JPH10170464A - Gas sensor for detecting co - Google Patents

Gas sensor for detecting co

Info

Publication number
JPH10170464A
JPH10170464A JP35241396A JP35241396A JPH10170464A JP H10170464 A JPH10170464 A JP H10170464A JP 35241396 A JP35241396 A JP 35241396A JP 35241396 A JP35241396 A JP 35241396A JP H10170464 A JPH10170464 A JP H10170464A
Authority
JP
Japan
Prior art keywords
gas
thin film
gas sensor
alcohol
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35241396A
Other languages
Japanese (ja)
Inventor
Masaaki Kanamori
正晃 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP35241396A priority Critical patent/JPH10170464A/en
Publication of JPH10170464A publication Critical patent/JPH10170464A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a CO-detecting gas sensor which can continuously detect even in an ambience including an interfering alcohol gas and is improved in selectivity to CO gas. SOLUTION: An amorphous aluminosilicate coating layer is provided on a metallic oxide semiconductor thin film in the CO-detecting gas sensor. The amorphous aluminosilicate coating layer formed on the metallic oxide semiconductor thin film as a CO gas sensitive body is considered as a solid acid medium to promote a dehydration reaction of alcohol to ethylene. Since ethylene has a smaller gas sensitivity than alcohol, a CO selectivity is improved relatively. Moreover, when an operation temperature of the CO-detecting gas sensor is set to be, e.g. 300 deg.C, heating every predetermined time is eliminated, thereby enabling continuous detections.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CO検出用ガスセン
サに関する。更に詳しくは、ガス感応性膜として金属酸
化物半導体薄膜が用いられたCO検出用ガスセンサに関す
る。
[0001] The present invention relates to a gas sensor for detecting CO. More specifically, the present invention relates to a gas sensor for CO detection using a metal oxide semiconductor thin film as a gas-sensitive film.

【0002】[0002]

【従来の技術】市販の不完全燃焼警報器に使用されてい
るCO検出用ガスセンサは、酸化錫焼結体等の金属酸化物
半導体の薄膜をガス感応体とする所謂半導体式のセンサ
である。このセンサでは、COガス感度が室温乃至約100
℃程度で高いという性質を利用して、動作温度を100℃
以下に設定している。
2. Description of the Related Art A gas sensor for detecting CO used in a commercially available incomplete combustion alarm is a so-called semiconductor type sensor using a thin film of a metal oxide semiconductor such as a tin oxide sintered body as a gas sensitive body. With this sensor, the CO gas sensitivity is from room temperature to about 100
Operating temperature of 100 ° C, taking advantage of high temperature
It is set as follows.

【0003】ところで、このような低い温度では、大気
中の水蒸気等の雑ガスが感応体表面に吸着して、感度な
どの経時的変動を大きなものとしている。そこで、この
ような雑ガスを脱離させるための加熱が、約300〜500℃
で約1〜2分間程度行われている。このため、このような
加熱時にはCOガスの検出ができないことになり、この間
はセンサとしてデッドタイムになってしまう。即ち、CO
ガスの連続的な検出は、厳密にはできないことになる。
[0003] At such a low temperature, miscellaneous gases such as water vapor in the air are adsorbed on the surface of the sensitive body, and the temporal variation in sensitivity and the like is large. Therefore, heating to desorb such miscellaneous gases is about 300-500 ° C.
It takes about 1-2 minutes. For this reason, it is impossible to detect the CO gas at the time of such heating, and during this time, the sensor becomes dead time. That is, CO
Continuous detection of gas would not be strictly possible.

【0004】一方、連続検出可能なものとして、定電位
電解式のCO検出用ガスセンサが市販されているが、この
測定方式では電解液を用いて電気化学的な反応を利用し
ているため、そのためのメンテナンスが必要であり、ま
た高価でもある。
On the other hand, a constant-potential electrolytic gas sensor for CO detection is commercially available as a sensor capable of continuous detection. However, in this measuring method, an electrochemical reaction is used using an electrolytic solution. Requires maintenance and is expensive.

