JPH10170539A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPH10170539A
JPH10170539A JP8353074A JP35307496A JPH10170539A JP H10170539 A JPH10170539 A JP H10170539A JP 8353074 A JP8353074 A JP 8353074A JP 35307496 A JP35307496 A JP 35307496A JP H10170539 A JPH10170539 A JP H10170539A
Authority
JP
Japan
Prior art keywords
axis
acceleration
piezoelectric element
acceleration sensor
detection electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8353074A
Other languages
Japanese (ja)
Inventor
Kazutoyo Ichikawa
和豊 市川
Norihiko Shiratori
典彦 白鳥
Tomoo Namiki
智雄 並木
Minoru Hatakeyama
稔 畠山
Masato Handa
正人 半田
Yoshiya Okada
恵也 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyota KK
Miyota Co Ltd
Original Assignee
Miyota KK
Miyota Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyota KK, Miyota Co Ltd filed Critical Miyota KK
Priority to JP8353074A priority Critical patent/JPH10170539A/en
Publication of JPH10170539A publication Critical patent/JPH10170539A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PROBLEM TO BE SOLVED: To miniaturize an acceleration sensor and reduce its weight, by forming a detection electrode by avoiding a part, where a stress generated at a piezoelectric element becomes zero when an acceleration in the direction of X axis is applied to the acceleration sensor, and its vicinity, and a part, where a stress generated when an acceleration in a direction that is parallel to X and Y planes is applied becomes zero, and its vicinity. SOLUTION: Four detection electrodes 26 are formed on the upper surface of a piezoelectric element 23. The periphery part of the detection electrodes 26 is provided apart a specific distance from a line 27 inside the line 27 where a stress becomes zero when an acceleration in the direction of Z axis is applied to an acceleration sensor. Further, a ring-shaped detection electrode 28 is provided apart, by a specific distance, from a line 30 outside the line 30, where the stress becomes zero when an acceleration in the directions of X and Y axes is applied. The electrodes 26 with a high stress value and a small area are arranged at an inner periphery, an acceleration in the directions of X and Y axes is detected, and a detection electrode 28, where a stress value is low but an area is large is arranged at an outer-periphery side for detecting an acceleration in the direction of Z axis, thus generating more electric charges efficiently.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は圧電素子を用いた加
速度センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor using a piezoelectric element.

【0002】[0002]

【従来の技術】加速度センサは自動車業界でエアーバッ
グ制御のセンサ等として使用されている。検出方式はい
ろいろ開発されているが、本発明は表面に電極を形成し
た圧電素子を貼付した可撓部材の中央部に加速度により
慣性力を生じる重錘体を設け、加速度による重錘体の慣
性力で可撓部材が変形(この時表面に貼付してある圧電
素子も変形しその歪量に比例した電荷を発生する)する
ことにより加速度を検出するものにかかわる。
2. Description of the Related Art Acceleration sensors are used in the automobile industry as sensors for controlling air bags. Although various detection methods have been developed, the present invention provides a weight that generates inertial force due to acceleration at the center of a flexible member to which a piezoelectric element with an electrode formed on the surface is attached. The present invention relates to a method for detecting an acceleration by deforming a flexible member by force (the piezoelectric element attached to the surface at this time also deforms and generates an electric charge proportional to the amount of distortion).

【0003】 本発明に係わる先行技術として、特開平
5−26744号がある。図1は従来技術による加速度
センサの代表的な例で正面断面図である。図2は圧電素
子側から見た平面図である。可撓性を持った円盤状の基
板1の上面には両面に検出電極3、4、5、6が形成さ
れた圧電素子2が貼付され、下面の中央部にはセンサの
動きを可撓性を持った円盤状の基板の歪みに置換するた
めの重錘体7が貼付されている。
As a prior art relating to the present invention, there is JP-A-5-26744. FIG. 1 is a front cross-sectional view showing a typical example of a conventional acceleration sensor. FIG. 2 is a plan view seen from the piezoelectric element side. A piezoelectric element 2 having detection electrodes 3, 4, 5, and 6 formed on both sides is attached to the upper surface of a flexible disk-shaped substrate 1, and the center of the lower surface is used to control the movement of the sensor. The weight body 7 for replacing the distortion of the disk-shaped substrate having the above is attached.

【0004】加速度により重錘体と可撓部材の相対位置
がずれることで可撓部材に貼付してある圧電素子が歪
み、電荷が発生する。電荷は表面に形成してある電極で
集められ、ある電位(電圧)として計測される。本明細
書では電極に発生する電荷と表現する。圧電素子は歪み
量により発生する電荷の量が変わる。また圧電素子の面
積や体積によっても発生する電荷の量が変わる。
[0004] When the relative position between the weight and the flexible member is shifted by the acceleration, the piezoelectric element attached to the flexible member is distorted, and electric charges are generated. Electric charges are collected by electrodes formed on the surface and measured as a certain potential (voltage). In this specification, it is expressed as electric charge generated in an electrode. The amount of electric charge generated in the piezoelectric element changes depending on the amount of distortion. In addition, the amount of generated charges varies depending on the area and volume of the piezoelectric element.

【0005】先出の特開平5ー25744号は、圧電素
子を用いた力センサにおいて、板状の圧電素子と、この
圧電素子の上面に形成された上部電極と、この圧電素子
の下面に形成された下部電極と、によって構成される検
出子を4組用意し、可撓性をもった基板内の一点に原点
を定義し、この原点を通りかつ基板面に平行な方向にX
軸を定義し、用意した4組の検出子のうちの2組をX軸
の正の側に、他の2組を負の側に、それぞれX軸に沿っ
て並べて配置し、各検出子の一方の電極を基板に固定
し、基板外側の周囲部分をセンサ筐体に固定し、外部か
ら作用する物理量に基づいて発生した力を、原点に伝達
する機能を有する作用体を形成し、この作用体に発生し
た力を4組の検出子の各電極に発生する電荷に基づいて
検出するようにしたものであり、外部から与えられる加
速度に基づいて作用体に力を発生させることにより加速
度が検出できる。図2はX軸方向に4組、Y軸方向に4
組の検出子を配置した例である。このように電極を配置
することでX軸、Y軸、Z軸の3軸方向の加速度を検出
することができる。
Japanese Patent Application Laid-Open No. 5-25744 discloses a force sensor using a piezoelectric element, a plate-like piezoelectric element, an upper electrode formed on the upper surface of the piezoelectric element, and a lower electrode formed on the lower surface of the piezoelectric element. And four pairs of detectors composed of the lower electrode and the origin are defined at one point in the flexible substrate, and X is set in a direction passing through the origin and parallel to the substrate surface.
An axis is defined, two of the prepared four detectors are arranged on the positive side of the X-axis, and the other two are disposed on the negative side along the X-axis, respectively. One electrode is fixed to the substrate, the outer peripheral part of the substrate is fixed to the sensor housing, and an acting body having a function of transmitting a force generated based on a physical quantity acting from the outside to the origin is formed. The force generated in the body is detected based on the charge generated in each electrode of the four sets of detectors. The acceleration is detected by generating a force on the working body based on the acceleration given from the outside. it can. FIG. 2 shows four sets in the X axis direction and four sets in the Y axis direction.
It is an example in which sets of detectors are arranged. By arranging the electrodes in this manner, accelerations in three directions of the X axis, the Y axis, and the Z axis can be detected.

