置検出装置の構成図、図
9は請求項5の発明に係る航空機飛行位置検出装置の構
成図、図10は音の到来する方位角をピクセル化した
図、図11は電波の到来する方位角をピクセル化した
図、図12はある音の到来する方位角をピクセル化した
図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a configuration diagram of an aircraft flight position detection device according to the first aspect of the invention, FIG. 2 is a configuration diagram of a sound wave type azimuth and elevation angle identification device, FIG. 3 is an explanatory diagram showing an arrangement of microphones, and FIG. FIG. 5 is an explanatory view showing the arrangement of antennas, FIG. 6 is a view showing a difference in change in azimuth angle between radio waves and sound, and FIG. 7 is an aircraft flight position according to the invention of claim 1. FIG. 8 is a configuration diagram of an aircraft flight position detection device according to the third aspect of the present invention, FIG. 9 is a configuration diagram of an aircraft flight position detection device according to the fifth aspect of the invention, and FIG. FIG. 11 is a diagram in which the azimuth at which a radio wave arrives is pixelated, and FIG. 12 is a diagram in which the azimuth at which a certain sound arrives is pixelated.

【0013】請求項1の航空機飛行位置検出装置は、図
1に示すように、航空機の発する音を検出して航空機の
方位に応じた方位角信号αmと航空機の仰角に応じた仰
角信号βmを出力する音波式方位角及び仰角識別装置1
と、航空機の発する電波を検出して航空機の方位に応じ
た方位角信号αaを出力する電波式方位識別装置2と、
音波式方位角及び仰角識別装置1の方位角信号αmと電
波式方位識別装置2の方位角信号αaとの時間差tdを
出力する時間差検出部3と、時間差tdが所定時間以上
同一値を継続した場合には音源と電波源が同一であると
判定する判定部4と、時間差tdに音速を乗じて観測点
と航空機との距離Lを算出すると共に音による方位角信
号αm及び仰角信号βmから航空機の位置を演算する飛
行位置演算部5とからなる。
As shown in FIG. 1, the aircraft flight position detecting device of the first aspect detects a sound emitted from an aircraft and generates an azimuth signal αm corresponding to the azimuth of the aircraft and an elevation signal βm corresponding to the elevation of the aircraft. Output sound wave type azimuth and elevation angle identification device 1
A radio wave direction identification device 2 that detects a radio wave emitted by the aircraft and outputs an azimuth signal αa corresponding to the direction of the aircraft,
The time difference detector 3 that outputs the time difference td between the azimuth signal αm of the sound wave type azimuth and elevation angle identification device 1 and the azimuth signal αa of the radio wave type azimuth identification device 2, and the time difference td has kept the same value for a predetermined time or more. In this case, the determination unit 4 determines that the sound source and the radio wave source are the same, calculates the distance L between the observation point and the aircraft by multiplying the time difference td by the speed of sound, and calculates the aircraft L from the azimuth signal αm and the elevation signal βm by sound. And a flight position calculation unit 5 for calculating the position of.

【0014】音波式方位角及び仰角識別装置1は、図2
に示すように、4個の無指向性マイクロホンM1,M
2,M3,M4と、マイクロホンM1の出力信号とマイ
クロホンM2の出力信号の相関関数を算出する相関演算
部E1と、マイクロホンM1の出力信号とマイクロホン
M3の出力信号の相関関数を算出する相関演算部E2
と、マイクロホンM1の出力信号とマイクロホンM4の
出力信号の相関関数を算出する相関演算部E3と、マイ
クロホンM1の出力信号に対するマイクロホンM2の出
力信号の遅れ時間τxを求める遅延検出部D1と、マイ
クロホンM1の出力信号に対するマイクロホンM3の出
力信号の遅れ時間τyを求める遅延検出部D2と、マイ
クロホンM1の出力信号に対するマイクロホンM4の出
力信号の遅れ時間τzを求める遅延検出部D3と、遅れ
時間τx,τy,τzから航空機の方位角αm及び仰角
βmを算出する方位角仰角演算部P1からなる。
The sound wave type azimuth and elevation angle discriminating apparatus 1 is shown in FIG.
, Four omnidirectional microphones M1, M
2, M3, M4, a correlation calculator E1 for calculating a correlation function between the output signal of the microphone M1 and the output signal of the microphone M2, and a correlation calculator for calculating a correlation function between the output signal of the microphone M1 and the output signal of the microphone M3. E2
A correlation operation unit E3 that calculates a correlation function between the output signal of the microphone M1 and the output signal of the microphone M4; a delay detection unit D1 that calculates a delay time τx of the output signal of the microphone M2 with respect to the output signal of the microphone M1; A delay detection unit D2 for obtaining a delay time τy of the output signal of the microphone M3 with respect to the output signal of the microphone M3, a delay detection unit D3 for obtaining a delay time τz of the output signal of the microphone M4 with respect to the output signal of the microphone M1, and delay times τx, τy, An azimuth / elevation angle calculation unit P1 calculates the azimuth angle αm and the elevation angle βm of the aircraft from τz.

【0015】4個の無指向性マイクロホンM1,M2,
M3,M4は、図3に示すように、マイクロホンM1と
マイクロホンM2を結ぶ直線と、マイクロホンM1とマ
イクロホンM3を結ぶ直線と、マイクロホンM1とマイ
クロホンM4を結ぶ直線とが互いに直交するように配置
される。
Four omnidirectional microphones M1, M2,
As shown in FIG. 3, M3 and M4 are arranged such that a straight line connecting the microphone M1 and the microphone M2, a straight line connecting the microphone M1 and the microphone M3, and a straight line connecting the microphone M1 and the microphone M4 are orthogonal to each other. .

【0016】また、マイクロホンM1とマイクロホンM
2の距離、マイクロホンM1とマイクロホンM3の距
離、マイクロホンM1とマイクロホンM4の距離は、夫
々1mとする。なお、前記距離は、必ずしも1mである
必要はない。要は、マイクロホンM1からマイクロホン
M2を見る方向(M1・M2方向)からの音がマイクロ
ホンM1とマイクロホンM2とに同時に到達しなければ
よく、またマイクロホンM1からマイクロホンM3を見
る方向(M1・M3方向)からの音がマイクロホンM1
とマイクロホンM3とに同時に到達しなければよく、ま
たマイクロホンM1からマイクロホンM4を見る方向
(M1・M4方向)からの音がマイクロホンM1とマイ
クロホンM4とに同時に到達しなければよいからであ
る。また、M1・M4方向を垂直方向に合せ、更に方位
の検出を絶対的な方角で行う場合には、M1・M2方向
又はM1・M3方向を東西南北のいずれかの方角に合せ
ればよい。
The microphone M1 and the microphone M
2, the distance between the microphone M1 and the microphone M3, and the distance between the microphone M1 and the microphone M4 are each 1 m. In addition, the said distance does not necessarily need to be 1 m. In short, it is only necessary that sound from the direction in which the microphone M1 looks at the microphone M2 (M1 direction and M2 direction) does not reach the microphones M1 and M2 at the same time, and the direction in which the microphone M1 looks at the microphone M3 (M1 direction and M3 direction). Sound from microphone M1
This is because it is only necessary that the sound from the direction in which the microphone M1 looks at the microphone M4 (M1 and M4 directions) does not reach the microphone M1 and the microphone M4 at the same time. When the M1 and M4 directions are aligned in the vertical direction and the azimuth is detected in an absolute direction, the M1 and M2 directions or the M1 and M3 directions may be adjusted to any one of north, south, east and west.

【0017】例えば、M1・M2方向を0°、M1・M
3方向を90°とすると、マイクロホンM1,M2,M
3で捕えた音の音源である航空機の方位角αmは、方位
角仰角演算部P1により以下のように求められる。
For example, the M1 · M2 direction is 0 °, the M1 · M
If the three directions are 90 °, the microphones M1, M2, M
The azimuth αm of the aircraft, which is the sound source of the sound captured in Step 3, is obtained by the azimuth elevation calculator P1 as follows.