【0005】これ迄の検討の結果、廉価な半導体薄膜式
でCOガス検出を連続的に行うためには、約300℃程度の
高い温度でセンサを動作させなければならないことが分
かっている。しかるに、このような高温条件下では、CO
ガス感度よりもそれの妨害ガスであるアルコール系ガス
の感度の方が高くなるので、その影響を低減させるため
に、感応体である金属酸化物半導体そのものへのCO選択
能の付与あるいは感応体上部に設置した活性炭層による
アルコール系ガスの事前吸着などの手段が一般にとられ
ている。ところが、妨害ガスとして想定されるアルコー
ル系ガスは高濃度(約1000ppm程度)であるため、これら
の方法のみでは十分なCO選択性が得られない。
As a result of the above studies, it has been found that the sensor must be operated at a high temperature of about 300 ° C. in order to continuously detect CO gas using an inexpensive semiconductor thin film method. However, under such high temperature conditions, CO
Since the sensitivity of the alcohol-based gas, which is the interfering gas, is higher than the gas sensitivity, in order to reduce the effect, it is necessary to add CO selectivity to the metal oxide semiconductor itself, or In general, means such as pre-adsorption of alcohol-based gas by an activated carbon layer installed in a bed is used. However, since the alcohol-based gas assumed as the interfering gas has a high concentration (about 1000 ppm), sufficient CO selectivity cannot be obtained only by these methods.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、妨害
ガスであるアルコール系ガスを含む雰囲気中においても
連続検出が可能であり、かつCOガスに対する選択性を向
上せしめたCO検出用ガスセンサを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a gas sensor for CO detection capable of continuous detection even in an atmosphere containing an alcohol-based gas as an interfering gas and having improved selectivity for CO gas. To provide.

【0007】[0007]

【課題を解決するための手段】かかる本発明の目的は、
金属酸化物半導体薄膜上に非晶質のアルミノシリケート
被覆層が設けられたCO検出用ガスセンサによって達成さ
れる。
SUMMARY OF THE INVENTION The object of the present invention is as follows.
This is achieved by a CO detection gas sensor in which an amorphous aluminosilicate coating layer is provided on a metal oxide semiconductor thin film.

【0008】[0008]

【発明の実施の形態】COガス感応体としての金属酸化物
半導体薄膜としては、酸化錫、酸化亜鉛、酸化鉄、酸化
チタン等の薄膜(膜厚約150〜500nm)が用いられる。特
に、酸化錫半導体薄膜が好ましく、それの形成は真空蒸
着法、スパッタリング法、イオンプレーティング法など
により直接SnO2薄膜を形成させる方法、金属Sn薄膜など
を形成させた後熱処理して酸化する方法、あるいはSnを
含む有機金属モノマーをプラズマ重合させてプラズマ重
合膜を形成させ、これを熱処理する方法(特開昭63-2611
48号公報)などによって行われる。
BEST MODE FOR CARRYING OUT THE INVENTION As a metal oxide semiconductor thin film as a CO gas sensitive material, a thin film (thickness: about 150 to 500 nm) of tin oxide, zinc oxide, iron oxide, titanium oxide or the like is used. In particular, a tin oxide semiconductor thin film is preferable, and is formed by a method of directly forming a SnO 2 thin film by a vacuum deposition method, a sputtering method, an ion plating method, or the like, or a method of forming a metal Sn thin film and then heat-treating to oxidize the thin film. Alternatively, a method of plasma-polymerizing an organometallic monomer containing Sn to form a plasma-polymerized film and heat-treating the film (Japanese Patent Application Laid-Open No. 63-2611)
No. 48).

【0009】これらの金属酸化物半導体薄膜は、石英、
ガラス、アルミナ等の絶縁性基板上に形成された電極を
部分的にあるいは全体的に覆うような形で用いられる。
電極としては、一般に用いられている対向電極あるいは
くし形電極等が用いられる。電極形成材料としては、化
学的安定性の点から、各種貴金属の中でも白金で形成す
るのが最適である。電極の形成は、各種の蒸着法、スパ
ッタリング法などによって行われる。
These metal oxide semiconductor thin films are made of quartz,
It is used so as to partially or entirely cover an electrode formed on an insulating substrate such as glass or alumina.
As the electrode, a commonly used counter electrode or comb electrode is used. As a material for forming an electrode, it is most preferable to use platinum among various noble metals from the viewpoint of chemical stability. The electrodes are formed by various vapor deposition methods, sputtering methods, and the like.

