JPH10169803A - Valve body and valve seat - Google Patents

Valve body and valve seat

Info

Publication number
JPH10169803A
JPH10169803A JP26641397A JP26641397A JPH10169803A JP H10169803 A JPH10169803 A JP H10169803A JP 26641397 A JP26641397 A JP 26641397A JP 26641397 A JP26641397 A JP 26641397A JP H10169803 A JPH10169803 A JP H10169803A
Authority
JP
Japan
Prior art keywords
valve
valve seat
valve body
parts
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26641397A
Other languages
Japanese (ja)
Inventor
Kenji Ito
健二 伊藤
Satoru Fukuzawa
覚 福澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP26641397A priority Critical patent/JPH10169803A/en
Publication of JPH10169803A publication Critical patent/JPH10169803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multiple-Way Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a valve body and a valve seat of a valve system which show no anisotropy in a contraction ratio at the time of molding, sufficient self-lubricancy, excellent abrasion resistance on sliding surfaces, hard-to damage even if the foreign materials infiltrate between their sliding contact surface, and excellent water tightness for long-time continuous use. SOLUTION: A valve body 7 is superposed on a valve seat 5 having a valve hole 6. The valve body 7 is slid against the valve seat 5 for opening and closing the valve hole 6. In such a valve system, at least one of the valve seat 5 and the valve body 7 is made of underwater slidable resin component which is prepared by adding glass carbon with means grain diameter 3 to 30 micrometers by 40 to 165 parts by weight, preferably fluorine contained resin powder such as tetrafluoroethylene resin by 1 to 30 parts by weight, to polycyano aryl ether resin 100 parts by weight.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、温・冷水等の混
合水栓、便器用温水洗浄器の流路切り換え栓、イオン整
水器の切替え栓などのスライド型の弁装置に用いられる
弁体および弁座に関し、特に水中摺動性樹脂組成物から
なる弁体および弁座に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a valve body used for a slide type valve device such as a mixing faucet for hot / cold water, a flow switching plug for a hot water washer for a toilet bowl, and a switching plug for an ion water conditioner. In particular, the present invention relates to a valve element and a valve seat made of an underwater slidable resin composition.

【0002】[0002]

【従来の技術】水中で摺動する部品としては、温・冷水
等の混合水栓、便器用温水洗浄器の流路切り換え栓、イ
オン整水器の切替え栓などのスライド型の弁装置が知ら
れている。
2. Description of the Related Art As sliding parts in water, there are known sliding-type valve devices such as a mixing faucet for hot / cold water, a flow switching faucet for a hot water washer for toilet bowls, and a switching faucet for an ion water conditioner. Have been.

【0003】例えば、湯と水とを混合するスライド型の
弁装置として、図1および図2に示す構造の弁装置は、
湯と水とを混合するスライド型の弁装置であって、弁箱
1の下部に取付けた底板2に二つの環状パッキン3を取
付けてそれぞれの内側を湯または水の流入口4とし、底
板2上に設けた弁座5に前記の流入口4のそれぞれと連
通する2つの弁孔6を形成し、弁体7上にレバーホルダ
8を回転自在に取付け、これにピン9を介して摺動自在
に支持されたレバー軸10の下端部を弁体7上面の方形
状窪み11に嵌めた状態に連結し、レバー12を上下左
右に揺動する操作によって弁体7を弁座5の座面13に
摺接させて2つの弁孔6をそれぞれまたは両弁孔6、6
を同時に開閉させるようにしている。
For example, as a slide type valve device for mixing hot water and water, a valve device having a structure shown in FIGS.
This is a slide type valve device for mixing hot and cold water, wherein two annular packings 3 are attached to a bottom plate 2 attached to a lower portion of a valve box 1, and the inside of each is a hot water or water inflow port 4. Two valve holes 6 communicating with the respective inlets 4 are formed in a valve seat 5 provided above, and a lever holder 8 is rotatably mounted on a valve body 7, and slides through a pin 9 to this. The lower end of the freely supported lever shaft 10 is connected to a state in which the lower end is fitted into a rectangular recess 11 on the upper surface of the valve body 7, and the valve body 7 is swung up and down and right and left so that the valve body 7 is seated on the seat surface of the valve seat 5. 13 so as to slide the two valve holes 6 respectively or both valve holes 6, 6
Are opened and closed at the same time.

【0004】弁体7を動作させて弁孔6を開放すると、
2つの流入口4にそれぞれ供給される湯と水は、弁孔6
から弁体7の下部に切り欠いて形成された流路14に流
れて混合室15に流入し、さらに弁箱1の側壁に形成さ
れた混合水の出口16から蛇口先端方向に吐出されるこ
とになる。
When the valve hole 7 is opened by operating the valve body 7,
Hot water and water supplied to the two inflow ports 4 respectively are supplied to the valve holes 6.
Flow into the mixing chamber 15 from the bottom of the valve element 7 and flow into the mixing chamber 15, and further discharged from the outlet 16 of the mixed water formed on the side wall of the valve box 1 toward the faucet tip. become.