【0018】τx≧0かつτy≧0の場合には、αm=
tan-1(τy÷τx)〔ラジアン〕となる。
When τx ≧ 0 and τy ≧ 0, αm =
tan -1 (τy ÷ τx) [radian].

【0019】τx<0の場合には、αm=π+tan-1
(τy÷τx)〔ラジアン〕となる。
When τx <0, αm = π + tan −1
(Τy ÷ τx) [radian].

【0020】τx≧0かつτy<0の場合には、αm=
2π+tan-1(τy÷τx)〔ラジアン〕となる。
When τx ≧ 0 and τy <0, αm =
2π + tan −1 (τy ÷ τx) [radian].

【0021】また、マイクロホンM1,M2,M3,M
4で捕えた音の音源である航空機の仰角βmは、方位角
仰角演算部P1により以下のように求められる。
The microphones M1, M2, M3, M
The elevation angle βm of the aircraft, which is the sound source of the sound captured in step 4, is obtained by the azimuth elevation angle calculation unit P1 as follows.

【0022】[0022]

【数1】 (Equation 1)

【0023】次に、電波式方位識別装置2は、図4に示
すように、3個の垂直アンテナ(水平面内で無指向性)
A1,A2,A3と、垂直アンテナA1,A2,A3の
出力信号を増幅する増幅部A4,A5,A6と、増幅部
A4の出力信号と増幅部A5の出力信号との位相を比較
して±180°(±πラジアン)の位相差を±eVの電
圧に変換する位相比較部C1と、増幅部A4の出力信号
と増幅部A6の出力信号との位相を比較して±180°
(±πラジアン)の位相差を±eVの電圧に変換する位
相比較部C2と、位相比較部C1,C2の出力信号を平
均してスパイクノイズ等の高周波ノイズを除去するロー
パスフィルタF1,F2と、ローパスフィルタF1の出
力信号をデジタルコードAxに変換するA/D変換器A
7と、ローパスフィルタF2の出力信号の符号を得る電
圧比較部A8と、デジタルコードAxと符号から航空機
の方位角αaを算出する方位角演算部P2からなる。
Next, as shown in FIG. 4, the radio wave direction identification device 2 has three vertical antennas (omnidirectional in a horizontal plane).
A1, A2, and A3, amplification sections A4, A5, and A6 that amplify output signals of the vertical antennas A1, A2, and A3, and phase comparison between the output signal of the amplification section A4 and the output signal of the amplification section A5. A phase comparison unit C1 for converting a phase difference of 180 ° (± π radian) into a voltage of ± eV, and a phase of an output signal of the amplification unit A4 and a phase of an output signal of the amplification unit A6 are compared to be ± 180 °.
A phase comparison unit C2 for converting a phase difference of (± π radians) into a voltage of ± eV; low-pass filters F1 and F2 for averaging output signals of the phase comparison units C1 and C2 to remove high-frequency noise such as spike noise; A / D converter A for converting the output signal of low-pass filter F1 to digital code Ax
7, a voltage comparison unit A8 for obtaining the sign of the output signal of the low-pass filter F2, and an azimuth calculation unit P2 for calculating the azimuth αa of the aircraft from the digital code Ax and the sign.

【0024】電波式方位識別装置2が検出する航空機の
発する電波として本発明の実施の形態においては、二次
監視レーダ(SSR)の応答電波(周波数1090MH
z)を利用する。但し、航空機の発する電波としてSS
Rの応答電波に限定されるものではない。
In the embodiment of the present invention, a response radio wave (frequency: 1090 MHz) of the secondary surveillance radar (SSR) is detected as a radio wave emitted by the aircraft detected by the radio wave direction identification device 2.
z) is used. However, the radio wave emitted by the aircraft is SS
It is not limited to the response radio wave of R.

【0025】3個の垂直アンテナ(水平面内で無指向
性)A1,A2,A3は、図5に示すように、アンテナ
A1とアンテナA2を結ぶ直線と、アンテナA1とアン
テナA3を結ぶ直線が直交するように配置される。ま
た、アンテナA1とアンテナA2、アンテナA1とアン
テナA3の間隔は夫々13.8cm(SSRの応答周波
数1090MHzの電波の1/2波長)とする。更に、
方位の検出を絶対的な方角で行う場合には、アンテナA
1とアンテナA2を結ぶ方向又はアンテナA1とアンテ
ナA3を結ぶ方向を東西南北のいずれかの方角に合せれ
ばよい。
As shown in FIG. 5, the three vertical antennas (omnidirectional in a horizontal plane) A1, A2, and A3 are orthogonal to a straight line connecting the antennas A1 and A2 and a straight line connecting the antennas A1 and A3. It is arranged to be. The distance between the antenna A1 and the antenna A2 and the distance between the antenna A1 and the antenna A3 are each 13.8 cm ((wavelength of the SSR response frequency of 1090 MHz). Furthermore,
When the azimuth is detected in an absolute direction, the antenna A
The direction connecting the antenna 1 to the antenna A2 or the direction connecting the antenna A1 to the antenna A3 may be adjusted to any one of north, south, east and west.

【0026】例えば、アンテナA1とアンテナA2を結
ぶ方向を0°、アンテナA1とアンテナA3を結ぶ方向
を90°とすると、アンテナA1,A2,A3で捕えた
電波の発信源である航空機の方位角αaは、方位角演算
部P2により以下のように求められる。
For example, assuming that the direction connecting antennas A1 and A2 is 0 ° and the direction connecting antennas A1 and A3 is 90 °, the azimuth angle of the aircraft that is the source of radio waves captured by antennas A1, A2 and A3 αa is obtained by the azimuth angle calculation unit P2 as follows.

【0027】電圧比較部A8の符号が正の場合には、α
a=cos-1(Ax)〔ラジアン〕となる。
When the sign of the voltage comparison unit A8 is positive, α
a = cos -1 (Ax) [radian].

【0028】電圧比較部A8の符号が負の場合には、α
a=2π−cos-1(Ax)〔ラジアン〕となる。
When the sign of the voltage comparison unit A8 is negative, α
a = 2π-cos -1 (Ax) [radian].

【0029】以上のように構成された請求項1の航空機
飛行位置検出装置の動作について説明する。飛行する航
空機が発する音及び電波に対し、時間的に変化する音の
到来する方位角αmを音波式方位角及び仰角識別装置1
により検出し、時間的に変化する電波の到来する方位角
αaを電波式方位識別装置2により検出する。
The operation of the aircraft flight position detecting device according to claim 1 configured as described above will be described. For sound and radio waves emitted by a flying aircraft, an azimuth αm at which a time-varying sound arrives is determined by a sound wave type azimuth and elevation angle identification device 1.
And the azimuth αa at which the time-varying radio wave arrives is detected by the radio wave direction identification device 2.

【0030】次いで、図6に示すように、各識別装置
1,2により検出した時間的に変化する方位角αmと時
間的に変化する方位角αaを時間差検出部3に入力す
る。すると、時間差検出部3では、音波による方位角α
mと電波による方位角αaの時間差tdを算出する。そ
して、時間差tdが所定時間以上同一値を継続した場合
には、判定部4が音源と電波源が同一、即ち音波式方位
角及び仰角識別装置1により測定され音が航空機の騒音
であると判定する。
Next, as shown in FIG. 6, the time-varying azimuth αm and the time-varying azimuth αa detected by the discriminating devices 1 and 2 are input to the time difference detecting unit 3. Then, in the time difference detection unit 3, the azimuth α due to the sound wave
The time difference td between m and the azimuth αa by radio waves is calculated. When the time difference td continues to be the same value for a predetermined time or more, the determination unit 4 determines that the sound source and the radio wave source are the same, that is, the sound is measured by the sound wave azimuth and elevation angle identification device 1 and the sound is aircraft noise. I do.

【0031】そして、飛行位置演算部5において、時間
差tdに音速を乗じて観測点と航空機との距離Lを算出
すると共に、音による方位角αm及び仰角βmから航空
機の位置を演算する。
Then, the flight position calculation unit 5 calculates the distance L between the observation point and the aircraft by multiplying the time difference td by the speed of sound, and calculates the position of the aircraft from the azimuth αm and the elevation βm based on the sound.