【0010】金属酸化物半導体薄膜上には、非晶質のア
ルミノシリケート被覆層が形成される。非晶質アルミノ
シリケート被覆層の形成は、ゾル・ゲル法によって行わ
れる。ゾル・ゲル法では、 テトラエトキシシラン 約0.1〜1M(約0.2〜0.5M) アルミニウムトリイソプロポキシド 約0.01〜1M(約0.025〜0.5M) 水 約0.06〜6M(約0.15〜3M) トリエタノールアミン 約0.01〜1M(約0.03〜0.65M) の濃度でそれぞれ溶解させたイソプロパノール溶液(カ
ッコ内は好ましい濃度)よりなるゾル中に、金属酸化物
半導体薄膜を形成させたガス検出素子を浸漬し、約1〜6
cm/分の引上げ速度で引上げ、空気中での乾燥を約100〜
120℃で約5〜15分間行った後、約400〜800℃で約10〜60
分間焼成するという一連の操作を、一般には約1〜10回
程度行うことにより、膜厚約0.1〜10μmの非晶質アルミ
ノシリケート被覆層の形成が行われる。
[0010] An amorphous aluminosilicate coating layer is formed on the metal oxide semiconductor thin film. The formation of the amorphous aluminosilicate coating layer is performed by a sol-gel method. In the sol-gel method, tetraethoxysilane about 0.1 to 1 M (about 0.2 to 0.5 M) Aluminum triisopropoxide about 0.01 to 1 M (about 0.025 to 0.5 M) Water about 0.06 to 6 M (about 0.15 to 3 M) Triethanolamine A gas detection element on which a metal oxide semiconductor thin film is formed is immersed in a sol consisting of an isopropanol solution (preferred concentration in parentheses) dissolved at a concentration of about 0.01 to 1 M (about 0.03 to 0.65 M). 1-6
With a pulling speed of cm / min, dry in the air about 100 ~
After about 5-15 minutes at 120 ° C, about 10-60 at about 400-800 ° C
A series of operations of baking for 1 minute are generally performed about 1 to 10 times to form an amorphous aluminosilicate coating layer having a thickness of about 0.1 to 10 μm.

【0011】[0011]

【発明の効果】COガス感応体としての金属酸化物半導体
薄膜上に形成させた非晶質アルミノシリケート被覆層
は、固体酸触媒としてアルコールのエチレンへの脱水反
応を促進するものと考えられ、エチレンはアルコールと
比較してガス感度が小さいので、相対的にCO選択性が向
上するものと考えられる。
The amorphous aluminosilicate coating layer formed on the metal oxide semiconductor thin film as a CO gas sensitive substance is considered to promote the dehydration reaction of alcohol to ethylene as a solid acid catalyst. It is thought that the gas sensitivity is lower than that of alcohol, so that the CO selectivity is relatively improved.

【0012】また、このCO検出用ガスセンサは、動作温
度を例えば300℃とすることで一定時間毎の加熱が不要
となり、連続的検出を可能とさせる。
Further, by setting the operating temperature to, for example, 300 ° C., the CO detection gas sensor does not need to be heated at regular time intervals, thereby enabling continuous detection.

【0013】[0013]

【実施例】次に、実施例について本発明を説明する。Next, the present invention will be described by way of examples.

【0014】実施例 石英基板上に電子ビーム蒸着法で白金電極を形成し、こ
の電極部分を含む基板表面側にプラズマCVD法を適用
し、プラズマCVD薄膜を形成させた。プラズマCVD法の適
用には、テトラメチル錫-酸素(体積比1:10)混合ガスが
用いられた。
EXAMPLE A platinum electrode was formed on a quartz substrate by electron beam evaporation, and a plasma CVD method was applied to the surface of the substrate including the electrode to form a plasma CVD thin film. For the application of the plasma CVD method, a mixed gas of tetramethyltin-oxygen (volume ratio 1:10) was used.

【0015】これを、絶縁性基板の裏面側に設けられた
薄膜ヒータによって、基板温度を200℃に加熱した状態
で、出力200Wの高周波電力を30分間印加することによ
り、透明かつ非晶質のプラズマCVD薄膜を形成させた
後、基板ごと700℃の乾燥空気中で24時間熱処理して、
膜厚250nmの酸化錫薄膜とした。
By applying a high-frequency power of 200 W for 30 minutes while heating the substrate temperature to 200 ° C. by a thin film heater provided on the back side of the insulating substrate, a transparent and amorphous After forming the plasma CVD thin film, heat treatment for 24 hours in dry air at 700 ° C together with the substrate,
A tin oxide thin film having a thickness of 250 nm was obtained.