【0006】[0006]

【発明が解決しようとする課題】3軸方向の加速度を検
出するためには、たとえば従来例のように検出電極の形
状を複雑に形成しなければならない。従って加工精度、
組立精度の影響を受けやすく、また、各検出電極の面積
を大きく形成しにくいため検出感度を高くすることが難
しい。さらに、加速度センサに加速度が加わったときに
圧電素子上に発生する応力分布は複雑であり、適切な位
置に検出電極を配置しないと、効率よく電荷を取り出す
ことができない。本発明は、検出電極の配置を工夫する
ことで課題を解決しようとするものである。
In order to detect acceleration in three axial directions, for example, the shape of the detection electrode must be complicated as in the prior art. Therefore, processing accuracy,
It is difficult to increase the detection sensitivity because it is easily affected by the assembling accuracy and it is difficult to form a large area for each detection electrode. Furthermore, the distribution of stress generated on the piezoelectric element when acceleration is applied to the acceleration sensor is complicated, and unless the detection electrodes are arranged at appropriate positions, it is impossible to efficiently extract electric charges. The present invention is to solve the problem by devising the arrangement of the detection electrodes.

【0007】[0007]

【課題を解決するための手段】本発明は従来の加速度セ
ンサの課題を解決するためのものであり、小型軽量で、
高感度、高精度な3軸方向の加速度を検出できる加速度
センサを提供する。
SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the conventional acceleration sensor, and is compact and lightweight.
Provided is an acceleration sensor capable of detecting acceleration in three axial directions with high sensitivity and high accuracy.

【0008】板状の可撓部材と、該可撓部材の表面に貼
付される電極を設けた圧電素子と、該可撓部材に直接ま
たは間接的に貼付される重錘体と、該可撓部材の外周を
直接または間接的に支持する支持部材を有する加速度セ
ンサにおいて、板状の可撓部材の内部に原点を定義し、
この原点を通り該可撓部材の平面に平行な方向にX軸
を、原点においてX軸と直交し、かつ、該可撓部材の平
面に平行な方向にY軸を、原点を通り、かつ、該可撓部
材の平面に垂直な方向にZ軸をそれぞれ定義したとき、
前記加速度センサにZ軸方向の加速度を加えたときに圧
電素子に生じる応力がゼロになる部分およびその近傍
と、該加速度センサにX、Y平面と平行な方向に加速度
を加えたときに圧電素子に生じる応力がゼロとなる部分
およびその近傍を避けて検出電極を形成する。
A plate-like flexible member, a piezoelectric element provided with an electrode attached to the surface of the flexible member, a weight body directly or indirectly attached to the flexible member, In an acceleration sensor having a support member that directly or indirectly supports the outer periphery of the member, an origin is defined inside a plate-shaped flexible member,
The X axis passes through the origin in a direction parallel to the plane of the flexible member, the X axis at the origin is orthogonal to the X axis, and the Y axis passes in a direction parallel to the plane of the flexible member, passes through the origin, and When the Z axis is defined in a direction perpendicular to the plane of the flexible member,
A portion where the stress generated in the piezoelectric element becomes zero when the acceleration sensor is applied with an acceleration in the Z-axis direction and its vicinity, and a piezoelectric element which is obtained by applying an acceleration to the acceleration sensor in a direction parallel to the X and Y planes. The detection electrode is formed so as to avoid the portion where the stress generated in the step becomes zero and its vicinity.

【0009】また、X軸、Y軸方向の加速度の検出電極
は、加速度センサにZ軸方向の加速度を加えたときに圧
電素子に生じる応力がゼロになる部分およびその近傍
と、該加速度センサにX、Y平面と平行な方向に加速度
を加えたときに圧電素子に生じる応力がゼロとなる部分
およびその近傍を避け、かつ、圧電素子表面の内側に形
成し、Z軸方向の加速度の検出電極は、該加速度センサ
にZ軸方向の加速度を加えたときに圧電素子に生じる応
力がゼロになる部分およびその近傍と該加速度センサに
X、Y平面と平行な方向に加速度を加えたときに圧電素
子に生じる応力がゼロとなる部分およびその近傍を避
け、かつ、圧電素子表面の外側に形成する。
The electrodes for detecting acceleration in the X-axis and Y-axis directions include a portion where the stress generated in the piezoelectric element becomes zero when acceleration in the Z-axis direction is applied to the acceleration sensor, the vicinity thereof, and the acceleration sensor. An electrode for detecting acceleration in the Z-axis direction, formed on the inside of the surface of the piezoelectric element while avoiding a portion where the stress generated in the piezoelectric element becomes zero when acceleration is applied in a direction parallel to the X and Y planes and in the vicinity thereof, When acceleration is applied to the acceleration sensor in the direction parallel to the X and Y planes, and in the vicinity of the portion where the stress generated in the piezoelectric element becomes zero when acceleration in the Z-axis direction is applied, It is formed outside the surface of the piezoelectric element while avoiding the part where the stress generated in the element becomes zero and its vicinity.

【0010】さらに、X軸、Y軸方向の加速度の検出電
極は、X軸、Y軸上で、かつ、X軸、Y軸に対して対称
に形成され、Z軸方向の加速度の検出電極は、X軸、Y
軸に対して対称に形成する。そして、引き出し電極を外
周部に設ける。
Further, the detection electrodes for acceleration in the X-axis and Y-axis directions are formed on the X-axis and Y-axis and symmetrically with respect to the X-axis and Y-axis. , X axis, Y
Formed symmetrically about the axis. Then, a lead electrode is provided on the outer peripheral portion.

【0011】このように構成された加速度センサにおい
ては、加速度センサに加速度を加えると、半径方向に外
周側に向かうに従い、圧電素子に生じている応力の絶対
値が小さくなりやがてゼロとなる。さらに半径方向に外
周側に向かうと今度は応力の符号が反対になる。すなわ
ち、内周側がプラスである場合は外周側がマイナスにな
り、逆に、内周側がマイナスである場合は外周側がプラ
スになる。従って、仮に応力がゼロとなるラインをまた
いで検出電極を構成すると、同じ検出電極内に発生する
電荷の符号がプラスとマイナスの両方の電荷が発生し、
お互いに打ち消しあうため結果として出力電圧は小さく
なる。また、応力がゼロとなる部分とその近傍まで検出
電極を形成すると、加工、組立誤差により応力分布が微
妙にずれ、同じ検出電極内に発生する電荷の符号がプラ
スとマイナスの両方の電荷が発生する場合もある。ゆえ
に、上述のように検出電極を形成することで、X軸、Y
軸、Z軸方向に加速度が加わったときに電荷を効率よく
発生させるすることができ、検出感度を上げることがで
きる。なお、応力分布に関しては、発明の実施の形態の
中で詳述する。
In the acceleration sensor configured as described above, when acceleration is applied to the acceleration sensor, the absolute value of the stress generated in the piezoelectric element becomes smaller toward the outer periphery in the radial direction, and eventually becomes zero. Further toward the outer periphery in the radial direction, the sign of the stress is reversed this time. That is, when the inner peripheral side is positive, the outer peripheral side is negative, and conversely, when the inner peripheral side is negative, the outer peripheral side is positive. Therefore, if the detection electrode is formed across the line where the stress becomes zero, the sign of the charge generated in the same detection electrode generates both positive and negative charges,
Since they cancel each other, the output voltage decreases as a result. Also, if the detection electrode is formed up to and near the part where the stress is zero, the stress distribution will be slightly shifted due to processing and assembly errors, and both positive and negative charges will be generated in the same detection electrode. In some cases. Therefore, by forming the detection electrodes as described above, the X-axis, Y-axis
Electric charges can be efficiently generated when acceleration is applied in the axial and Z-axis directions, and the detection sensitivity can be increased. The stress distribution will be described in detail in the embodiments of the present invention.