【0032】このように、飛行する航空機が発する音の
到来する方位角αmの時間的変化と、SSRの電波が到
来する方位角αaの時間的変化を比較することによる航
空機騒音の識別を前提として、音波による方位角αmと
電波による方位角αaの時間差tdに音速を乗じて算出
した観測点と航空機との距離Lと、音による方位角αm
及び仰角βmから航空機の位置を特定することができ
る。また、時々刻々変化する観測点と航空機との距離
L、航空機の方位角αm及び仰角βmをつなぎ合せれば
航空機の航路を求めることもできる。
As described above, it is assumed that the aircraft noise is identified by comparing the temporal change of the azimuth αm at which the sound emitted from the flying aircraft arrives with the temporal change of the azimuth αa at which the SSR radio wave arrives. , The distance L between the observation point and the aircraft calculated by multiplying the time difference td between the azimuth αm by the sound wave and the azimuth αa by the radio wave by the speed of sound, and the azimuth αm by the sound
And the elevation angle βm, the position of the aircraft can be specified. Further, by connecting the distance L between the observation point and the aircraft, which changes every moment, the azimuth angle αm and the elevation angle βm of the aircraft, the route of the aircraft can be obtained.

【0033】請求項2の航空機飛行位置検出装置は、図
7に示すように、航空機の発する音を検出して航空機の
方位に応じた方位角信号αmを出力する音波式方位角識
別装置6と、航空機の発する電波を検出して航空機の方
位に応じた方位角信号αaと航空機の仰角に応じた仰角
信号βaを出力する電波式方位角及び仰角識別装置7
と、音波式方位角識別装置6による方位角信号αmと電
波式方位角及び仰角識別装置7による方位角信号αaと
の時間差tdを出力する時間差検出部8と、時間差td
が所定時間以上同一値を継続した場合には音源と電波源
が同一であると判定する判定部9と、時間差tdに音速
を乗じて観測点と航空機との距離Lを算出すると共に電
波による方位角信号αa及び仰角信号βaから航空機の
位置を演算する飛行位置演算部10とからなる。
As shown in FIG. 7, the aircraft flight position detecting device according to the second aspect includes a sound wave type azimuth discriminating device 6 which detects a sound emitted from the aircraft and outputs an azimuth signal αm corresponding to the azimuth of the aircraft. A radio wave type azimuth and elevation identification device 7 for detecting radio waves emitted by an aircraft and outputting an azimuth signal αa according to the azimuth of the aircraft and an elevation signal βa according to the elevation of the aircraft 7
A time difference detector 8 for outputting a time difference td between the azimuth signal αm from the sound wave type azimuth discriminating device 6 and the azimuth signal αa from the radio wave azimuth and elevation angle discriminating device 7;
If the same value continues for a predetermined time or more, the determination unit 9 determines that the sound source and the radio wave source are the same, calculates the distance L between the observation point and the aircraft by multiplying the time difference td by the sound speed, and calculates the azimuth by the radio wave. A flight position calculation unit 10 for calculating the position of the aircraft from the angle signal αa and the elevation signal βa.

【0034】ここで、請求項2の航空機飛行位置検出装
置は、図1に示す航空機飛行位置検出装置において、音
波式方位角及び仰角識別装置1の替わりにマイクロホン
を3個使用し航空機の発する音を検出して航空機の方位
角αmを求める音波式方位角識別装置6を設け、電波式
方位角識別装置2の替わりにアンテナを4個使用し航空
機の発する電波を検出して航空機の方位角αa及び仰角
βaを求める電波式方位角及び仰角識別装置7を設けた
以外は、請求項1の航空機飛行位置検出装置と同様の構
成である。
The aircraft flight position detecting device according to the second aspect of the present invention is the aircraft flight position detecting device shown in FIG. 1, in which three microphones are used instead of the sound wave type azimuth and elevation angle discriminating device 1, and the sound emitted by the aircraft is used. Azimuth identification device 6 for detecting the azimuth αm of the aircraft by detecting the azimuth angle αm of the aircraft, using four antennas instead of the radio wave azimuth identification device 2 to detect the radio waves emitted by the aircraft and to determine the azimuth αa of the aircraft The configuration is the same as that of the aircraft flight position detecting device of claim 1 except that a radio wave type azimuth and elevation angle discriminating device 7 for obtaining the elevation angle βa is provided.

【0035】また、音波式方位角識別装置6による方位
角αmの算出方法、電波式方位角及び仰角識別装置7に
よる方位角αa及び仰角βaの算出方法は、夫々音波式
方位角及び仰角識別装置1又は電波式方位角識別装置2
による算出方法に準じて行われるので、説明は省略す
る。
The method of calculating the azimuth αm by the sound wave type azimuth discriminating device 6 and the method of calculating the azimuth αa and the angle of elevation βa by the radio wave type azimuth and elevation angle discriminating device 7 are described below. 1 or radio wave type azimuth identification device 2
Since the calculation is performed in accordance with the calculation method according to, the description is omitted.

【0036】請求項3の航空機飛行位置検出装置は、図
8に示すように、航空機の発する音を検出して航空機の
方位に応じた方位角信号αmと航空機の仰角に応じた仰
角信号βmを出力する音波式方位角及び仰角識別装置1
1と、航空機の発する電波を検出して航空機の方位に応
じた方位角信号αaを出力する電波式方位角識別装置1
2と、音波式方位角及び仰角識別装置11による方位角
信号αmと電波式方位角識別装置12による方位角信号
αaとの相互相関関数を演算する相互相関関数演算部1
3と、相互相関関数の最大値が同じ位置で所定以上の値
を持つ場合には音源と電波源が同一であると判定する判
定部14と、相互相関関数の最大値を与える電波の方位
角信号αaに対する音の方位角信号αmの遅れ時間に音
速を乗じて観測点と航空機との距離Lを算出すると共に
音による方位角信号αm及び仰角信号βmから航空機の
位置を演算する飛行位置演算部15とからなる。
As shown in FIG. 8, the aircraft flight position detecting device according to the third aspect detects a sound emitted from the aircraft and generates an azimuth signal αm corresponding to the azimuth of the aircraft and an elevation signal βm corresponding to the elevation of the aircraft. Output sound wave type azimuth and elevation angle identification device 1
1 and a radio wave type azimuth discriminating apparatus 1 which detects a radio wave emitted from an aircraft and outputs an azimuth signal αa corresponding to the azimuth of the aircraft.
2, a cross-correlation function calculator 1 for calculating a cross-correlation function between the azimuth signal αm from the sound wave type azimuth and elevation angle discrimination device 11 and the azimuth signal αa from the radio wave type azimuth angle discrimination device 12.
3, when the maximum value of the cross-correlation function is equal to or more than a predetermined value at the same position, a determination unit 14 that determines that the sound source and the radio wave source are the same, and the azimuth of the radio wave that gives the maximum value of the cross-correlation function A flight position calculation unit that calculates the distance L between the observation point and the aircraft by multiplying the delay time of the sound azimuth signal αm with respect to the signal αa by the speed of sound, and calculates the position of the aircraft from the sound azimuth signal αm and the elevation signal βm. 15

【0037】なお、音波式方位角及び仰角識別装置11
と電波式方位角識別装置12は、請求項1の航空機飛行
位置検出装置における音波式方位角及び仰角識別装置1
と電波式方位角識別装置2と同様の構成であるので、説
明は省略する。
The sound wave type azimuth and elevation angle discriminating device 11
And the radio wave type azimuth discriminating device 12 is a sound wave type azimuth and elevation discriminating device 1 in the aircraft flight position detecting device according to claim 1.
Since the configuration is the same as that of the radio wave type azimuth discriminating apparatus 2, the description is omitted.