【0016】この酸化錫薄膜上に、ゾル・ゲル法によっ
て非晶質アルミノシリケート被覆層を形成させた。ゾル
・ゲル法では、 テトラエトキシシラン 0.5M アルミニウムトリイソプロポキシド 0.125M 水 0.75M トリエタノールアミン 0.175M の濃度でそれぞれ溶解させたイソプロパノールよりなる
ゾル中に、酸化錫薄膜を形成させたガス検出素子を浸漬
し、6cm/分の引上げ速度で引上げ、空気中での乾燥を11
0℃で10分間行った後、600℃で30分間焼成するという一
連の工程を6回行うことにより、膜厚約5μmの非晶質ア
ルミノシリケート薄膜を被覆層として形成させた。この
非晶質アルミノシリケート薄膜について、X線光電子分
光法による組成分析を行った結果、Si/Al=4の元素比を
有していることが分かった。
An amorphous aluminosilicate coating layer was formed on the tin oxide thin film by a sol-gel method. In the sol-gel method, a gas detection element in which a tin oxide thin film is formed in a sol consisting of tetraethoxysilane 0.5M aluminum triisopropoxide 0.125M water 0.75M triethanolamine dissolved at a concentration of 0.175M, respectively. Immersed, pulled up at a pulling speed of 6 cm / min, and dried in air for 11 hours.
A series of steps of baking at 0 ° C. for 10 minutes and baking at 600 ° C. for 30 minutes was performed six times to form an amorphous aluminosilicate thin film having a thickness of about 5 μm as a coating layer. The composition analysis of the amorphous aluminosilicate thin film by X-ray photoelectron spectroscopy revealed that the thin film had an element ratio of Si / Al = 4.

【0017】このようにして製造された非晶質アルミノ
シリケート被覆酸化錫薄膜ガス検出素子のエタノールガ
スに対するCO選択性を300℃の温度で調べたところ、そ
の値は0.43であった。ここで、CO選択性は、CO濃度50pp
mの空気中での感度Rair/Rco(=396/208)とエタノー
ル1000ppm中での感度Rair/REtOH(=396/88.8)との比
として示される。
When the CO selectivity to ethanol gas of the amorphous aluminosilicate-coated tin oxide thin film gas detecting element thus produced was examined at a temperature of 300 ° C., the value was 0.43. Here, the CO selectivity is the CO concentration of 50pp
represented as the ratio of the sensitivity Rair / R EtOH (= 396 / 88.8) of the sensitivity Rair / Rco (= 396/208 ) and ethanol 1000ppm in in m in the air.

【0018】また、動作温度を300℃とすることで、一
定時間毎の加熱が不要となり、連続的検出が可能となっ
た。
Further, by setting the operating temperature to 300 ° C., heating at regular intervals becomes unnecessary, and continuous detection becomes possible.

【0019】比較例 実施例において、非晶質アルミノシリケート被覆層を設
けない酸化錫薄膜ガス検出素子についてCO選択性を調べ
ると、Rair/Rco(=226/56.6)とRair/REtOH(=226
/6.7)との比から、その値は0.12であった。
Comparative Example In the example, the CO selectivity of the tin oxide thin film gas detecting element having no amorphous aluminosilicate coating layer was examined. Rair / Rco (= 226 / 56.6) and Rair / R EtOH (= 226
/6.7), the value was 0.12.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年2月21日[Submission date] February 21, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Correction target item name] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0002】[0002]