【0012】[0012]

【発明の実施の形態】本発明を図面に基づき詳細に説明
する。図3は本発明の第一実施例で上面図である。図4
は本発明の第一実施例で正面断面図である。図の如く円
板状の可撓部材21の内部に原点22を定義し、原点2
2を通り可撓部材21の平面に平行な方向にX軸を、原
点22においてX軸と直交し、かつ、可撓部材21の平
面に平行な方向にY軸を、原点22を通り、かつ、可撓
部材21の平面に垂直な方向にZ軸をそれぞれ定義す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the drawings. FIG. 3 is a top view of the first embodiment of the present invention. FIG.
1 is a front sectional view of a first embodiment of the present invention. An origin 22 is defined inside a disk-shaped flexible member 21 as shown in FIG.
2, the X axis in a direction parallel to the plane of the flexible member 21, the Y axis orthogonal to the X axis at the origin 22, and the Y axis in a direction parallel to the plane of the flexible member 21, passing through the origin 22, and , A Z axis is defined in a direction perpendicular to the plane of the flexible member 21.

【0013】円板状の可撓部材21の上面には圧電素子
23が、その面上中心とZ軸とが一致するように貼付さ
れている。可撓部材21の下面には円柱形をした重錘体
24が、その中心軸とZ軸とが一致するように貼付され
ている。可撓部材21と圧電素子23と重錘体24とで
センサ部20が構成される。また、可撓部材21は外周
部分を支持部材25で支持されている。支持部材25に
は円状の貫通穴25aと、貫通穴25aと同心で半径が
大きい沈み部25bが設けられている。ここで、貫通穴
25a、沈み部25bの中心軸はZ軸と一致している。
沈み部25bで可撓部材21は位置決めされ支持され
る。
A piezoelectric element 23 is attached to the upper surface of the disk-shaped flexible member 21 so that the center on the surface and the Z axis coincide with each other. A cylindrical weight 24 is attached to the lower surface of the flexible member 21 so that the central axis thereof coincides with the Z axis. The flexible member 21, the piezoelectric element 23, and the weight 24 constitute the sensor unit 20. The outer periphery of the flexible member 21 is supported by a support member 25. The support member 25 is provided with a circular through hole 25a and a sunken portion 25b having a large radius concentric with the through hole 25a. Here, the central axes of the through hole 25a and the sinking portion 25b coincide with the Z axis.
The flexible member 21 is positioned and supported by the sunken part 25b.

【0014】可撓部材21はエリンバ材を用いた。重錘
体24はステンレス材(SUS303)を用いた。支持
部材25は金属材料を用いた。圧電素子23は圧電セラ
ミックスであるPZTを用い、電極は蒸着によりAg−
Cr合金で形成した。スパッタ、スクリーン印刷等の方
法で電極を形成してもかまわない。電極の配置について
は後で詳述する。可撓部材21と圧電素子23はエポキ
シ系の接着剤で接合した。可撓部材21と重錘体24も
エポキシ系の接着剤により固定したが、溶接等の方法で
固定してもかまわない。可撓部材21と支持部材25は
接着剤で固定した。部材の材質は所定の機能を満たすも
のであればこれらに限定されるものではない。好ましく
は、お互いに熱膨張率の近い材質を選ぶと良い。
The flexible member 21 uses an elinvar material. The weight body 24 was made of stainless steel (SUS303). The support member 25 was made of a metal material. The piezoelectric element 23 is made of PZT which is a piezoelectric ceramic, and the electrode is made of Ag-
It was formed of a Cr alloy. The electrodes may be formed by a method such as sputtering or screen printing. The arrangement of the electrodes will be described later in detail. The flexible member 21 and the piezoelectric element 23 were joined with an epoxy adhesive. The flexible member 21 and the weight body 24 are also fixed by an epoxy adhesive, but may be fixed by a method such as welding. The flexible member 21 and the support member 25 were fixed with an adhesive. The material of the member is not limited to these as long as it satisfies a predetermined function. Preferably, materials having close thermal expansion coefficients are selected.

【0015】次に検出電極の配置について述べる。検出
電極を配置する位置の決定にあたっては、有限要素法解
析を行い、圧電素子23の表面に生じる応力について詳
細に分布を調べた。図5は加速度センサにX軸プラス方
向の加速度が加わった状態を示す断面図である。(電極
は省略してある。)図6は加速度センサにX軸マイナス
方向の加速度が加わった状態を示す断面図である。(電
極は省略してある。)加速度センサにX軸マイナス方向
の加速度が加わった場合は、重錘体24の振れる方向が
図5と逆方向となる。図7は加速度センサにZ軸プラス
方向の加速度が加わった状態を示す断面図である。(電
極は省略してある。)図8は加速度センサにZ軸マイナ
ス方向の加速度が加わった状態を示す断面図である。
(電極は省略してある。)加速度センサにZ軸マイナス
方向の加速度が加わった場合は、重錘体24の振れる方
向が図7と逆方向となる。
Next, the arrangement of the detection electrodes will be described. In determining the positions where the detection electrodes are to be arranged, a finite element method analysis was performed, and the distribution of the stress generated on the surface of the piezoelectric element 23 was examined in detail. FIG. 5 is a cross-sectional view showing a state where acceleration in the X-axis plus direction is applied to the acceleration sensor. (Electrode is omitted.) FIG. 6 is a cross-sectional view showing a state where acceleration in the X-axis minus direction is applied to the acceleration sensor. (The electrodes are omitted.) When acceleration in the negative X-axis direction is applied to the acceleration sensor, the direction in which the weight body 24 swings is opposite to that in FIG. FIG. 7 is a cross-sectional view showing a state in which acceleration in the Z-axis plus direction is applied to the acceleration sensor. (Electrodes are omitted.) FIG. 8 is a cross-sectional view showing a state in which acceleration in the Z-axis minus direction is applied to the acceleration sensor.
(The electrodes are omitted.) When acceleration in the negative Z-axis direction is applied to the acceleration sensor, the direction in which the weight body 24 swings is opposite to that in FIG.

【0016】図9は加速度センサにZ軸マイナス方向の
加速度を加えたときにX軸上に現れる応力分布を示すグ
ラフである。図10は加速度センサにX軸プラス方向の
加速度を加えたときにX軸上に現れるの応力分布を示す
グラフである。横軸に原点22からの半径方向の距離
(mm)、縦軸に応力値(Kgf/mm2)をとってあ
る。グラフは、半径方向プラス側について示したもので
あるが、図5〜図8を参照すると、半径方向マイナス側
の応力分布は、図9では縦軸に対して線対称、図10で
は原点に対して点対称となる。
FIG. 9 is a graph showing a stress distribution appearing on the X-axis when an acceleration in the Z-axis minus direction is applied to the acceleration sensor. FIG. 10 is a graph showing a stress distribution appearing on the X-axis when an acceleration in the X-axis plus direction is applied to the acceleration sensor. The horizontal axis represents the radial distance (mm) from the origin 22 and the vertical axis represents the stress value (Kgf / mm2). The graphs are shown on the plus side in the radial direction. Referring to FIGS. 5 to 8, the stress distribution on the minus side in the radial direction is line-symmetric with respect to the vertical axis in FIG. 9, and with respect to the origin in FIG. Point symmetry.