【0038】以上のように構成された請求項3の航空機
飛行位置検出装置の動作について説明する。相互相関関
数演算部13は、音波式方位角及び仰角識別装置11に
より検出した音波による方位角αmと、電波式方位角識
別装置12により検出した電波による方位角αaについ
て、時系列データ同士の相互相関関数を算出する。
The operation of the above-configured aircraft flight position detecting device according to claim 3 will be described. The cross-correlation function calculation unit 13 determines the azimuth αm of the sound wave detected by the sound wave type azimuth and elevation angle discrimination device 11 and the azimuth αa of the radio wave detected by the radio wave type azimuth discrimination device 12 to determine the mutual relationship between the time-series data. Calculate the correlation function.

【0039】音の到来する方位角αmは、図6に示すよ
うに、電波の到来する方位角αaに対し一定の時間だけ
遅れ、ほぼ同様に変化する。しかし、実際にはいずれの
測定データ(方位角αm,αa)にも誤差やノイズが含
まれているので、そのままの状態で互いの測定データの
相関関係を求めるのは容易でない。そこで、測定データ
に統計的手法を施して相互相関関数を求めれば、航空機
の通過に伴う事象の場合には互いの変化について大きな
相関の値を示し、誤差やノイズは無相関のため除去され
ることになる。
As shown in FIG. 6, the azimuth αm at which the sound arrives is delayed by a certain time with respect to the azimuth αa at which the radio wave arrives, and changes substantially similarly. However, since any measurement data (azimuths αm, αa) actually contains errors and noises, it is not easy to obtain the correlation between the measurement data as it is. Therefore, if a cross-correlation function is obtained by applying a statistical method to the measurement data, in the case of an event accompanying the passage of an aircraft, a large correlation value is shown for each change, and errors and noise are removed because there is no correlation. Will be.

【0040】次いで、判定部14は、相互相関関数演算
部13で算出した相互相関関数の最大値と予め設定して
ある閾値とを比較して、相互相関関数の最大値が閾値以
上の値であれば、音源と電波源が同一、即ち音波式方位
識別装置5により測定され音が航空機の騒音であると判
定する。
Next, the judgment section 14 compares the maximum value of the cross-correlation function calculated by the cross-correlation function operation section 13 with a preset threshold value, and determines that the maximum value of the cross-correlation function is equal to or larger than the threshold value. If there is, the sound source and the radio wave source are the same, that is, it is determined that the sound measured by the sound wave direction identification device 5 is the aircraft noise.

【0041】更に、飛行位置演算部15は、相互相関関
数演算部13で算出した相互相関関数の最大値を与える
方位角αaに対する方位角αmの遅れ時間が方位角αa
と方位角αmの時間差に相当するので、この時間差に音
速を乗じて観測点と航空機との距離Lを算出すると共
に、音による方位角αm及び仰角βmから航空機の位置
を演算する。
Further, the flight position calculator 15 calculates the delay time of the azimuth αm with respect to the azimuth αa giving the maximum value of the cross-correlation function calculated by the cross-correlation function calculator 13.
Therefore, the distance L between the observation point and the aircraft is calculated by multiplying the time difference by the speed of sound, and the position of the aircraft is calculated from the azimuth αm and the elevation angle βm based on the sound.

【0042】このように、飛行する航空機が発する音の
到来する方位角αmとSSRの電波が到来する方位角α
aの相互相関関数の最大値を算出して航空機騒音の識別
を前提として、音波による方位角αmと電波による方位
角αaの時間差に音速を乗じて算出した観測点と航空機
との距離Lと、音による方位角αm及び仰角βmから航
空機の位置を特定することができる。また、時々刻々変
化する観測点と航空機との距離L、航空機の方位角αm
及び仰角βmをつなぎ合せれば航空機の航路を求めるこ
ともできる。
Thus, the azimuth αm at which the sound from the flying aircraft arrives and the azimuth α at which the SSR radio wave arrives
The distance L between the observation point and the aircraft calculated by multiplying the time difference between the azimuth angle αm by the sound wave and the azimuth angle αa by the radio wave by the speed of sound, assuming the maximum value of the cross-correlation function of a and the aircraft noise identification, The position of the aircraft can be specified from the azimuth angle αm and the elevation angle βm based on the sound. In addition, the distance L between the observation point and the aircraft, which changes every moment, the azimuth αm of the aircraft
And the elevation angle βm, the route of the aircraft can be determined.

【0043】請求項4の航空機飛行位置検出装置は、図
8に示す航空機飛行位置検出装置において、音波式方位
角及び仰角識別装置11の替わりにマイクロホンを3個
使用し航空機の発する音を検出して航空機の方位角αm
を求める音波式方位角識別装置を設け、電波式方位角識
別装置12の替わりにアンテナを4個使用し航空機の発
する電波を検出して航空機の方位角αa及び仰角βaを
求める電波式方位角及び仰角識別装置を設けた以外は、
請求項3の航空機飛行位置検出装置と同様の構成であ
る。従って、説明は省略する。
According to a fourth aspect of the present invention, there is provided an aircraft flight position detecting device as shown in FIG. 8, wherein three microphones are used in place of the sound wave type azimuth and elevation angle discriminating device 11 to detect sound emitted from the aircraft. The aircraft's azimuth αm
Is provided, and instead of the radio wave azimuth identification device 12, four antennas are used to detect radio waves emitted by the aircraft to obtain the azimuth αa and the elevation angle βa of the aircraft. Except for the elevation identification device,
The configuration is the same as that of the aircraft flight position detecting device of the third aspect. Therefore, description is omitted.

【0044】また、請求項4の航空機飛行位置検出装置
における音波式方位角識別装置と電波式方位角及び仰角
識別装置は、夫々図7に示す音波式方位角識別装置6と
電波式方位角及び仰角識別装置7と同様の構成である。
従って、説明は省略する。
The sound wave type azimuth discriminating device and the radio wave type azimuth and elevation angle discriminating device in the aircraft flight position detecting device according to the fourth aspect of the present invention are the sound wave type azimuth discriminating device 6 shown in FIG. The configuration is the same as that of the elevation angle identification device 7.
Therefore, description is omitted.

【0045】請求項5の航空機飛行位置検出装置は、図
9に示すように、航空機の発する音を検出して航空機の
方位に応じた方位角信号αmと航空機の仰角に応じた仰
角信号βmを出力する音波式方位角及び仰角識別装置1
6と、航空機の発する電波を検出して航空機の方位に応
じた方位角信号αaを出力する電波式方位角識別装置1
7と、音波式方位角及び仰角識別装置16による方位角
信号αm及び電波式方位角識別装置17による方位角信
号αaを時間と方位角の2次元の線画として扱い、この
2種の線画の類似度をパターンマッチングにより評価す
るパターンマッチング装置18と、このパターンマッチ
ング装置18による相互相関関数の最大値を与える電波
の方位角信号αaに対する音の方位角信号αmの遅れ時
間に音速を乗じて観測点と航空機との距離Lを算出する
と共に音による方位角信号αm及び仰角信号βmから航
空機の位置を演算する飛行位置演算部19とからなる。
As shown in FIG. 9, the aircraft flight position detecting device detects a sound emitted from the aircraft and generates an azimuth signal αm corresponding to the azimuth of the aircraft and an elevation signal βm corresponding to the elevation of the aircraft. Output sound wave type azimuth and elevation angle identification device 1
6 and a radio wave type azimuth discriminating apparatus 1 which detects radio waves emitted from an aircraft and outputs an azimuth signal αa corresponding to the azimuth of the aircraft.
7 and the azimuth signal αm from the sound wave type azimuth and elevation angle discriminating device 16 and the azimuth signal αa from the radio wave type azimuth discriminating device 17 are treated as a two-dimensional line drawing of time and azimuth angle. A pattern matching device 18 for evaluating the degree by pattern matching, and an observation point obtained by multiplying the delay time of the sound azimuth signal αm with respect to the radio wave azimuth signal αa giving the maximum value of the cross-correlation function by the pattern matching device 18 by the speed of sound. And a flight position calculation unit 19 that calculates the distance L between the aircraft and the aircraft and calculates the position of the aircraft from the azimuth signal αm and the elevation signal βm based on sound.