【0005】このような弁装置の弁体または弁座の成形
用樹脂組成物として、耐クリープ性および潤滑性に優れ
たものとして、ポリフェニレンサルファイド樹脂(以
下、PPS樹脂と略記する。)25〜80重量%と平均
繊維径が8μm以下の炭素繊維20〜75重量%からな
り、さらに天然マイカなどの無機粉末充填剤を配合した
樹脂組成物が、特開平2−190677号に開示されて
いる。
As a resin composition for molding a valve body or a valve seat of such a valve device, a polyphenylene sulfide resin (hereinafter abbreviated as PPS resin) 25 to 80 having excellent creep resistance and lubricating properties is used. JP-A-2-190677 discloses a resin composition comprising 20% to 75% by weight of carbon fibers having an average fiber diameter of 8 μm or less and further containing an inorganic powder filler such as natural mica.

【0006】また、摺接面の耐摩耗性を向上させ、摺接
面に傷が付いて止水性能が低下することを防止した技術
としては、特開平6−213341号に、弁座または弁
体の少なくとも一方が、ポリシアノアリールエーテル樹
脂に炭素繊維を配合した樹脂組成物の成形体からなるも
のが開示されている。
Japanese Patent Application Laid-Open No. 6-213341 discloses a technique for improving the abrasion resistance of the sliding contact surface and preventing the sliding contact surface from being damaged to reduce the water stopping performance. It is disclosed that at least one of the bodies is formed of a resin composition formed by mixing carbon fibers with a polycyano aryl ether resin.

【0007】[0007]

【発明が解決しようとする課題】しかし、ポリシアノア
リールエーテル樹脂に炭素繊維を配合した弁体を採用し
た水中摺動性樹脂組成物は、成形時の収縮率に異方性が
あり、寸法精度が悪く、また自己潤滑性も充分でないと
いう問題点がある。
However, an underwater slidable resin composition employing a valve body in which a carbon fiber is blended with a polycyanoaryl ether resin has anisotropy in shrinkage during molding and has dimensional accuracy. And the self-lubricating property is not sufficient.

【0008】特に前記した従来の弁装置では、成形時の
収縮率の異方性を解消し、寸法精度が良く、充分な自己
潤滑性を必要としていた。
In particular, the conventional valve device described above requires anisotropy of shrinkage during molding, requires high dimensional accuracy, and requires sufficient self-lubricating properties.

【0009】さらに、このような弁装置には、耐摩耗性
が必要であると共に、異物が進入した場合にも表面粗さ
を増大させず、吸水による膨潤、水圧、機械的または熱
的衝撃があっても平面度に狂いが発生せず、止水性能を
低下させないという性質も必要である。
Further, such a valve device is required to have abrasion resistance, and does not increase the surface roughness even when foreign matter enters, and suffers from swelling due to water absorption, water pressure, mechanical or thermal shock. It is also necessary to have a property that the flatness is not deviated even if it is present and the water stopping performance is not reduced.

【0010】そこで、この発明の課題は、上記したよう
な問題点を解決して、弁装置の弁体または弁座を、成形
時の収縮率に異方性がなく、寸法精度のよいものとする
ことであり、さらに自己潤滑性を充分にすることであ
る。
[0010] Therefore, an object of the present invention is to solve the above-mentioned problems and to provide a valve element or a valve seat of a valve device that has no anisotropy in the shrinkage ratio during molding and has good dimensional accuracy. And to have sufficient self-lubricating properties.

【0011】そして、そのような弁装置の使用中に、弁
体や弁座の摺接面の耐摩耗性がよく、異物が摺接面に侵
入しても傷つき難く(耐傷付性)、長時間の連続使用に
も止水性を充分に発揮する優れた弁装置を提供すること
である。
During use of such a valve device, the sliding contact surfaces of the valve element and the valve seat have good abrasion resistance, and are hardly damaged even when foreign matter enters the sliding contact surface (scratch resistance). An object of the present invention is to provide an excellent valve device that sufficiently exhibits water-stopping even during continuous use over time.

【0012】[0012]

【課題を解決するための手段】上記した課題を解決する
ため、この発明においては、弁座に弁体を重ね合わせ、
弁体を弁座に対して摺動させる弁装置用の弁体または弁
座において、前記弁座または弁体の少なくとも一方が、
ポリシアノアリールエーテル樹脂100重量部に対し
て、平均粒径が3〜30μmのガラス状カーボン40〜
165重量部を配合した樹脂組成物の成形体であること
を特徴とする弁体または弁座としたのである。
In order to solve the above-mentioned problems, in the present invention, a valve element is superimposed on a valve seat,
In a valve body or a valve seat for a valve device for sliding a valve body with respect to a valve seat, at least one of the valve seat or the valve body is
Glassy carbon having an average particle diameter of 3 to 30 μm is used for 100 parts by weight of the polycyano aryl ether resin.
A valve body or a valve seat characterized by being a molded body of a resin composition containing 165 parts by weight.