【従来の技術】 市販の不完全燃焼警報器に使用されて
いるCO検出用ガスセンサは、酸化錫焼結体等の金属酸
化物半導体の薄膜をガス感応体とする所謂半導体式のセ
ンサである。このセンサでは、室温乃至約100℃程度
の低い温度でCOガス感度が高いという性質を利用し
て、動作温度を100℃以下に設定している。
2. Description of the Related Art A gas sensor for CO detection used in a commercially available incomplete combustion alarm is a so-called semiconductor sensor using a thin film of a metal oxide semiconductor such as a tin oxide sintered body as a gas sensitive body. With this sensor, room temperature to about 100 ° C
The operating temperature is set to 100 ° C. or lower by utilizing the characteristic that the CO gas sensitivity is high at a low temperature .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属酸化物半導体薄膜上に非晶質のアル
ミノシリケート被覆層が設けられたCO検出用ガスセン
サ。
1. A gas sensor for detecting CO in which an amorphous aluminosilicate coating layer is provided on a metal oxide semiconductor thin film.
【請求項2】 妨害ガスであるアルコール系ガスを含む
雰囲気中で用いられる請求項1記載のCO検出用ガスセン
サ。
2. The gas sensor for detecting CO according to claim 1, wherein the gas sensor is used in an atmosphere containing an alcohol-based gas as an interfering gas.
JP35241396A 1996-12-13 1996-12-13 Gas sensor for detecting co Pending JPH10170464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35241396A JPH10170464A (en) 1996-12-13 1996-12-13 Gas sensor for detecting co

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35241396A JPH10170464A (en) 1996-12-13 1996-12-13 Gas sensor for detecting co

Publications (1)

Publication Number Publication Date
JPH10170464A true JPH10170464A (en) 1998-06-26

Family

ID=18423912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35241396A Pending JPH10170464A (en) 1996-12-13 1996-12-13 Gas sensor for detecting co

Country Status (1)

Country Link
JP (1) JPH10170464A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023224A (en) * 2004-07-09 2006-01-26 Uchiya Thermostat Kk Gas detecting element and its manufacturing method
AU2010249247A1 (en) * 2009-12-14 2011-06-30 Kidde Technologies, Inc Sensor apparatus and method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023224A (en) * 2004-07-09 2006-01-26 Uchiya Thermostat Kk Gas detecting element and its manufacturing method
AU2010249247A1 (en) * 2009-12-14 2011-06-30 Kidde Technologies, Inc Sensor apparatus and method therefor
AU2010249247B2 (en) * 2009-12-14 2013-02-14 Kidde Technologies, Inc Sensor apparatus and method therefor
US8534117B2 (en) 2009-12-14 2013-09-17 Kidde Technologies, Inc. Sensor apparatus and method therefor

Similar Documents

Publication Publication Date Title
Quaranta et al. A novel gas sensor based on SnO2/Os thin film for the detection of methane at low temperature
Zhang et al. H2 sensors based on WO3 thin films activated by platinum nanoparticles synthesized by electroless process
JP2829416B2 (en) Gas sensing element
Cantalini et al. Investigation on the cross sensitivity of NO2 sensors based on In2O3 thin films prepared by sol-gel and vacuum thermal evaporation
De et al. Sol–gel derived pure and palladium activated tin oxide films for gas-sensing applications
JPS59119249A (en) Detecting element of carbon monoxide and its production
JP2003511867A (en) Semiconductor component, electronic component, sensor system, and method of manufacturing semiconductor component
JPH10170464A (en) Gas sensor for detecting co
JP4602000B2 (en) Hydrogen gas detection element, hydrogen gas sensor, and hydrogen gas detection method
JPH05281177A (en) Gas sensor
Korošec et al. The role of thermal analysis in optimization of the electrochromic effect of nickel oxide thin films, prepared by the sol–gel method. Part I
CN113637943A (en) Preparation method of photosensitive carbon disulfide sensor
EP3542152B1 (en) A gas sensor for detecting a gas component
Horvath et al. Investigation of SnO2 thin film evolution by thermoanalytical and spectroscopic methods
JPH1151892A (en) Co gas detecting element
JPH05240820A (en) Carbon monoxide gas sensor
Seki et al. Evolution of water vapor from indium-tin-oxide thin films fabricated by various deposition processes
JP3170909B2 (en) Manufacturing method of gas detection element
Morley et al. Annealing behaviour in vacuum-deposited films of silicon oxide
JPH10104185A (en) Production of gas detection element
JPH0650919A (en) Gas sensor
JPH06148112A (en) Hydrogen gas detecting element
JPH0155406B2 (en)
RU2087048C1 (en) Method for steam-phase and chemical plasma stimulation of gas-sensing film deposition
Puzzovio et al. TPD and ITPD study of materials used as chemoresistive gas sensors