【0046】なお、音波式方位角及び仰角識別装置16
と電波式方位角識別装置17は、請求項1の航空機飛行
位置検出装置における音波式方位角及び仰角識別装置1
と電波式方位角識別装置2と同様の構成であるので、説
明は省略する。
The sound wave type azimuth and elevation angle discrimination device 16
And the radio wave type azimuth discriminating device 17 is a sound wave type azimuth and elevation discriminating device 1 in the aircraft flight position detecting device according to claim 1.
Since the configuration is the same as that of the radio wave type azimuth discriminating apparatus 2, the description is omitted.

【0047】パターンマッチング装置18は、ピクセル
化部20と、相互相関関数演算部21と、判定部22か
らなる。以上のように構成された請求項5の航空機飛行
位置検出装置の動作について説明する。ピクセル化部2
0は、図6に示すような時々刻々音波式方位角及び仰角
識別装置16により測定される方位角αmと電波式方位
角識別装置17により測定される方位角αaを、時刻情
報と共に記録する。例えば、記録の時間間隔は1秒毎、
方位角は2°(π/90ラジアン)毎に設けた180の
記憶領域のなかで、図10及び図11に示すように、測
定された方位角αm,αaに相当する一つの領域を
「1」(図中黒色の部分)とし、他の領域は「0」(図
中白色の部分)として記録する。図10及び図11にお
いて、縦線の間隔は1秒に相当し、横線の間隔は方位角
2°(π/90ラジアン)に相当する。
The pattern matching device 18 includes a pixelizing section 20, a cross-correlation function calculating section 21, and a determining section 22. The operation of the aircraft flight position detecting device according to claim 5 configured as described above will be described. Pixelization unit 2
0 records the azimuth αm measured by the sound wave azimuth and elevation angle identification device 16 and the azimuth αa measured by the radio wave azimuth identification device 17 together with time information as shown in FIG. For example, the recording time interval is every second,
As shown in FIG. 10 and FIG. 11, one of the 180 storage areas provided at every 2 ° (π / 90 radians) corresponds to the measured azimuth αm, αa. (A black part in the figure) and other areas are recorded as “0” (a white part in the figure). 10 and 11, the interval between the vertical lines corresponds to 1 second, and the interval between the horizontal lines corresponds to an azimuth angle of 2 ° (π / 90 radians).

【0048】このように、方位角2°毎に設けた180
の記憶領域のうちのいずれか一つの記憶領域を代表とし
て「1」とし、他の領域を「0」とし、測定された方位
角αm,αaを2値化して記録することをピクセル化と
いい、図8に示す方位角αmと方位角αaの連続的な曲
線を、図10及び図11に示すような不連続な波形に処
理することに相当する。
As described above, 180 provided at every azimuth angle of 2 °
Pixelization means that any one of the storage areas is set to “1” as a representative, the other area is set to “0”, and the measured azimuths αm and αa are binarized and recorded. 8 corresponds to processing a continuous curve of the azimuth angle αm and the azimuth angle αa into a discontinuous waveform as shown in FIGS. 10 and 11.

【0049】次いで、相互相関関数演算部21は、図1
0に示すピクセル化した方位角αmの不連続な波形と図
11に示すピクセル化した方位角αaの不連続な波形と
がマッチングするか否かの判断材料を得るために、ピク
セル化した方位角αmと方位角αaの相互相関関数φx
y(△t)を計算する。相互相関は、図10に示す一方
の時間軸(方位角αm)を図11に示す他方の時間軸
(方位角αa)に対して、例えば1秒ずつシフトさせて
計算し、最も大きい相関の値を求める。
Next, the cross-correlation function calculator 21 performs the processing shown in FIG.
The pixelized azimuth angle is obtained in order to obtain information on whether or not the discontinuous waveform of the pixelized azimuth angle αm shown in FIG. 11 matches the discontinuous waveform of the pixelated azimuth angle αa shown in FIG. Cross-correlation function φx between αm and azimuth αa
Calculate y (△ t). The cross-correlation is calculated by shifting one time axis (azimuth angle αm) shown in FIG. 10 with respect to the other time axis (azimuth angle αa) shown in FIG. Ask for.

【0050】次いで、判定部22は、相互相関関数演算
部21で求めた相関の値が予め設定されている閾値より
大きい場合に、音源と電波源が同一であると判定する。
相互相関関数演算部21で求めた相関の値は、異なる母
集団の数値の変化の類似度を意味する。電波と音波を比
較すると、電波の方が圧倒的に速く伝播するので電波の
到来する方位角αaの変化の方が早い時期に観測され、
音の到来する方位角αmが後を追いかけるように変化す
る。
Next, when the value of the correlation obtained by the cross-correlation function calculator 21 is larger than a preset threshold value, the judgment unit 22 judges that the sound source and the radio wave source are the same.
The value of the correlation obtained by the cross-correlation function calculation unit 21 means the similarity of the change in the numerical value of different populations. When comparing radio waves and sound waves, the change in the azimuth αa at which the radio waves arrive is observed earlier, since radio waves propagate overwhelmingly faster,
The azimuth αm at which the sound arrives changes so as to follow.

【0051】図10及び図11に示す方位角αmと方位
角αaの場合は、音の方位角αmの時間軸を2秒進むよ
うにシフトした時に相関の値が最大値「1」を得る。そ
こで、判定部22において設定する閾値を、例えば0.
8にしておけば音源と電波源が同一、即ち音波式方位角
及び仰角識別装置16により測定され音が航空機の騒音
であると判定される。
In the case of the azimuth αm and the azimuth αa shown in FIGS. 10 and 11, when the time axis of the sound azimuth αm is shifted so as to advance 2 seconds, the maximum value of the correlation is “1”. Therefore, the threshold value set in the determination unit 22 is set to, for example, 0.
If it is set to 8, the sound source and the radio wave source are the same, that is, measured by the sound wave type azimuth and elevation angle discrimination device 16, and the sound is determined to be aircraft noise.

【0052】また、音波式方位角及び仰角識別装置16
により測定され音の方位角として、図12に示すような
波形が得られた場合に、図11に示す方位角αaとの相
関の最大値は、0.05となり、判定部22において予
め設定しておく閾値を、例えば0.8にしておけば音源
と電波源が同一せず、音波式方位角及び仰角識別装置1
6により測定され音が航空機の騒音であると判定されな
い。
The sound wave type azimuth and elevation angle discriminating device 16
When the waveform as shown in FIG. 12 is obtained as the azimuth angle of the sound measured by the following formula, the maximum value of the correlation with the azimuth angle αa shown in FIG. If the threshold value is set to, for example, 0.8, the sound source and the radio wave source are not the same, and the sound wave type azimuth angle and elevation angle identification device 1
6, the sound is not determined to be aircraft noise.

【0053】音波式方位角及び仰角識別装置16及び電
波式方位角識別装置17の出力信号を、時間と方位角α
m,αaによる2次元の線画として扱い、この2種の線
画の類似度を2次元の相互相関を計算して最大の相関の
値を求めるパターンマッチングにより評価するため、測
定データの誤差やノイズは打ち消し合い、遅れ時間を明
確に計測でき、航空機による騒音か否かの識別が容易に
できる。特に、方位角αm,αaが緩やかに変化する場
合には、相関関数も緩やかに変動し、相関関数から特徴
をつかみ難いので、パターンマッチングは有効である。
The output signals of the sound wave type azimuth / elevation angle discriminating device 16 and the radio wave type azimuth angle discriminating device 17 are converted into time and azimuth angle α.
m and αa are treated as two-dimensional line drawings, and the similarity between these two types of line drawings is evaluated by pattern matching for calculating the two-dimensional cross-correlation and obtaining the maximum correlation value. The cancellation and the delay time can be clearly measured, and it is easy to determine whether the noise is caused by an aircraft. In particular, when the azimuths αm and αa change slowly, the correlation function also changes slowly, and it is difficult to grasp features from the correlation function, so pattern matching is effective.