【0017】有限要素法解析には次のディメンジョンと
材質を用いた。可撓部材21は直径が20mmで厚さが
0.1mmのエリンバ材、圧電素子23は直径20mm
で厚さが0.12mmのPZT、重錘体24は直径が4
mmで長さが5mmのSUS303、支持部材25は外
径25mmで内径(貫通穴25a)が19mmで厚さが
4mmのSUS303を用いた。支持部材25の沈み部
25bは、直径が20.02mmで深さが0.5mmと
した。可撓部材21と圧電素子23は外周平面部分と円
周部分を沈み部25bに接着剤で固定されている。拘束
条件は、支持部材25を可撓部材21の固定されている
端面と反対の端面を全方向で拘束した。加速度センサに
Z軸マイナス方向に10G、X軸プラス方向に10Gの
加速度を加えて解析を行った。ここでGは重力加速度を
表している。
The following dimensions and materials were used in the finite element analysis. The flexible member 21 has a diameter of 20 mm and a thickness of 0.1 mm, and the piezoelectric element 23 has a diameter of 20 mm.
PZT having a thickness of 0.12 mm and a weight body 24 having a diameter of 4
The supporting member 25 was SUS303 having an outer diameter of 25 mm, an inner diameter (through hole 25a) of 19 mm, and a thickness of 4 mm. The sunken part 25b of the support member 25 had a diameter of 20.02 mm and a depth of 0.5 mm. The flexible member 21 and the piezoelectric element 23 are fixed to the sunken portion 25b with an adhesive at the outer peripheral plane portion and the circumferential portion. As for the constraint condition, the support member 25 was constrained in all directions on the end face opposite to the fixed end face of the flexible member 21. The analysis was performed by applying an acceleration of 10 G to the acceleration sensor in the Z-axis minus direction and 10 G in the X-axis plus direction. Here, G represents the gravitational acceleration.

【0018】図9、図10のグラフより、加速度センサ
に加速度を加えると、半径方向に外周側に向かうに従
い、圧電素子に生じている応力の絶対値が小さくなりや
がてゼロとなる。さらに半径方向に外周側に向かうと今
度は応力の符号が反対になる。すなわち、内周側がプラ
スである場合は外周側がマイナスになり、逆に、内周側
がマイナスである場合は外周側がプラスになることがわ
かる。加速度センサにZ軸方向の加速度を加えた場合と
X軸、Y軸方向に加速度を加えた場合とでは、応力値が
ゼロとなる場所が異なることもわかった。従って、仮に
応力がゼロとなるラインをまたいで検出電極を構成する
と、同じ検出電極内にプラスとマイナスの両方の電荷が
発生し、お互いに打ち消しあうため結果として出力電圧
は小さくなる。また、応力がゼロとなる部分の近傍まで
検出電極を形成すると、加工、組立誤差により応力分布
が微妙にずれ、同じ検出電極内にプラスとマイナスの両
方の電荷が発生する場合もある。なお、内周部分で応力
値がほぼゼロの所があるが、これは重錘体24が固定さ
れている部分で、圧電素子23の変形がほとんど生じな
い部分である。
According to the graphs of FIGS. 9 and 10, when acceleration is applied to the acceleration sensor, the absolute value of the stress generated in the piezoelectric element becomes smaller toward the outer periphery in the radial direction, and eventually becomes zero. Further toward the outer periphery in the radial direction, the sign of the stress is reversed this time. That is, when the inner peripheral side is positive, the outer peripheral side becomes negative, and conversely, when the inner peripheral side is negative, the outer peripheral side becomes positive. It was also found that the location where the stress value became zero was different between the case where acceleration in the Z-axis direction was applied to the acceleration sensor and the case where acceleration was applied in the X-axis and Y-axis directions. Therefore, if the detection electrode is formed across a line where the stress becomes zero, both positive and negative charges are generated in the same detection electrode and cancel each other, resulting in a small output voltage. If the detection electrode is formed near the portion where the stress becomes zero, the stress distribution may be slightly shifted due to processing and assembly errors, and both positive and negative charges may be generated in the same detection electrode. The stress value is substantially zero in the inner peripheral portion, which is a portion where the weight body 24 is fixed and where the deformation of the piezoelectric element 23 hardly occurs.

【0019】有限要素法解析の結果をもとに検出電極を
形成した。圧電素子23の上面には扇形をした4個の検
出電極26が、X軸、Y軸上で、かつ、X軸、Y軸に対
して軸対称に形成されている。検出電極26の円周部
は、加速度センサにZ軸方向の加速度を加えたときに応
力がゼロとなるライン27の内側で、ライン27より所
定の距離を離して設けられている。さらに圧電素子23
の上面には円環状をした検出電極28が、X軸、Y軸に
対して軸対称に形成され加速度センサにX軸、Y軸方向
の加速度を加えたときに応力がゼロとなるライン30よ
り外側で、ライン30より所定の距離を離して設けられ
ている。圧電素子23上で検出電極26は内周側、検出
電極28は外周側に配置されている。検出電極26を外
周側に検出電極28を内周側に配置することも可能であ
る。しかしながら、図10において、X軸、Y軸方向に
加速度を加えた場合、内周側の方が高い応力値を示して
いる。図9においても内周側の方が外周側よりやや大き
い応力値を示している。発生する電荷量は応力値と面積
の積に比例する。従って、応力値が高く面積の小さい検
出電極26を内周側に配置して、X軸、Y軸の2軸方向
の加速度の検出をし、応力値が低いが面積を大きく取れ
る検出電極28を外周側に配置してZ軸方向の加速度を
検出する方が、より多くの電荷を効率的に発生すること
ができ好ましい。
A detection electrode was formed based on the result of the finite element analysis. Four fan-shaped detection electrodes 26 are formed on the upper surface of the piezoelectric element 23 on the X-axis and the Y-axis and symmetrically with respect to the X-axis and the Y-axis. The circumferential portion of the detection electrode 26 is provided at a predetermined distance from the line 27 inside the line 27 where the stress becomes zero when an acceleration in the Z-axis direction is applied to the acceleration sensor. Further, the piezoelectric element 23
An annular detection electrode 28 is formed on the upper surface of the acceleration sensor 28 so as to be axially symmetrical with respect to the X axis and the Y axis. On the outside, it is provided at a predetermined distance from the line 30. On the piezoelectric element 23, the detection electrode 26 is disposed on the inner side, and the detection electrode 28 is disposed on the outer side. It is also possible to arrange the detection electrode 26 on the outer periphery and the detection electrode 28 on the inner periphery. However, in FIG. 10, when acceleration is applied in the X-axis and Y-axis directions, the inner peripheral side shows a higher stress value. Also in FIG. 9, the stress value on the inner circumference side is slightly larger than that on the outer circumference side. The amount of generated charge is proportional to the product of the stress value and the area. Therefore, a detection electrode 26 having a high stress value and a small area is arranged on the inner peripheral side to detect accelerations in two X-axis and Y-axis directions, and a detection electrode 28 having a low stress value but a large area can be obtained. It is preferable to detect the acceleration in the Z-axis direction by arranging it on the outer peripheral side because more charges can be efficiently generated.