【0013】また、上記同様の課題を解決するため、こ
の発明においては、弁座に弁体を重ね合わせ、弁体を弁
座に対して摺動させる弁装置用の弁体または弁座におい
て、前記弁座または弁体の少なくとも一方が、ポリシア
ノアリールエーテル樹脂100重量部に対して、平均粒
径が3〜30μmのガラス状カーボン40〜165重量
部、フッ素系樹脂粉末を1〜30重量部の割合で配合し
た樹脂組成物の成形体であることを特徴とする弁体また
は弁座としたのである。
In order to solve the same problem as described above, according to the present invention, a valve element or a valve seat for a valve device in which a valve element is overlapped on a valve seat and the valve element is slid with respect to the valve seat, At least one of the valve seat and the valve body is composed of 40 to 165 parts by weight of glassy carbon having an average particle diameter of 3 to 30 μm and 1 to 30 parts by weight of a fluorine-based resin powder based on 100 parts by weight of the polycyanoaryl ether resin. And a valve body or valve seat characterized in that it is a molded product of the resin composition blended in the ratio of

【0014】[0014]

【発明の実施の形態】まず、この発明におけるポリシア
ノアリールエーテル樹脂(以下、PENと略記する。)
は、下記化1の式で示す繰り返し単位からなる化合物、
またはこの繰り返し単位と共に下記化2の式で示す他の
繰り返し単位とが、PEN本来の特性を失われない範囲
で、約20モル%以下の比率で共存した重合体である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the polycyano aryl ether resin (hereinafter abbreviated as PEN) in the present invention.
Is a compound comprising a repeating unit represented by the following formula:
Alternatively, it is a polymer in which the repeating unit together with another repeating unit represented by the following formula (2) coexists at a ratio of about 20 mol% or less within a range that does not lose the original properties of PEN.

【0015】また、PENは、融点340℃、ガラス転
移温度145℃の結晶性樹脂で結晶化速度は230〜2
40℃の時に最大となる。圧縮強さは約2100kgf
/cm2 前後で良好な耐クリープ特性を有する。また、
摩擦摩耗特性に加え、耐熱水性にも優れるため、弁体と
して使用するには好適である。
PEN is a crystalline resin having a melting point of 340.degree. C. and a glass transition temperature of 145.degree.
It is maximum at 40 ° C. Compressive strength is about 2100kgf
/ Cm 2 and has good creep resistance. Also,
Since it has excellent hot water resistance in addition to friction and wear characteristics, it is suitable for use as a valve body.

【0016】[0016]

【化1】 Embedded image

【0017】[0017]

【化2】 Embedded image

【0018】このようなPENは、たとえば、p−クロ
ルフェノールを溶媒とする0.2g/dl濃度の溶液の
60℃における還元粘度(ηsp/C)が0.3dl/
g以上のものが好ましい。これらは、たとえば出光興産
社から、ポリエーテルニトリル(ID300)として市
販されている。なお、PENの製造方法は、特開昭63
−3059号公報の実施例においても開示されているよ
うに、ジハロゲノベンゾニトリル(2,4−ジハロゲノ
ベンゾニトリルまたは2,6−ジハロゲノベンゾニトリ
ルが好ましく、ハロゲンはフッ素または塩素が好まし
い)と、レゾルシンのアルカリ金属塩(ナトリウムまた
はカリウムが好ましい)とを、中性極性溶媒中で反応さ
せることにより、容易に調製できる。
Such a PEN has, for example, a reduced viscosity (ηsp / C) at 60 ° C. of a solution having a concentration of 0.2 g / dl using p-chlorophenol as a solvent of 0.3 dl / C.
g or more are preferable. These are commercially available, for example, from Idemitsu Kosan as polyether nitrile (ID300). The method of manufacturing PEN is disclosed in
As disclosed in Examples of JP-3059, dihalogenobenzonitrile (preferably 2,4-dihalogenobenzonitrile or 2,6-dihalogenobenzonitrile, and halogen is preferably fluorine or chlorine). And an alkali metal salt of resorcinol (preferably sodium or potassium) in a neutral polar solvent to easily prepare it.

【0019】この発明に用いるガラス状カーボンは、熱
硬化性合成樹脂であるフェノール樹脂またはフラン樹脂
などを炭化焼成して得られる特定の結晶構造を有しない
ガラス状のカーボン(アモルファス、すなわち非晶質で
あって固体のカーボンと同じ程度の硬さ(粘度)を有す
る)であり、通常、粉体状のものを用いる。
The glassy carbon used in the present invention is a glassy carbon (amorphous, ie, amorphous) having no specific crystal structure obtained by carbonizing and firing a phenol resin or a furan resin which is a thermosetting synthetic resin. And having the same degree of hardness (viscosity) as solid carbon), and is usually in powder form.

【0020】フェノール樹脂粉末を原料とするガラス状
カーボンの市販品としては、分子内にメチロール基を有
する重量平均分子量3000以上のフェノール樹脂を8
00℃または2000℃で焼成(熱処理)して得られた
もの(鐘紡社製:ベルパールC−800、同社製:ベル
パールC−2000)があり、これらを平均粒径3〜3
0μmの微粒子状に調整したものを用いることができ
る。なお、ガラス状カーボンは、熱処理温度を高くする
ほど黒鉛の構造に近づいたものが得られる。
Commercially available vitreous carbon made from phenol resin powder is a phenol resin having a methylol group in the molecule and having a weight average molecular weight of 3000 or more.
There is a product obtained by firing (heat treatment) at 00 ° C. or 2000 ° C. (manufactured by Kanebo: Bellpearl C-800, manufactured by the company: Bellpearl C-2000), and these have an average particle size of 3 to 3.
Fine particles having a particle size of 0 μm can be used. In addition, as the glassy carbon, the higher the heat treatment temperature, the closer to the graphite structure is obtained.