【0054】更に、飛行位置演算部19は、音波による
方位角αmと電波による方位角αaの時間差に音速を乗
じて観測点と航空機との距離Lを求めると共に、音によ
る方位角αm及び仰角βmから航空機の位置を演算す
る。
Further, the flight position calculation unit 19 determines the distance L between the observation point and the aircraft by multiplying the time difference between the azimuth angle αm by the sound wave and the azimuth angle αa by the radio wave by the sound speed, and also obtains the azimuth angle αm by sound and the elevation angle βm. From the position of the aircraft.

【0055】このように、音の方位角信号αmと電波の
方位角信号αaとのパターンマッチングによる航空機騒
音の識別を前提として、音波による方位角αmと電波に
よる方位角αaの時間差に音速を乗じて算出した観測点
と航空機との距離Lと、音による方位角αm及び仰角β
mから航空機の位置を特定することができる。また、時
々刻々変化する観測点と航空機との距離L、航空機の方
位角αm及び仰角βmをつなぎ合せれば航空機の航路を
求めることもできる。
As described above, the time difference between the azimuth angle αm due to the sound wave and the azimuth angle αa due to the radio wave is multiplied by the sound speed on the assumption that the aircraft noise is identified by pattern matching between the azimuth angle signal αm of the sound and the azimuth angle signal αa of the radio wave. L, the azimuth angle αm and the elevation angle β due to the sound
The position of the aircraft can be specified from m. Further, by connecting the distance L between the observation point and the aircraft, which changes every moment, the azimuth angle αm and the elevation angle βm of the aircraft, the route of the aircraft can be obtained.

【0056】請求項6の航空機飛行位置検出装置は、図
9に示す航空機飛行位置検出装置において、音波式方位
角及び仰角識別装置16の替わりにマイクロホンを3個
使用し航空機の発する音を検出して航空機の方位角αm
を求める音波式方位角識別装置を設け、電波式方位角識
別装置17の替わりにアンテナを4個使用し航空機の発
する電波を検出して航空機の方位角αa及び仰角βaを
求める電波式方位角及び仰角識別装置を設けた以外は、
請求項5の航空機飛行位置検出装置と同様の構成であ
る。従って、説明は省略する。
According to a sixth aspect of the present invention, there is provided an aircraft flight position detecting apparatus as shown in FIG. 9, wherein three microphones are used in place of the sound wave type azimuth and elevation angle discriminating apparatus 16 to detect sounds emitted by the aircraft. The aircraft's azimuth αm
Is provided, and instead of the radio wave azimuth identification device 17, four antennas are used to detect radio waves emitted by the aircraft to obtain the azimuth αa and the elevation βa of the aircraft. Except for the elevation identification device,
The configuration is the same as that of the aircraft flight position detecting device according to claim 5. Therefore, description is omitted.

【0057】なお、請求項6の航空機飛行位置検出装置
における音波式方位角識別装置と電波式方位角及び仰角
識別装置は、夫々図7に示す音波式方位角識別装置6と
電波式方位角及び仰角識別装置7と同様の構成である。
従って、説明は省略する。
The sound wave type azimuth discriminating device and the radio wave type azimuth and elevation angle discriminating device in the aircraft flight position detecting device according to the present invention are the sound wave type azimuth discriminating device 6 shown in FIG. The configuration is the same as that of the elevation angle identification device 7.
Therefore, description is omitted.

【0058】[0058]

【発明の効果】以上説明したように請求項1又は請求項
2の発明によれば、飛行する航空機が発する音の到来す
る方位角の時間的変化と、航空機が発する電波が到来す
る方位角の時間的変化を比較することにより、航空機に
よる騒音か否かの識別が容易にでき、更に音波による方
位角と電波による方位角の時間差に音速を乗じて算出し
た観測点と航空機との距離と、音による方位角及び仰角
から航空機の位置を特定することができる。
As described above, according to the first or second aspect of the present invention, the temporal change of the azimuth at which the sound emitted by the flying aircraft arrives and the azimuth at which the radio wave emitted by the aircraft arrives By comparing the change over time, it is easy to identify whether the noise is caused by the aircraft, and furthermore, the distance between the observation point and the aircraft calculated by multiplying the time difference between the azimuth angle by the sound wave and the azimuth angle by the radio wave by the sound speed, The position of the aircraft can be specified from the azimuth and elevation angle of the sound.

【0059】請求項3又は請求項4の発明によれば、測
定した音の到来する方位角と電波が到来する方位角に統
計的手法を施して相互関係を求めるので、航空機の通過
に伴う事象であれば互いの変化には大きな相関の値を示
し、誤差やノイズは無相関のため除去され、航空機によ
る騒音か否かの安定した識別結果が得られ、更に音波に
よる方位角と電波による方位角の時間差に音速を乗じて
算出した観測点と航空機との距離と、音による方位角及
び仰角から航空機の位置を特定することができる。
According to the third or fourth aspect of the present invention, the azimuth angle at which the measured sound arrives and the azimuth angle at which the radio wave arrives are subjected to a statistical method to determine the correlation therebetween. If this is the case, a large correlation value is shown for each change, errors and noise are removed because they are uncorrelated, and a stable identification result of whether or not the noise is caused by an aircraft is obtained. The position of the aircraft can be specified from the distance between the aircraft and the observation point calculated by multiplying the time difference of the angle by the speed of sound, and the azimuth and elevation angle of the sound.

【0060】請求項5又は請求項6の発明によれば、測
定した音の到来する方位角及び電波が到来する方位角を
2次元の線画として扱い、この2種の線画の類似度をパ
ターンマッチングにより評価するため、2次元の相互相
関を計算して最大の相関の値を求めるので、2次元の相
互相関を計算することによって、誤差やノイズが打ち消
し合い、航空機による騒音か否かの安定した識別結果が
得られ、更に音波による方位角と電波による方位角の時
間差に音速を乗じて算出した観測点と航空機との距離
と、音による方位角及び仰角から航空機の位置を特定す
ることができる。
According to the fifth or sixth aspect of the present invention, the measured azimuth at which the sound arrives and the azimuth at which the radio wave arrives are treated as two-dimensional line drawings, and the similarity between the two types of line drawings is subjected to pattern matching. Calculates the two-dimensional cross-correlation to determine the maximum correlation value, so that by calculating the two-dimensional cross-correlation, errors and noise cancel each other out, and it is stabilized whether the noise is caused by aircraft. The identification result is obtained, and the aircraft position can be specified from the distance between the observation point and the aircraft calculated by multiplying the time difference between the azimuth angle by the sound wave and the azimuth angle by the radio wave by the speed of sound, and the azimuth and elevation angle by the sound. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1の発明に係る航空機飛行位置検出装置
の構成図
FIG. 1 is a configuration diagram of an aircraft flight position detection device according to the invention of claim 1;

【図2】音波式方位及び仰角識別装置の構成図FIG. 2 is a configuration diagram of a sound wave type azimuth and elevation angle discrimination device.

【図3】マイクロホンの配置を示す説明図FIG. 3 is an explanatory diagram showing an arrangement of microphones.

【図4】電波式方位識別装置の構成図FIG. 4 is a configuration diagram of a radio wave direction identification device.

【図5】アンテナの配置を示す説明図FIG. 5 is an explanatory diagram showing the arrangement of antennas.

【図6】電波と音の方位角の変化の違いを示す図FIG. 6 is a diagram showing a difference in change in azimuth angle between radio waves and sound.

【図7】請求項2の発明に係る航空機飛行位置検出装置
の構成図
FIG. 7 is a configuration diagram of an aircraft flight position detection device according to the invention of claim 2;

【図8】請求項3の発明に係る航空機飛行位置検出装置
の構成図
FIG. 8 is a configuration diagram of an aircraft flight position detection device according to the invention of claim 3;

【図9】請求項5の発明に係る航空機飛行位置検出装置
の構成図
FIG. 9 is a configuration diagram of an aircraft flight position detection device according to the invention of claim 5;

【図10】音の到来する方位角をピクセル化した図FIG. 10 is a diagram in which the azimuth angle at which sound arrives is pixelated.

【図11】電波の到来する方位角をピクセル化した図FIG. 11 is a diagram in which the azimuth angle at which a radio wave arrives is pixelated.