【0020】さらに、X軸、Y軸、Z軸方向の検出電極
に発生する電荷量がほぼ等しくなるように検出電極を形
成した。検出電極の形状は有限要素法解析により求めら
れた圧電素子23に生じる応力値とその応力値の分布し
ている分布面積の積を求め、その積の和を求めることに
より設定した。この計算を検出電極26a〜26d、検
出電極28について行う。X軸方向の加速度の検出に関
係する検出電極26a、26cの電荷量の和と、Y軸方
向の加速度の検出に関係する検出電極26b、26dの
電荷量の和と、Z軸方向の加速度の検出に関係する検出
電極28の電荷量が等しくなるように形状を決めた。こ
のように検出電極を形成することで、X軸、Y軸、Z軸
方向に加速度が加わったときに電荷を効率よく発生させ
るすることができ、検出感度を上げることができる。ま
た、X軸、Y軸、Z軸方向の検出感度がほぼ等しくな
る。圧電素子23の下面にはほぼ全面に電極29が形成
されている。電極29から4個の引き出し電極29aが
圧電素子23の上面に引き出されている。
Further, the detection electrodes were formed such that the amounts of charges generated in the detection electrodes in the X-axis, Y-axis, and Z-axis directions were substantially equal. The shape of the detection electrode was set by calculating the product of the stress value generated in the piezoelectric element 23 obtained by the finite element analysis and the distribution area where the stress value is distributed, and calculating the sum of the products. This calculation is performed for the detection electrodes 26a to 26d and the detection electrode 28. The sum of the charge amounts of the detection electrodes 26a and 26c related to the detection of the acceleration in the X-axis direction, the sum of the charge amounts of the detection electrodes 26b and 26d related to the detection of the acceleration in the Y-axis direction, and the acceleration of the Z-axis direction. The shape was determined so that the electric charges of the detection electrodes 28 related to the detection become equal. By forming the detection electrodes in this manner, electric charges can be efficiently generated when acceleration is applied in the X-axis, Y-axis, and Z-axis directions, and the detection sensitivity can be increased. Further, the detection sensitivities in the X-axis, Y-axis, and Z-axis directions become substantially equal. An electrode 29 is formed on almost the entire lower surface of the piezoelectric element 23. Four extraction electrodes 29 a are extended from the electrode 29 to the upper surface of the piezoelectric element 23.

【0021】加速度の検出動作について説明する。加速
度センサに加速度が作用すると慣性力により重錘体24
が移動することでセンサ部20が変形し検出電極26、
28に電荷が発生する。図示していない検出回路と検出
電極26、28および基準電位となる電極29(引き出
し電極29a)とがリード線により接続されているた
め、4個の検出電極26と検出電極28に発生する電荷
の量により加速度の方向と大きさが検出できる。
The operation of detecting the acceleration will be described. When acceleration acts on the acceleration sensor, the weight 24
Is moved, the sensor section 20 is deformed, and the detection electrode 26,
A charge is generated at 28. Since the detection circuit (not shown) is connected to the detection electrodes 26 and 28 and the electrode 29 serving as the reference potential (lead electrode 29a) by lead wires, the four detection electrodes 26 and the charge generated in the detection electrodes 28 are connected. The direction and magnitude of the acceleration can be detected from the amount.

【0022】第一実施例では、圧電素子23の上面に形
成されている電極の分極の向きをZ軸方向で同じ向きに
してある。前述したが、図5は加速度センサにX軸プラ
ス方向の加速度が加わった状態を示す断面図である。
(電極は省略してある。)図6は加速度センサにX軸マ
イナス方向の加速度が加わった状態を示す断面図であ
る。(電極は省略してある。)加速度センサにX軸マイ
ナス方向の加速度が加わった場合は、重錘体24の振れ
る方向が図5と逆方向となる。加速度センサにX軸プラ
ス方向の加速度が加わった場合では、検出電極26aに
発生する電荷はプラス、検出電極26bに発生する電荷
はプラスとマイナスが相殺されてゼロ(以下、各検出電
極に発生する電荷がゼロとなるものはこの理由によ
る)、検出電極26cに発生する電荷はマイナス、検出
電極26dに発生する電荷はゼロ、検出電極28に発生
する電荷はゼロとなる。ここで、検出電極26はX軸、
Y軸上で、かつ、X軸、Y軸に対して対称であるので、
26aと26cに発生するの電荷は、符号は逆で大きさ
が等しくなる。検出電極26aと検出電極26cに発生
する電荷を差動増幅することでX軸方向の加速度の大き
さと向きを検出する。検出電極28については、X軸プ
ラス側に広がる領域ではマイナス、X軸マイナス側に広
がる領域ではプラスの電荷が発生しているがX軸、Y軸
に対して線対称に形成されているため、検出電極28に
発生する総電荷量は互いに相殺されてゼロとなる。加速
度センサにX軸マイナス方向の加速度が加わった場合で
は、検出電極26aに発生する電荷はマイナス、検出電
極26bに発生する電荷はゼロ、検出電極26cに発生
する電荷はプラス、検出電極26dに発生する電荷はゼ
ロ、検出電極28に発生する電荷はゼロとなる。検出電
極26aと検出電極26cに発生した電荷を差動増幅し
た結果は加速度センサにX軸プラス方向の加速度が加わ
った場合と符号が逆になり、加わった加速度の向きを特
定できる。
In the first embodiment, the direction of polarization of the electrodes formed on the upper surface of the piezoelectric element 23 is the same in the Z-axis direction. As described above, FIG. 5 is a cross-sectional view showing a state where acceleration in the X-axis plus direction is applied to the acceleration sensor.
(Electrode is omitted.) FIG. 6 is a cross-sectional view showing a state where acceleration in the X-axis minus direction is applied to the acceleration sensor. (The electrodes are omitted.) When acceleration in the negative X-axis direction is applied to the acceleration sensor, the direction in which the weight body 24 swings is opposite to that in FIG. When an acceleration in the positive direction of the X-axis is applied to the acceleration sensor, the charge generated on the detection electrode 26a is positive, and the charge generated on the detection electrode 26b is canceled by plus and minus to zero (hereinafter, generated on each detection electrode). This is the reason why the charge is zero), the charge generated on the detection electrode 26c is minus, the charge generated on the detection electrode 26d is zero, and the charge generated on the detection electrode 28 is zero. Here, the detection electrode 26 has an X-axis,
Since it is symmetric on the Y axis and about the X axis and the Y axis,
The charges generated at 26a and 26c have the opposite signs and the same magnitude. The magnitude and direction of the acceleration in the X-axis direction are detected by differentially amplifying the charges generated on the detection electrodes 26a and 26c. Regarding the detection electrode 28, a negative charge is generated in a region extending on the positive side of the X-axis, and a positive charge is generated in a region expanding on the negative side of the X-axis. The total charges generated in the detection electrodes 28 cancel each other to become zero. When an acceleration in the negative direction of the X-axis is applied to the acceleration sensor, the charge generated at the detection electrode 26a is negative, the charge generated at the detection electrode 26b is zero, the charge generated at the detection electrode 26c is positive, and the charge generated at the detection electrode 26d is generated. The charge generated is zero, and the charge generated on the detection electrode 28 is zero. The sign of the result of differentially amplifying the charges generated on the detection electrode 26a and the detection electrode 26c is opposite to that in the case where acceleration in the X-axis plus direction is applied to the acceleration sensor, and the direction of the applied acceleration can be specified.