【0021】この発明に用いるガラス状カーボンの平均
粒径は、3〜30μmである。なぜなら、上記所定粒径
範囲未満では、粒子が凝集しやすくマトリックス中で均
一分散が困難になって所期した摺動特性が得られず、所
定粒径範囲を越えると、摺動相手材への攻撃性が大きく
なるからである。
The average particle size of the glassy carbon used in the present invention is 3 to 30 μm. The reason is that if the particle diameter is less than the above-mentioned predetermined particle size range, the particles tend to agglomerate and it is difficult to uniformly disperse in the matrix, and the desired sliding characteristics cannot be obtained. This is because the aggressiveness increases.

【0022】ガラス状カーボンのPENに対する配合割
合(重量部)は、PEN100重量部に対して、ガラス
状カーボン40〜165重量部である。なぜなら、ガラ
ス状カーボンが上記所定範囲未満では、弾性率が小さす
ぎて弁体の充分な止水ができず、また所定範囲を越える
量では成形性が悪く、しかも耐衝撃強さが著しく低下す
るからである。
The mixing ratio (parts by weight) of glassy carbon to PEN is 40 to 165 parts by weight of glassy carbon with respect to 100 parts by weight of PEN. Because, when the glassy carbon is less than the above-mentioned predetermined range, the elastic modulus is too small to sufficiently stop the water of the valve body, and when the amount exceeds the predetermined range, the formability is poor and the impact strength is remarkably reduced. Because.

【0023】また、PEN100重量部に対して、ガラ
ス状カーボン40〜165重量部を添加し、さらにフッ
素系樹脂粉末を添加してもよい。フッ素系樹脂粉末を添
加することによって、組成物の摺動性が向上し、弁装置
の弁体または弁座に採用した場合は操作性(ハンドルト
ルク)が軽減されると共に、操作時に発生しやすい摺動
音(異音)も解消できるからである。
Further, 40 to 165 parts by weight of glassy carbon may be added to 100 parts by weight of PEN, and a fluorine resin powder may be further added. By adding the fluororesin powder, the slidability of the composition is improved, and the operability (handle torque) is reduced when adopted for a valve body or a valve seat of a valve device, and is likely to occur during operation. This is because sliding noise (abnormal noise) can be eliminated.

【0024】上記したフッ素系樹脂の代表例として、下
記に列挙したような樹脂が挙げられる。なお、〔 〕内
には熱分解温度を示した。 ポリテトラフルオロエチレン(PTFE)、〔約5
08〜538℃〕 テトラフルオロエチレン−パーフルオロアルキルビ
ニルエーテル共重合体(PFA)、〔約464℃以上〕 テトラフルオロエチレン−ヘキサフルオロプロピレ
ン共重合体(FEP)、〔約419℃以上〕 ポリクロロトリフルオロエチレン(PCTFE)
〔約347〜418℃〕 テトラフルオロエチレン−エチレン共重合体(ET
FE)、〔約347℃以上〕 クロロトリフルオロエチレン−エチレン共重合体
(ECTFE)、〔約330℃以上〕 ポリビニリデンフルオライド(PVDF)、〔約4
00〜475℃〕 ポリビニルフルオライド(PVF)、〔約372〜
480℃〕 テトラフルオロエチレン−ヘキサフルオロプロピレ
ン−パーフルオロアルキルビニルエーテル共重合体(E
PE)。
Typical examples of the above-mentioned fluorine-based resins include the resins listed below. In addition, [] shows the thermal decomposition temperature. Polytetrafluoroethylene (PTFE), [about 5
08 to 538 ° C] tetrafluoroethylene-perfluoroalkylvinyl ether copolymer (PFA), [about 464 ° C or more] tetrafluoroethylene-hexafluoropropylene copolymer (FEP), [about 419 ° C or more] polychlorotrifluoro Ethylene (PCTFE)
[About 347 to 418 ° C] Tetrafluoroethylene-ethylene copolymer (ET
FE), [about 347 ° C. or more] chlorotrifluoroethylene-ethylene copolymer (ECTFE), [about 330 ° C. or more] polyvinylidene fluoride (PVDF), [about 4
00 to 475 ° C.] polyvinyl fluoride (PVF), [about 372 to
480 ° C.] tetrafluoroethylene-hexafluoropropylene-perfluoroalkylvinyl ether copolymer (E
PE).

【0025】また、フッ素系樹脂は、上記したフッ素樹
脂のモノマーの例えば約1:10から10:1の重合量
で2種類以上の共重合体や、3元共重合体などのフッ素
化ポリオレフィンなどであってもよく、これらは、固体
潤滑剤としての特性を示す。このなかでもPTFEは、
耐熱性、耐薬品性、非粘着性、低摩擦係数などの諸特性
に優れており好ましいものであるといえる。
The fluororesin is, for example, a fluorinated polyolefin such as two or more copolymers or terpolymers of the above-mentioned fluororesin monomers in a polymerization amount of about 1:10 to 10: 1. Which exhibit properties as a solid lubricant. Among them, PTFE is
It has excellent properties such as heat resistance, chemical resistance, non-adhesion, and low friction coefficient, and can be said to be preferable.