【図12】ある音の到来する方位角をピクセル化した図FIG. 12 is a diagram in which the azimuth angle at which a certain sound arrives is pixelated.

【符号の説明】[Explanation of symbols]

1,11,16…音波式方位角及び仰角識別装置、2,
12,17…電波式方位識別装置、3,8…時間差検出
部、4,9,14,22…判定部、5,10,15,1
9…飛行位置演算部、6…音波式方位角識別装置、7…
電波式方位角及び仰角識別装置、13,21…相互相関
関数演算部、18…パターンマッチング装置、20…ピ
クセル化部、A1,A2,A3…垂直アンテナ、M1,
M2,M3,M4…マイクロホン。
1, 11, 16 ... sound wave type azimuth and elevation angle identification device, 2,
12, 17 ... radio wave direction identification device, 3, 8 ... time difference detection unit, 4, 9, 14, 22 ... determination unit, 5, 10, 15, 1
9: Flight position calculation unit, 6: Sound wave type azimuth identification device, 7 ...
Radio wave type azimuth and elevation angle discriminating device, 13, 21: Cross-correlation function calculating unit, 18: Pattern matching device, 20: Pixel forming unit, A1, A2, A3: Vertical antenna, M1,
M2, M3, M4 ... microphones.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牧野 康一 東京都国分寺市東元町3丁目20番41号 財 団法人小林理学研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Koichi Makino 3-20-41 Higashimoto-cho, Kokubunji-shi, Tokyo Inside the Kobayashi Science Research Institute

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 航空機の発する音を検出して航空機の方
位に応じた方位角信号と航空機の仰角に応じた仰角信号
を出力する音波式方位角及び仰角識別手段と、航空機の
発する電波を検出して航空機の方位に応じた方位角信号
を出力する電波式方位角識別手段と、前記音波式方位角
及び仰角識別手段による方位角信号と前記電波式方位角
識別手段による方位角信号との時間差を出力する時間差
検出手段と、前記時間差が所定時間以上同一値を継続し
た場合には音源と電波源が同一であると判定する判定手
段と、前記時間差に音速を乗じて観測点と航空機との距
離を算出すると共に音による前記方位角信号及び仰角信
号から航空機の位置を演算する飛行位置演算手段を備え
たことを特徴とする航空機飛行位置検出装置。
1. A sound wave type azimuth and elevation discriminating means for detecting a sound emitted from an aircraft and outputting an azimuth signal corresponding to the azimuth of the aircraft and an elevation signal according to the elevation of the aircraft, and detecting a radio wave emitted by the aircraft. Radio azimuth identification means for outputting an azimuth signal corresponding to the azimuth of the aircraft, and a time difference between an azimuth signal by the acoustic azimuth and elevation identification means and an azimuth signal by the radio azimuth identification means. A time difference detecting means for outputting a sound source and a radio wave source when the time difference continues the same value for a predetermined time or more, and a determining means for determining that the sound source and the radio wave source are the same. An aircraft flight position detecting device comprising: a flight position calculating means for calculating a distance and calculating a position of the aircraft from the azimuth signal and the elevation signal by sound.
【請求項2】 航空機の発する音を検出して航空機の方
位に応じた方位角信号を出力する音波式方位角識別手段
と、航空機の発する電波を検出して航空機の方位に応じ
た方位角信号と航空機の仰角に応じた仰角信号を出力す
る電波式方位角及び仰角識別手段と、前記音波式方位角
識別手段による方位角信号と前記電波式方位角及び仰角
識別手段による方位角信号との時間差を出力する時間差
検出手段と、前記時間差が所定時間以上同一値を継続し
た場合には音源と電波源が同一であると判定する判定手
段と、前記時間差に音速を乗じて観測点と航空機との距
離を算出すると共に電波による前記方位角信号及び仰角
信号から航空機の位置を演算する飛行位置演算手段を備
えたことを特徴とする航空機飛行位置検出装置。
2. A sound wave type azimuth discriminating means for detecting a sound emitted from an aircraft and outputting an azimuth signal corresponding to the direction of the aircraft, and an azimuth signal corresponding to the direction of the aircraft by detecting radio waves emitted from the aircraft. Radio azimuth and elevation discriminating means for outputting an elevation signal according to the elevation angle of the aircraft, and a time difference between the azimuth signal from the acoustic azimuth discrimination means and the azimuth signal from the radio azimuth and elevation discrimination means. A time difference detecting means for outputting a sound source and a radio wave source when the time difference continues the same value for a predetermined time or more, and a determining means for determining that the sound source and the radio wave source are the same. An aircraft flight position detecting device comprising: a flight position calculating means for calculating a distance and calculating a position of the aircraft from the azimuth signal and the elevation signal by radio waves.
【請求項3】 航空機の発する音を検出して航空機の方
位に応じた方位角信号と航空機の仰角に応じた仰角信号
を出力する音波式方位角及び仰角識別手段と、航空機の
発する電波を検出して航空機の方位に応じた方位角信号
を出力する電波式方位角識別手段と、前記音波式方位角
及び仰角識別手段による方位角信号と前記電波式方位角
識別手段による方位角信号との相互相関関数を演算する
相互相関関数演算手段と、前記相互相関関数の最大値が
同じ位置で所定以上の値を持つ場合には音源と電波源が
同一であると判定する判定手段と、前記相互相関関数の
最大値を与える電波の方位角信号に対する音の方位角信
号の遅れ時間に音速を乗じて観測点と航空機との距離を
算出すると共に音による前記方位角信号及び仰角信号か
ら航空機の位置を演算する飛行位置演算手段を備えたこ
とを特徴とする航空機飛行位置検出装置。
3. A sound wave type azimuth and elevation discriminating means for detecting a sound emitted from an aircraft and outputting an azimuth signal corresponding to the azimuth of the aircraft and an elevation signal according to the elevation of the aircraft, and detecting a radio wave emitted by the aircraft. Azimuth discriminating means for outputting an azimuth signal corresponding to the azimuth of the aircraft, and interchanging azimuth signals by the acoustic azimuth and elevation discriminating means and azimuth signals by the radio azimuth discriminating means. Cross-correlation function calculating means for calculating a correlation function; determining means for determining that a sound source and a radio wave source are the same when the maximum value of the cross-correlation function has a predetermined value or more at the same position; The distance between the observation point and the aircraft is calculated by multiplying the delay time of the azimuth signal of the sound with respect to the azimuth signal of the radio wave giving the maximum value of the function by the speed of sound, and the position of the aircraft is calculated from the azimuth signal and the elevation signal by sound. Performance An aircraft flight position detecting device comprising a flight position calculating means for calculating the flight position.
【請求項4】 航空機の発する音を検出して航空機の方
位に応じた方位角信号を出力する音波式方位角識別手段
と、航空機の発する電波を検出して航空機の方位に応じ
た方位角信号と航空機の仰角に応じた仰角信号を出力す
る電波式方位角及び仰角識別手段と、前記音波式方位角
識別手段による方位角信号と前記電波式方位角及び仰角
識別手段による方位角信号との相互相関関数を演算する
相互相関関数演算手段と、前記相互相関関数の最大値が
同じ位置で所定以上の値を持つ場合には音源と電波源が
同一であると判定する判定手段と、前記相互相関関数の
最大値を与える電波の方位角信号に対する音の方位角信
号の遅れ時間に音速を乗じて観測点と航空機との距離を
算出すると共に電波による前記方位角信号及び仰角信号
から航空機の位置を演算する飛行位置演算手段を備えた
ことを特徴とする航空機飛行位置検出装置。
4. A sound wave type azimuth identification means for detecting a sound emitted from an aircraft and outputting an azimuth signal corresponding to the azimuth of the aircraft, and an azimuth signal corresponding to the azimuth of the aircraft by detecting a radio wave emitted from the aircraft. Radio wave type azimuth and elevation angle discriminating means for outputting an elevation signal corresponding to the elevation angle of the aircraft, and the interaction between the azimuth signal by the sound wave type azimuth angle discrimination means and the azimuth signal by the radio wave type azimuth angle and elevation angle discrimination means. Cross-correlation function calculating means for calculating a correlation function; determining means for determining that a sound source and a radio wave source are the same when the maximum value of the cross-correlation function has a predetermined value or more at the same position; The distance between the observation point and the aircraft is calculated by multiplying the delay time of the sound azimuth signal with respect to the azimuth signal of the radio wave giving the maximum value of the function by the speed of sound, and the position of the aircraft is calculated from the azimuth signal and the elevation signal by radio waves. An aircraft flight position detection device comprising a flight position calculation means for calculating.
【請求項5】 航空機の発する音を検出して航空機の方
位に応じた方位角信号と航空機の仰角に応じた仰角信号
を出力する音波式方位角及び仰角識別手段と、航空機の
発する電波を検出して航空機の方位に応じた方位角信号
を出力する電波式方位角識別手段と、前記音波式方位角
及び仰角識別手段による方位角信号及び前記電波式方位
角識別手段による方位角信号を時間と方位角の2次元の
線画として扱い、この2種の線画の類似度をパターンマ
ッチングにより評価するパターンマッチング手段と、こ
のパターンマッチング手段による相互相関関数の最大値
を与える電波の方位角信号に対する音の方位角信号の遅
れ時間に音速を乗じて観測点と航空機との距離を算出す
ると共に音による前記方位角信号及び仰角信号から航空
機の位置を演算する飛行位置演算手段を備えたことを特
徴とする航空機飛行位置検出装置。
5. A sound wave type azimuth and elevation discriminating means for detecting a sound emitted from an aircraft and outputting an azimuth signal corresponding to the azimuth of the aircraft and an elevation signal according to the elevation of the aircraft, and detecting a radio wave emitted by the aircraft. Radio azimuth identification means for outputting an azimuth signal in accordance with the azimuth of the aircraft, and an azimuth signal by the acoustic azimuth and elevation identification means and an azimuth signal by the radio azimuth identification means. A pattern matching unit that treats the azimuth as a two-dimensional line drawing and evaluates the similarity between the two types of line drawing by pattern matching, and a sound corresponding to an azimuth signal of a radio wave that gives the maximum value of the cross-correlation function by the pattern matching unit. The delay time of the azimuth signal is multiplied by the speed of sound to calculate the distance between the observation point and the aircraft, and the position of the aircraft is calculated from the azimuth signal and the elevation signal by sound. An aircraft flight position detection device comprising flight position calculation means.
【請求項6】 航空機の発する音を検出して航空機の方
位に応じた方位角信号を出力する音波式方位角識別手段
と、航空機の発する電波を検出して航空機の方位に応じ
た方位角信号と航空機の仰角に応じた仰角信号を出力す
る電波式方位角及び仰角識別手段と、前記音波式方位角
識別手段による方位角信号及び前記電波式方位角及び仰
角識別手段による方位角信号を時間と方位角の2次元の
線画として扱い、この2種の線画の類似度をパターンマ
ッチングにより評価するパターンマッチング手段と、こ
のパターンマッチング手段による相互相関関数の最大値
を与える電波の方位角信号に対する音の方位角信号の遅
れ時間に音速を乗じて観測点と航空機との距離を算出す
ると共に電波による前記方位角信号及び仰角信号から航
空機の位置を演算する飛行位置演算手段を備えたことを
特徴とする航空機飛行位置検出装置。
6. A sound wave type azimuth discriminating means for detecting a sound emitted from an aircraft and outputting an azimuth signal corresponding to the azimuth of the aircraft, and an azimuth signal corresponding to the azimuth of the aircraft by detecting a radio wave emitted from the aircraft. A radio azimuth and elevation identification means for outputting an elevation signal according to the elevation of the aircraft, and an azimuth signal by the acoustic azimuth identification means and an azimuth signal by the radio azimuth and elevation identification means. A pattern matching unit that treats the azimuth as a two-dimensional line drawing and evaluates the similarity between the two types of line drawing by pattern matching, and a sound corresponding to an azimuth signal of a radio wave that gives the maximum value of the cross-correlation function by the pattern matching unit. The delay time of the azimuth signal is multiplied by the speed of sound to calculate the distance between the observation point and the aircraft, and the position of the aircraft is calculated from the azimuth signal and the elevation signal by radio waves. An aircraft flight position detecting device, comprising: a flight position calculating means.
JP33178596A 1996-12-12 1996-12-12 Aircraft flight position detector Expired - Lifetime JP3179356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33178596A JP3179356B2 (en) 1996-12-12 1996-12-12 Aircraft flight position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33178596A JP3179356B2 (en) 1996-12-12 1996-12-12 Aircraft flight position detector