【0023】加速度センサにY軸方向の加速度が加わっ
た場合について説明する。加速度センサにY軸プラス方
向に加速度が加わった場合、検出電極26aに発生する
電荷はゼロ、検出電極26bに発生する電荷はプラス、
検出電極26cに発生する電荷はゼロ、検出電極26d
に発生する電荷はマイナス、検出電極28に発生する電
荷はゼロとなる。ここで、検出電極26はX軸、Y軸上
で、かつ、X軸、Y軸に対して対称であるので、26b
と26dに発生するの電荷は、符号は逆で大きさが等し
くなる。検出電極26bと検出電極26dに発生する電
荷を差動増幅することでY軸方向の加速度の大きさと向
きを検出する。検出電極28については、Y軸プラス側
に広がる領域ではマイナス、Y軸マイナス側に広がる領
域ではプラスの電荷が発生しているがX軸、Y軸に対し
て線対称に形成されているため、検出電極28に発生す
る総電荷量は互いに相殺されてゼロとなる。加速度セン
サにY軸マイナス方向の加速度が加わった場合では、検
出電極26aに発生する電荷はゼロ、検出電極26bに
発生する電荷はマイナス、検出電極26cに発生する電
荷はゼロ、検出電極26dに発生する電荷はプラス、検
出電極28に発生する電荷はゼロとなる。検出電極26
aと検出電極26cに発生した電荷を差動増幅した結果
は加速度センサにY軸プラス方向の加速度が加わった場
合と符号が逆になり、加わった加速度の向きを特定でき
る。
A case where acceleration in the Y-axis direction is applied to the acceleration sensor will be described. When acceleration is applied to the acceleration sensor in the positive Y-axis direction, the charge generated on the detection electrode 26a is zero, the charge generated on the detection electrode 26b is positive,
The electric charge generated in the detection electrode 26c is zero, and the detection electrode 26d
Is negative, and the charge generated on the detection electrode 28 is zero. Here, since the detection electrode 26 is symmetric on the X axis and the Y axis and with respect to the X axis and the Y axis,
And 26d have the opposite sign and the same magnitude. The magnitude and direction of the acceleration in the Y-axis direction are detected by differentially amplifying the charges generated on the detection electrodes 26b and 26d. Regarding the detection electrode 28, a negative charge is generated in a region extending on the positive side of the Y axis and a positive charge is generated in a region extending on the negative side of the Y axis. However, since the detection electrode 28 is formed line-symmetrically with respect to the X and Y axes, The total charges generated in the detection electrodes 28 cancel each other to become zero. When acceleration in the negative Y-axis direction is applied to the acceleration sensor, the electric charge generated at the detection electrode 26a is zero, the electric charge generated at the detection electrode 26b is negative, the electric charge generated at the detection electrode 26c is zero, and the electric charge generated at the detection electrode 26d is generated. The generated charge is positive, and the charge generated on the detection electrode 28 is zero. Detection electrode 26
The sign of the result of differentially amplifying the electric charge generated at a and the detection electrode 26c is opposite to that in the case where acceleration in the Y-axis plus direction is applied to the acceleration sensor, and the direction of the applied acceleration can be specified.

【0024】前述したが、図7は加速度センサにZ軸プ
ラス方向の加速度が加わった状態を示す断面図である。
(電極は省略してある。)図8は加速度センサにZ軸マ
イナス方向の加速度が加わった状態を示す断面図であ
る。(電極は省略してある。)加速度センサにZ軸マイ
ナス方向の加速度が加わった場合は、重錘体の振れる方
向が図7と逆方向となる。加速度センサにZ軸プラス方
向の加速度が加わった場合、検出電極26a〜26dに
発生する電荷はプラス、検出電極28に発生する電荷は
マイナスとなる。ここで、検出電極26はX軸、Y軸上
で、かつ、X軸、Y軸に対して対称であるので、26a
〜26dに発生するの電荷は、符号が同じで大きさも等
しくなる。検出電極26aと検出電極26c、検出電極
26bと検出電極26dに発生する電荷を差動増幅する
ためX軸、Y軸方向に関する検出出力はゼロとなる。加
速度センサにZ軸マイナス方向の加速度が加わった場合
では、検出電極26a〜26dに発生する電荷はマイナ
ス、検出電極28に発生する電荷はプラスとなる。検出
電極26aと検出電極26c、検出電極26bと検出電
極26dに発生する電荷を差動増幅するためX軸、Y軸
方向に関する検出出力はゼロとなる。検出電極28に発
生する電荷の符号と大きさでZ軸方向の加速度の向きと
大きさが検出できる。
As described above, FIG. 7 is a sectional view showing a state in which acceleration in the Z-axis plus direction is applied to the acceleration sensor.
(Electrodes are omitted.) FIG. 8 is a cross-sectional view showing a state in which acceleration in the Z-axis minus direction is applied to the acceleration sensor. (The electrodes are omitted.) When acceleration in the negative Z-axis direction is applied to the acceleration sensor, the direction in which the weight body swings is opposite to that in FIG. When an acceleration in the Z-axis plus direction is applied to the acceleration sensor, the charge generated on the detection electrodes 26a to 26d is positive, and the charge generated on the detection electrode 28 is negative. Here, the detection electrode 26 is on the X axis and the Y axis and is symmetric with respect to the X axis and the Y axis.
The electric charges generated at .about.26d have the same sign and the same magnitude. In order to differentially amplify the electric charges generated on the detection electrodes 26a and 26c and the detection electrodes 26b and 26d, the detection outputs in the X-axis and Y-axis directions become zero. When acceleration in the negative Z-axis direction is applied to the acceleration sensor, the charge generated on the detection electrodes 26a to 26d is negative, and the charge generated on the detection electrode 28 is positive. In order to differentially amplify the electric charges generated on the detection electrodes 26a and 26c and the detection electrodes 26b and 26d, the detection outputs in the X-axis and Y-axis directions become zero. The direction and magnitude of the acceleration in the Z-axis direction can be detected from the sign and magnitude of the charge generated on the detection electrode 28.

【0025】図11は本発明の第二実施例で上面図であ
る。第二実施例は、構成は第一実施例とまったく同じ
で、圧電素子23の上面図面に形成される電極形状が異
なる。異なる部分について説明する。第一実施例におい
て形成されている円環状の検出電極28を図の如く4分
割する。4分割された検出電極28は、X軸、Y軸に対
して線対称に形成されている。検出電極26a〜26d
より引き出し電極26eが、検出電極28の分割された
部分(電極の形成されていない部分)を通り外周側に引
き出されている。分割された検出電極28は検出電極2
6の電極の形成されていない部分を通り、十字型の電極
28aを形成してお互いの電気的導通がとれるようにな
っている。分割された検出電極28の内のひとつから引
き出し電極28bが外周側に引き出されている。電極2
9の引き出し電極29aは3箇所設けられ、X軸に対し
て±45゜の位置に形成されている。第二実施例は、引
き出し電極を圧電素子23の外周側に形成することで、
リード線の固定する位置を圧電素子23の変形の少な
い、すなわち電荷の発生の少ない位置にすることができ
る。また引き出し電極は分極をした後で形成すると、圧
電素子23が変形しても引き出し電極から電荷が発生す
ることがない。従って、検出電極に発生した電荷を打ち
消すようなことがなくなり好ましい。
FIG. 11 is a top view of the second embodiment of the present invention. The configuration of the second embodiment is exactly the same as that of the first embodiment, and the shape of the electrodes formed on the top view of the piezoelectric element 23 is different. The different parts will be described. The annular detection electrode 28 formed in the first embodiment is divided into four parts as shown in FIG. The four divided detection electrodes 28 are formed line-symmetrically with respect to the X axis and the Y axis. Detection electrodes 26a to 26d
Thus, the extraction electrode 26e is drawn to the outer peripheral side through the divided portion of the detection electrode 28 (portion where no electrode is formed). The divided detection electrode 28 is the detection electrode 2
A cross-shaped electrode 28a is formed so as to pass through the portion where the electrode 6 is not formed, so that electrical continuity can be obtained. From one of the divided detection electrodes 28, an extraction electrode 28b is extended to the outer peripheral side. Electrode 2
Nine extraction electrodes 29a are provided at three places and are formed at positions of ± 45 ° with respect to the X axis. In the second embodiment, the extraction electrode is formed on the outer peripheral side of the piezoelectric element 23,
The position where the lead wire is fixed can be a position where deformation of the piezoelectric element 23 is small, that is, a position where generation of electric charge is small. If the extraction electrode is formed after polarization, no charge is generated from the extraction electrode even if the piezoelectric element 23 is deformed. Therefore, it is preferable that the charge generated in the detection electrode is not canceled.