【0026】これらのフッ素系樹脂群も微分熱分解開始
温度が比較的高いので好ましい。例えば、PTFE、P
VDFの分解点は、それぞれ約490℃、約350℃で
あり、これらの微分熱分解開始温度は、それぞれ約55
5℃、約460℃をも示し、フッ素系樹脂のなかでもパ
ーフロロ系のPTFE、PFA、FEP等は、高温特性
に優れていて好ましい。そのため、ポリシアノアリール
エーテル樹脂からなる弁体を溶融などして製造する過程
での前記した様な数々の熱履歴にも比較的耐え得る。特
に、PTFEの分解点は、ポリシアノアリールエーテル
樹脂の融点(340℃前後)よりも約100℃高いので
好ましい。これらのフッ素系樹脂を3〜30重量部、好
ましくは5〜15重量部添加することで、機械的特性に
優れ、標準品等で圧縮強さが、約2100kgf/cm
2 前後で良好な耐クリープ特性および断熱性、耐熱水性
等に優れるポリシアノアリールエーテル樹脂の特性に加
えて、耐衝撃性、耐疲労性、耐摩耗性等を向上すること
もできる。
These fluororesins are also preferred because of their relatively high differential pyrolysis onset temperatures. For example, PTFE, P
The decomposition points of VDF are about 490 ° C. and about 350 ° C., respectively.
It also shows 5 ° C. and about 460 ° C., and among fluororesins, perfluoro-based PTFE, PFA, FEP and the like are preferable because of their excellent high-temperature properties. Therefore, it can relatively withstand the various thermal histories as described above in the process of producing a valve body made of a polycyanoaryl ether resin by melting or the like. In particular, the decomposition point of PTFE is preferable because it is about 100 ° C. higher than the melting point of the polycyanoaryl ether resin (around 340 ° C.). By adding 3 to 30 parts by weight, preferably 5 to 15 parts by weight of these fluororesins, the mechanical properties are excellent, and the compression strength of a standard product or the like is about 2100 kgf / cm.
In addition to the properties of the polycyanoaryl ether resin having excellent creep resistance and heat insulation properties, hot water resistance and the like at around 2 , it is also possible to improve impact resistance, fatigue resistance, wear resistance and the like.

【0027】添加量が3重量部未満の少量では、これら
の効果が期待できず、30重量部を越える多量では、こ
れらの溶融粘度などにより、後述の造粒時や射出成形時
に溶融成形機などのシリンダーにかかる負荷が大きく、
安定した造粒性、射出成形性および寸法精度が期待でき
ないこともある。
If the addition amount is less than 3 parts by weight, these effects cannot be expected. If the addition amount is more than 30 parts by weight, depending on their melt viscosity or the like, a melt molding machine or the like may be used during granulation or injection molding as described below. The load on the cylinder is large,
In some cases, stable granulation properties, injection moldability, and dimensional accuracy cannot be expected.

【0028】因みに、PFA、FEPの溶融粘度は、約
380℃にてそれぞれ約104 〜105 ポイズ、約4×
104 〜105 ポイズであり、特にPTFEでは約34
0〜380℃にて約1011〜1012ポイズであり、この
ような高温下でも約104 〜1012ポイズ程度の粘度特
性を有するフッ素系樹脂であるものは、高粘度特性を有
するので、耐熱性が優れており好ましい。
Incidentally, the melt viscosities of PFA and FEP are about 10 4 to 10 5 poise and about 4 × at 380 ° C., respectively.
10 4 to 10 5 poise, especially about 34 in PTFE.
It is about 10 11 to 10 12 poise at 0 to 380 ° C., and even at such a high temperature, a fluororesin having a viscosity property of about 10 4 to 10 12 poise has a high viscosity property, Excellent heat resistance is preferable.

【0029】PTFEを配合する場合にも、PEN10
0重量部に対して1〜30重量部の割合である。なぜな
ら、30重量部を越えると、PENの機械的特性を著し
く妨げ、弁座または弁体に傷が付きやすくなるからであ
る。1重量部未満ではPTFEの添加による摺動性向上
の効果が得られない。
When PTFE is blended, PEN10
The ratio is 1 to 30 parts by weight with respect to 0 parts by weight. This is because if it exceeds 30 parts by weight, the mechanical properties of PEN are remarkably impaired, and the valve seat or valve body is easily damaged. If the amount is less than 1 part by weight, the effect of improving slidability by adding PTFE cannot be obtained.

【0030】PTFE粉末は、その形状と大きさを特に
限定することなく用いることができるが、粒状で粒径が
70μm以下であるものが、樹脂組成を均一にするため
に好ましい。
The PTFE powder can be used without any particular limitation on its shape and size. However, a PTFE powder having a particle size of 70 μm or less is preferable in order to make the resin composition uniform.

【0031】また、バージン材のPTFE粉末に代えて
再生PTFE粉末を用いると、PENの機械的特性を妨
げ難くなって好ましい。再生PTFE粉末とは、バージ
ン材を一度焼成した後、粉砕して得られる粉末であり、
このものは繊維状になり難い性質を有しており、配合し
た樹脂組成物を良好な溶融粘度に維持するので、成形性
を改善する優れた添加剤である。
It is preferable to use a recycled PTFE powder instead of the virgin PTFE powder because the mechanical properties of PEN are hardly hindered. Recycled PTFE powder is a powder obtained by baking a virgin material once and then crushing it.
This is an excellent additive that has the property of not easily forming into a fibrous state and maintains the blended resin composition at a favorable melt viscosity, thereby improving moldability.