Publications (2)

Publication Number Publication Date
JPH10170624A true JPH10170624A (en) 1998-06-26
JP3179356B2 JP3179356B2 (en) 2001-06-25

Family

ID=18247619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33178596A Expired - Lifetime JP3179356B2 (en) 1996-12-12 1996-12-12 Aircraft flight position detector

Country Status (1)

Country Link
JP (1) JP3179356B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2150370A1 (en) * 1998-07-06 2000-11-16 Boudet Jorge Luis Falco Technique for measuring distances and locations and resulting use for providing services
CN105222983A (en) * 2015-11-13 2016-01-06 中国空气动力研究与发展中心低速空气动力研究所 A kind of low-speed wind tunnel model pose ultrasound measurement system
CN112407321A (en) * 2020-10-30 2021-02-26 中国直升机设计研究所 Method for generating azimuth angle signal based on helicopter rotor rotation speed

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101885862B1 (en) * 2016-11-23 2018-08-06 김영철 Interdental brush and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2150370A1 (en) * 1998-07-06 2000-11-16 Boudet Jorge Luis Falco Technique for measuring distances and locations and resulting use for providing services
CN105222983A (en) * 2015-11-13 2016-01-06 中国空气动力研究与发展中心低速空气动力研究所 A kind of low-speed wind tunnel model pose ultrasound measurement system
CN112407321A (en) * 2020-10-30 2021-02-26 中国直升机设计研究所 Method for generating azimuth angle signal based on helicopter rotor rotation speed
CN112407321B (en) * 2020-10-30 2022-05-31 中国直升机设计研究所 Method for generating azimuth angle signal based on helicopter rotor rotation speed

Also Published As

Publication number Publication date
JP3179356B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
US10473752B2 (en) System and method for detecting aerial vehicle position and velocity via sound
US10871548B2 (en) Systems and methods for transient acoustic event detection, classification, and localization
US9351071B2 (en) Audio source position estimation
KR101562904B1 (en) Direction of Arrival Estimation Apparatus and Method therof
WO2019216469A1 (en) Method and device for clustering detected targets in vehicle radar system
JP5398288B2 (en) Radar signal processing apparatus and target judgment method thereof
US9479867B2 (en) Method and circuitry for direction of arrival estimation using microphone array with a sharp null
US7397427B1 (en) Phase event detection and direction of arrival estimation
CN111983566A (en) System and method for stream-wise detection of pulses in a received signal
Özkan et al. Ground multiple target tracking with a network of acoustic sensor arrays using PHD and CPHD filters
JP2826494B2 (en) Target signal detection method and device
JP3179356B2 (en) Aircraft flight position detector
JP3167965B2 (en) Aircraft noise identification device
US9612310B2 (en) Method and apparatus for determining the direction of arrival of a sonic boom
JP4499617B2 (en) Lightning position limiting system and method
JP7306030B2 (en) Target motion estimation device and target motion estimation method
Siwek Analysis of microphone use for perception of autonomous vehicles
Taj et al. Audio-assisted trajectory estimation in non-overlapping multi-camera networks
JP2607854B2 (en) Signal tracking method
JP2000241522A (en) Data-integrating and tracking apparatus between a plurality of sensors
JP2001296359A (en) Bistatic processing apparatus
JP2758537B2 (en) Automatic detection and tracking device
CN116908782A (en) Target positioning method based on multi-source signal power intensity
Pham et al. High-resolution acoustic direction-finding algorithm to detect and track ground vehicles
JP2576044B2 (en) Signal tracking method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080413

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term