【0026】[0026]

【発明の効果】本発明は前記のような構成にすることで
次のような効果が生じる。 1 4個の検出電極26が、X軸、Y軸上で、かつ、X
軸、Y軸に対して軸対称に形成され、円周部を加速度セ
ンサにZ軸方向の加速度を加えたときに応力がゼロとな
るライン27の内側で、ライン27より所定の距離を離
して設け、さらに円環状をした検出電極28が、X軸、
Y軸に対して軸対称に形成され加速度センサにX軸、Y
軸方向の加速度を加えたときに応力がゼロとなるライン
30より外側で、ライン30より所定の距離を離して設
けられていることで、効率よく電荷を集めることができ
検出感度が上がる。 2 圧電素子に生じる応力値とその応力値の分布してい
る分布面積の積を求め、その積の和を求めることによ
り、検出電極に発生する電荷量が等しくなるように検出
電極を形成することで、X軸、Y軸、Z軸方向の検出感
度がほぼ等しくなる。 3 各軸間の検出感度が等しくなるため、検出回路が簡
単になる。 4 回路調整の時間が短縮され安価に製造できる。 5 回路の構成が簡単になるため小型化できる。
According to the present invention, the following effects can be obtained by employing the above-described structure. 14 detection electrodes 26 are arranged on the X axis and the Y axis, and
A predetermined distance from the line 27 is formed inside the line 27, which is formed axially symmetric with respect to the axis and the Y axis, and has a circumferential portion whose stress becomes zero when acceleration in the Z-axis direction is applied to the acceleration sensor. The detection electrode 28 having a circular shape is provided on the X-axis,
The X-axis and Y-axis are formed on the acceleration sensor
By providing a predetermined distance from the line 30 outside the line 30 where the stress becomes zero when the axial acceleration is applied, the charge can be efficiently collected and the detection sensitivity increases. 2 Forming the detection electrode so that the amount of electric charge generated in the detection electrode is equal by obtaining the product of the stress value generated in the piezoelectric element and the distribution area where the stress value is distributed, and obtaining the sum of the products. Thus, the detection sensitivities in the X-axis, Y-axis, and Z-axis directions become substantially equal. (3) Since the detection sensitivity between the axes is equal, the detection circuit is simplified. (4) The time required for circuit adjustment is shortened and the circuit can be manufactured at low cost. 5 The size of the circuit can be reduced because the circuit configuration is simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は従来技術による加速度センサで正面断面
図。
FIG. 1 is a front sectional view of a conventional acceleration sensor.

【図2】図2は従来技術による加速度センサで圧電素子
側から見た平面図。
FIG. 2 is a plan view of a conventional acceleration sensor viewed from a piezoelectric element side.

【図3】本発明に係る加速度センサの第一実施例で上面
図。
FIG. 3 is a top view of the acceleration sensor according to the first embodiment of the present invention.

【図4】本発明に係る加速度センサの第一実施例で正面
断面図。
FIG. 4 is a front sectional view of the acceleration sensor according to the first embodiment of the present invention.

【図5】本発明に係る加速度センサの第一実施例で加速
度センサにX軸プラス方向の加速度が加わった状態を示
す一部断面をとった正面図。
FIG. 5 is a front view, partially in section, showing a state in which acceleration in the X-axis plus direction is applied to the acceleration sensor in the first embodiment of the acceleration sensor according to the present invention.

【図6】本発明に係る加速度センサの第一実施例で加速
度センサにX軸マイナス方向の加速度が加わった状態を
示す一部断面をとった正面図。
FIG. 6 is a front view of the acceleration sensor according to the first embodiment of the present invention, with a partial cross section showing a state in which acceleration in the X-axis negative direction is applied to the acceleration sensor;

【図7】本発明に係る加速度センサの第一実施例で加速
度センサにZ軸プラス方向の加速度が加わった状態を示
す一部断面をとった正面図。
FIG. 7 is a partial front view showing a state in which acceleration in the Z-axis plus direction is applied to the acceleration sensor in the first embodiment of the acceleration sensor according to the present invention.

【図8】本発明に係る加速度センサの第一実施例で加速
度センサにZ軸マイナス方向の加速度が加わった状態を
示す一部断面をとった正面図。
FIG. 8 is a front view of the acceleration sensor according to the first embodiment of the present invention, with a partial cross section showing a state in which acceleration in the negative Z-axis direction is applied to the acceleration sensor.

【図9】本発明に係る加速度センサの第一実施例で加速
度センサにZ軸マイナス方向の加速度を加えたときの応
力分布を示すグラフ。
FIG. 9 is a graph showing a stress distribution when acceleration in the negative Z-axis direction is applied to the acceleration sensor in the first embodiment of the acceleration sensor according to the present invention.

【図10】本発明に係る加速度センサの第一実施例で加
速度センサにX軸プラス方向の加速度を加えたときの応
力分布を示すグラフ。
FIG. 10 is a graph showing a stress distribution when an acceleration in the X-axis plus direction is applied to the acceleration sensor in the first embodiment of the acceleration sensor according to the present invention.