【0032】また、弁体をセラミックス系材料で形成す
る場合には、下記の表1に示したニューセラミックス等
のセラミックス系材料を用いて成形することが好まし
く、適度な強度や硬度を有し、これらの数値の範囲内の
セラミックス系材料からなる弁体としてもよい。また、
これらの材料の強度、熱特性等を改質するために、約1
〜10重量%程度のSiO2 、Y2 3 、Al2 7
AlN、TaN、TiC、Co等、その他希土類などの
無害なものを1種類以上添加してもよい。
When the valve body is formed of a ceramic material, it is preferable to form the valve body using a ceramic material such as a new ceramic shown in Table 1 below, which has appropriate strength and hardness. A valve body made of a ceramic material within these numerical ranges may be used. Also,
To improve the strength, thermal properties, etc. of these materials, about 1
SiO 2 about 10 wt%, Y 2 O 3, Al 2 O 7,
One or more harmless substances such as AlN, TaN, TiC, Co and other rare earth elements may be added.

【0033】[0033]

【表1】 [Table 1]

【0034】上記したセラミックス系材料は、超耐熱性
であり、断熱性は樹脂材のほうが比較的優れるものの、
線膨張係数は、樹脂材よりも約1/10程度小さいた
め、弁体と弁体の隙間を比較的小さくし易く、すきま精
度の高い弁装置を提供できることにもつながる。
The above-mentioned ceramic materials are super heat-resistant, and although the heat insulating property of the resin material is relatively better,
Since the coefficient of linear expansion is about 1/10 smaller than that of the resin material, it is easy to make the gap between the valve elements relatively small, and it is possible to provide a valve device with high clearance accuracy.

【0035】このように線膨張係数が比較的小さく、断
熱性を有し、また例えば耐熱衝撃抵抗が少なくとも約1
00℃以上、安全性を考慮した場合には約200℃以上
の材質を弁体に適用することで、弁体と弁体間の隙間の
精度を高くすることができ、水と湯を混合するという使
用温度差の大きい弁装置に適用してもガタが少なく、ま
た、低トルクで長寿命の弁装置を提供することができ
る。
As described above, the coefficient of linear expansion is relatively small, the material has thermal insulation properties, and for example, has a thermal shock resistance of at least about 1
When safety is considered, the accuracy of the gap between the valve element and the valve element can be increased by applying the material of about 200 ° C. or more to the valve element in consideration of safety. Even if the present invention is applied to a valve device having a large difference in operating temperature, it is possible to provide a valve device with little backlash, low torque and long life.

【0036】セラミックス系材料のなかでも代表的なフ
ァインセラミックであるアルミナ(酸化アルミニウム、
Al2 3 )については、結晶形、添加剤の使用などに
よって、前記の特性と共に下記の表2に示す特性を備え
たものがあり、このものは機械的強度、耐熱性、寸法安
定性など、弁装置の弁として過剰のスペックでなく充分
に使用可能であり、価格の点でも比較的平均しており、
総合的に優れている。
Alumina (aluminum oxide, aluminum oxide) which is a representative fine ceramic among ceramic materials
Al 2 O 3 ), depending on the crystal form, the use of additives, etc., may have the above-mentioned properties and the properties shown in Table 2 below, such as mechanical strength, heat resistance, dimensional stability, etc. , It can be used as a valve device without excessive specifications and is relatively average in terms of price.
Excellent overall.

【0037】[0037]

【表2】 [Table 2]

【0038】前記の圧縮強さ、曲げ強度、硬度、線膨張
係数、熱伝導率、耐熱衝撃抵抗等の範囲のセラミックス
系材料からなる弁体であれば、例えば約17.5kgf
/cm2 程度の水圧が弁体にかかっても、弁体の曲げ強
度や硬度が充分であるので、弁体は変形することがな
く、また断熱性や耐熱衝撃抵抗等に優れることから、熱
が逃げ難く、安定した湯温を保つことができ、約100
℃程度の沸騰水と低温の水とに同時にさらされても、弁
体として充分な熱衝撃性を有し、耐食性も有する弁装置
を提供できる。
If the valve body is made of a ceramic material having a range of the above-described compressive strength, bending strength, hardness, linear expansion coefficient, thermal conductivity, thermal shock resistance, etc., for example, about 17.5 kgf
Even when a water pressure of about / cm 2 is applied to the valve body, the valve body has sufficient bending strength and hardness, so that the valve body does not deform, and since it has excellent heat insulating properties and thermal shock resistance, heat Is difficult to escape, can maintain a stable hot water temperature, about 100
A valve device having sufficient thermal shock resistance as a valve body and corrosion resistance even when simultaneously exposed to boiling water at about ° C and low-temperature water can be provided.

【0039】この発明の水中潤滑性樹脂組成物は、上記
したPEN、ガラス状カーボン、PTFE粉末を混合
し、溶融成形したものであり、混合・成形方法を特に限
定したものではない。
The underwater lubricating resin composition of the present invention is obtained by mixing the above-mentioned PEN, glassy carbon, and PTFE powder and melt-molding the mixture, and the mixing and molding method is not particularly limited.

【0040】たとえば、これら諸原料をそれぞれ別個
に、または二種以上を同時にヘンシェルミキサー、ボー
ルミル、タンブラーミキサーなどの混合機を用いて、乾
式混合した後に、熱ロール、ニーダ、バンバリーミキサ
ー、溶融押出機などで溶融混合して所定の形状に溶融成
形すればよい。溶融成形温度は、PENが溶融する温度
以上であり、330〜440℃、好ましくは340〜3
80℃である。溶融成形方法は、射出成形が量産性のよ
い点、低コスト化できる点で好ましい。
For example, these raw materials are dry-mixed separately or two or more of them at the same time using a mixer such as a Henschel mixer, a ball mill, a tumbler mixer, etc., followed by a hot roll, kneader, Banbury mixer, melt extruder. What is necessary is just to melt-mix and to melt-mold into a predetermined shape. The melt molding temperature is equal to or higher than the temperature at which PEN is melted, and is 330 to 440 ° C., preferably 340 to 340 ° C.
80 ° C. The melt molding method is preferable because injection molding has good mass productivity and can reduce cost.

【0041】成形後には摺動表面の優れた平面度を出す
ために後加工を行なうことが好ましく、たとえば平面研
削盤などで成形品素材の平行度および平面度を整えた
後、ラップ機で10〜50μm程度表面を磨き取る。こ
の際のラップ砥粒には、アルミナ、炭化ケイ素などを主
成分としたものを用いればよく、その粒度は非常に細か
いものが適当である。
After molding, it is preferable to carry out post-processing in order to obtain an excellent flatness of the sliding surface. For example, after adjusting the parallelism and flatness of the molded material with a surface grinder or the like, the lapping machine is used. Polish the surface to about 50 μm. In this case, the lap abrasive grains used may be those containing alumina, silicon carbide, or the like as a main component, and those having very fine particle sizes are suitable.

【0042】なお、金属よりも軟質の樹脂を硬質の砥粒
でラップする際に、樹脂に砥粒がめり込んでしまうので
はないかと予想されたが、#2000以下のものでは、
樹脂に砥粒がめり込むことはほとんどなく、小さくて良
好な平面度および表面粗さを得ることができた。その理
由は定かではないが、砥粒は硬質であるほうがかえって
被ラップ材料の発熱を少なくし、その結果、表面硬度ま
たは降伏点応力等の低下が少なくなるのではないかと推
測される。
When wrapping a resin softer than a metal with hard abrasive grains, it was expected that the abrasive grains would sink into the resin.
The abrasive grains hardly penetrated into the resin, and small and good flatness and surface roughness could be obtained. Although the reason is not clear, it is speculated that the harder the abrasive grains, the less the heat generation of the material to be wrapped, and consequently the lower the surface hardness or the yield point stress.

【0043】いずれにしても、このような平面研磨と同
時に平面度も仕上げる。研削およびラップに用いる装置
は、多数個を一度に処理することが容易であり、また素
材はセラミックス、金属等の素材と比べて非常に短時間
で加工することができる樹脂であるため、低コストで製
造することができる。
In any case, the flatness is also finished simultaneously with the above-mentioned flat polishing. The equipment used for grinding and lapping is easy to process many pieces at once, and the material is a resin that can be processed in a very short time compared to materials such as ceramics and metal, so low cost Can be manufactured.

【0044】この発明の水中潤滑性樹脂組成物は、その
作用機構は明確には解明されていないが、摺動面に水が
介在しても良好な摺動特性が発揮されるものであり、し
かもポリシアノアリールエーテルの特性と相まって耐摩
耗性が向上しており、また機械的及び熱的な衝撃にも良
く耐えるものである。
Although the mechanism of action of the underwater lubricating resin composition of the present invention has not been clearly elucidated, good sliding characteristics are exhibited even when water is present on the sliding surface. Moreover, the abrasion resistance is improved in combination with the characteristics of the polycyano aryl ether, and the material is well resistant to mechanical and thermal shocks.

【0045】また、弁装置に係る発明においては、ポリ
シアノアリールエーテル樹脂およびガラス状カーボンの
性質が相乗的に発揮されて、弁座もしくは弁体の潤滑性
および耐摩耗性が向上し、かつ機械的および熱的な衝撃
に強くなる。また、ガラス状カーボンは異方性がないの
で、弁座または弁体の摺接面の平面度、寸法精度におい
て極めて高精度である。
In the invention relating to the valve device, the properties of the polycyanoaryl ether resin and the vitreous carbon are synergistically exhibited, whereby the lubrication and wear resistance of the valve seat or the valve body are improved, and the mechanical properties are improved. Resistant to thermal and thermal shocks. Further, since the glassy carbon has no anisotropy, the flatness and dimensional accuracy of the sliding surface of the valve seat or the valve element are extremely high.

【0046】したがって、この発明の弁装置は、長期間
の連続使用でも止水性および操作性を長時間に亘って良
好に維持する。
Therefore, the valve device of the present invention can maintain good water stopping performance and operability over a long period of time, even when used continuously for a long period of time.

【0047】さらに、このような弁装置の弁体または弁
座に、前記樹脂組成物にPTFE粉末を添加した樹脂組
成物を採用することによって、さらに摺動性が向上し、
弁装置のハンドルトルクが軽減されると共に、操作時の
摺動音(異音)もなくなる。
Further, by adopting a resin composition obtained by adding PTFE powder to the resin composition for the valve body or valve seat of such a valve device, the slidability is further improved,
The handle torque of the valve device is reduced, and sliding noise (unusual noise) during operation is also eliminated.