【図11】本発明に係る加速度センサの第二実施例で上
面図。
FIG. 11 is a top view of a second embodiment of the acceleration sensor according to the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 圧電素子 3 検出電極 4 検出電極 5 検出電極 6 検出電極 7 重錘体 20 センサ部 21 可撓部材 22 原点 23 圧電素子 24 重錘体 25 支持部材 25a 貫通穴 25b 沈み部 26 検出電極 26a 検出電極 26b 検出電極 26c 検出電極 26d 検出電極 26e 引き出し電極 27 ライン 28 検出電極 28a 電極 28b 引き出し電極 29 電極 29a 引き出し電極 30 ライン Reference Signs List 1 substrate 2 piezoelectric element 3 detection electrode 4 detection electrode 5 detection electrode 6 detection electrode 7 weight body 20 sensor unit 21 flexible member 22 origin 23 piezoelectric element 24 weight body 25 support member 25a through hole 25b sunken part 26 detection electrode 26a Detection electrode 26b Detection electrode 26c Detection electrode 26d Detection electrode 26e Extraction electrode 27 line 28 Detection electrode 28a electrode 28b Extraction electrode 29 electrode 29a Extraction electrode 30 line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 畠山 稔 長野県北佐久郡御代田町大字御代田4107番 地5 ミヨタ株式会社内 (72)発明者 半田 正人 長野県北佐久郡御代田町大字御代田4107番 地5 ミヨタ株式会社内 (72)発明者 岡田 恵也 長野県北佐久郡御代田町大字御代田4107番 地5 ミヨタ株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Minoru Hatakeyama 4107 Miyoshida, Miyoshida-cho, Kitasaku-gun, Nagano Prefecture Inside Miyota Co., Ltd. (72) Inventor Keiya Okada 4107 Miyoshida, Miyoshida-cho, Kitasaku-gun, Nagano Pref.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 板状の可撓部材と、該可撓部材の表面に
貼付される電極を設けた圧電素子と、該可撓部材に直接
または間接的に貼付される重錘体と、該可撓部材の外周
を直接または間接的に支持する支持部材を有する加速度
センサにおいて、板状の可撓部材の内部に原点を定義
し、この原点を通り該可撓部材の平面に平行な方向にX
軸を、原点においてX軸と直交し、かつ、該可撓部材の
平面に平行な方向にY軸を、原点を通り、かつ、該可撓
部材の平面に垂直な方向にZ軸をそれぞれ定義したと
き、前記加速度センサにZ軸方向の加速度を加えたとき
に圧電素子に生じる応力がゼロになる部分およびその近
傍と、該加速度センサにX、Y平面と平行な方向に加速
度を加えたときに圧電素子に生じる応力がゼロとなる部
分およびその近傍を避けて検出電極を形成することを特
徴とする加速度センサ。
A piezoelectric element provided with an electrode attached to a surface of the flexible member; a weight directly or indirectly attached to the flexible member; In an acceleration sensor having a support member that directly or indirectly supports the outer periphery of a flexible member, an origin is defined inside the plate-like flexible member, and the origin is defined in a direction parallel to a plane of the flexible member through the origin. X
The axis is defined as a Y axis in a direction orthogonal to the X axis at the origin and parallel to the plane of the flexible member, and a Z axis in a direction passing through the origin and perpendicular to the plane of the flexible member. When acceleration is applied to the acceleration sensor in a direction parallel to the X and Y planes, and in the vicinity of the portion where the stress generated in the piezoelectric element becomes zero when acceleration in the Z-axis direction is applied to the acceleration sensor, An acceleration sensor, wherein a detection electrode is formed so as to avoid a portion where stress generated in the piezoelectric element becomes zero and its vicinity.
【請求項2】 X軸、Y軸方向の加速度の検出電極は、
加速度センサにZ軸方向の加速度を加えたときに圧電素
子に生じる応力がゼロになる部分およびその近傍と、該
加速度センサにX、Y平面と平行な方向に加速度を加え
たときに圧電素子に生じる応力がゼロとなる部分および
その近傍を避け、かつ、圧電素子表面で圧電素子に生じ
る応力がゼロとなる部分の内周側に形成し、Z軸方向の
加速度の検出電極は、該加速度センサにZ軸方向の加速
度を加えたときに圧電素子に生じる応力がゼロになる部
分およびその近傍と該加速度センサにX、Y平面と平行
な方向に加速度を加えたときに圧電素子に生じる応力が
ゼロとなる部分およびその近傍を避け、かつ、圧電素子
表面で圧電素子に生じる応力がゼロとなる部分の外周側
に形成することを特徴とする請求項1記載の加速度セン
サ。
2. An electrode for detecting acceleration in the X-axis and Y-axis directions,
A portion where the stress generated in the piezoelectric element becomes zero when the acceleration in the Z-axis direction is applied to the acceleration sensor and its vicinity, and a portion in which the acceleration is applied to the piezoelectric element in a direction parallel to the X and Y planes. A portion where the generated stress is zero and its vicinity are avoided, and formed on the inner peripheral side of a portion where the stress generated in the piezoelectric element is zero on the surface of the piezoelectric element, and the detection electrode for acceleration in the Z-axis direction is the acceleration sensor. When the acceleration in the Z-axis direction is applied to the piezoelectric sensor, the stress generated in the piezoelectric element becomes zero when the acceleration is applied in a direction parallel to the X and Y planes, and in the vicinity of the portion where the stress generated in the piezoelectric element becomes zero. 2. The acceleration sensor according to claim 1, wherein the acceleration sensor is formed on an outer peripheral side of a portion where a stress generated in the piezoelectric element is zero on a surface of the piezoelectric element while avoiding a portion where the zero is present and its vicinity.
【請求項3】 X軸、Y軸方向の加速度の検出電極は、
X軸、Y軸上で、かつ、X軸、Y軸に対して対称に形成
され、Z軸方向の加速度の検出電極は、X軸、Y軸に対
して対称に形成されていることを特徴とする請求項1ま
たは請求項2記載の加速度センサ。
3. An electrode for detecting acceleration in the X-axis and Y-axis directions,
It is formed on the X axis and the Y axis and symmetrically with respect to the X axis and the Y axis, and the acceleration detection electrode in the Z axis direction is formed symmetrically with respect to the X axis and the Y axis. The acceleration sensor according to claim 1 or 2, wherein
【請求項4】 引き出し電極を外周部に設けたことを特
徴とする請求項1、請求項2または請求項3記載の加速
度センサ。
4. The acceleration sensor according to claim 1, wherein a lead electrode is provided on an outer peripheral portion.
JP8353074A 1996-12-13 1996-12-13 Acceleration sensor Pending JPH10170539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8353074A JPH10170539A (en) 1996-12-13 1996-12-13 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8353074A JPH10170539A (en) 1996-12-13 1996-12-13 Acceleration sensor

Publications (1)

Publication Number Publication Date
JPH10170539A true JPH10170539A (en) 1998-06-26

Family

ID=18428389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8353074A Pending JPH10170539A (en) 1996-12-13 1996-12-13 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPH10170539A (en)

Similar Documents

Publication Publication Date Title
US5856620A (en) Acceleration sensor
US5691471A (en) Acceleration and angular velocity detector
WO2009087858A1 (en) Angular velocity sensor
US5375336A (en) Gyro-compass
JPH0642971A (en) Sensor
US20090150029A1 (en) Capacitive integrated mems multi-sensor
US20050140356A1 (en) Multiaxial micromachined differential accelerometer
US20160341759A1 (en) Sensor and method of manufacturing same
JP3130289B2 (en) Touch signal probe
JP2009128164A (en) Composite sensor for acceleration-angular velocity-magnetic azimuth detection, and device using it
US8950258B2 (en) Micromechanical angular acceleration sensor and method for measuring an angular acceleration
US6148671A (en) Acceleration sensor and triaxial acceleration sensor
EP0706030B1 (en) Bearing sensor and bearing-distance sensor
JP4929489B2 (en) Angular velocity sensor
JPH10170538A (en) Acceleration sensor
JPH10170539A (en) Acceleration sensor
EP0620441A1 (en) Rotational accelerometer
JPH10170545A (en) Self-diagnostic function for acceleration sensor and acceleration sensor with self-diagnostic function
JPH05264577A (en) Acceleration sensor, air bag apparatus and body controller using the same
JPH10170540A (en) Acceleration sensor
JPH10300771A (en) Acceleration sensor
JPH08248060A (en) Semiconductor acceleration detector
JP2000346865A (en) Sensitivity adjusting method for acceleration sensor element
JPH09145736A (en) Composite acceleration/angular velocity sensor
Okada et al. Development of 6-axis motion sensors using piezoelectric elements