【0048】[0048]

【実施例】【Example】

〔実施例1〜8、比較例1〜8〕実施例1〜8および比
較例1〜8に使用した原材料を一括して示すと以下の通
りである。なお、( )内には表中に用いた略称を示
し、配合割合は全て重量%で示した。 (1)ポリシアノアリールエーテル樹脂(PEN) 出光興産社製:ID300 (2)ガラス状カーボン(GC) 鐘紡社製:ベルパール C−2000 (3)再生四フッ化エチレン樹脂(PTFE) 喜多村社製:TFE−KT400H (4)超高分子量ポリエチレン(PE) 三井石油化学社製:リュブマー、射出成形グレード (5)ポリフェニレンサルファイド樹脂(PPS) トープレン社製:T−4 (6)ポリエーテルイミド樹脂(PEI) 米国ゼネラルエレクロニクス社製:ウルテム1000 (7)ポリエーテルサルホン樹脂(PES) アイ・シー・アイ社製:ビクトレックス4800P (8)炭素繊維(CF) 東レ社製:ベスファイトHTA、繊維径7.2μm、引
張り伸び率1.52% (9)マイカ(マイカ) カナダマイカ社製:マイカS−200、平均粒径60μ
m。
Examples 1 to 8 and Comparative Examples 1 to 8 Raw materials used in Examples 1 to 8 and Comparative Examples 1 to 8 are collectively shown as follows. Note that the abbreviations used in the table are shown in parentheses, and all the mixing ratios are shown by weight%. (1) Polycyano aryl ether resin (PEN) Idemitsu Kosan: ID300 (2) Glassy carbon (GC) Kanebo: Bellpearl C-2000 (3) Regenerated tetrafluoroethylene resin (PTFE) Kitamura: TFE-KT400H (4) Ultra high molecular weight polyethylene (PE) Mitsui Petrochemical: Lubmar, injection molding grade (5) Polyphenylene sulfide resin (PPS) Topren: T-4 (6) Polyetherimide resin (PEI) Made by General Electronics, USA: Ultem 1000 (7) Polyethersulfone resin (PES) Made by ICI: Victrex 4800P (8) Carbon fiber (CF) Made by Toray: Vesfight HTA, fiber diameter 7 0.2 μm, tensile elongation 1.52% (9) Mica (mica) Canada mica Ltd.: Mica S-200, average particle size 60μ
m.

【0049】諸原材料を表3または表4に示す割合で配
合し、予め乾式混合した後、二軸押出機(池貝鉄工社
製:PCM−30)に供給し、押出造粒した。得られた
ペレットを、以下の試験A、Bに示した試験片に、所定
の金型を用いて射出成形した。
The raw materials were blended in the proportions shown in Table 3 or Table 4, were dry-mixed in advance, and then supplied to a twin-screw extruder (PCM-30, manufactured by Ikegai Iron Works Co., Ltd.) to perform extrusion granulation. The obtained pellets were injection molded into test pieces shown in the following tests A and B using a predetermined mold.

【0050】[摩擦・摩耗試験A]円筒型試験片(内径
17mm、外径21mm、長さ10mm)をスラスト型
摩擦摩耗試験機に装着して、滑り速度4m/分、荷重4
kgf/cm2 、相手材セラミックス(日立化成製アル
ミナH555、表面粗さ0.01μmRa)、湯水(7
0℃)潤滑の条件下における試験片の摩擦係数を試験開
始1時間後、同100時間後についてそれぞれ求めた。
また、前記試験機を100時間作動させた後と作動前の
試験片の重量変化、および材料の比重から摩耗係数(×
10-10 cm3 /kgf・m)を算出した。
[Friction / Wear Test A] A cylindrical test piece (inner diameter 17 mm, outer diameter 21 mm, length 10 mm) was mounted on a thrust type friction / wear tester, and a slip speed of 4 m / min and a load of 4 were applied.
kgf / cm 2 , partner ceramics (Hitachi Chemical Alumina H555, surface roughness 0.01 μmRa), hot water (7
(0 ° C.) The friction coefficient of the test piece under the condition of lubrication was determined 1 hour after the start of the test and 100 hours after the test.
In addition, the wear coefficient (×) was determined from the weight change of the test piece after and 100 hours after the test machine was operated and the specific gravity of the material.
10 −10 cm 3 / kgfm).

【0051】また、図1および図2に示す構造の弁装置
に装着可能な弁体(外径27mm、高さ9mm)を前記
した試験片と同じ製造方法により得た。
Further, a valve element (outer diameter 27 mm, height 9 mm) that can be mounted on the valve device having the structure shown in FIGS. 1 and 2 was obtained by the same manufacturing method as that of the above-described test piece.

【0052】図1および図2に示す構造の弁装置は、湯
と水とを混合するスライド型の弁装置、すなわち弁孔を
有する弁座に弁体を重ね合わせ、弁体を弁座に対して摺
動させて前記弁孔を開閉させるようにした弁装置であっ
て、弁箱1の下部に取付けた底板2に二つの環状パッキ
ン3を取付けてそれぞれの内側を湯または水の流入口4
とし、底板2上に設けた弁座5に前記の流入口4のそれ
ぞれと連通する2つの弁孔6を形成し、弁体7上にレバ
ーホルダ8を回転自在に取付け、これにピン9を介して
摺動自在に支持されたレバー軸10の下端部を弁体7上
面の方形状窪み11に嵌めた状態に連結し、レバー12
を上下左右に揺動する操作によって弁体7を弁座5の座
面13に摺接させて2つの弁孔6をそれぞれまたは両弁
孔6、6を同時に開閉させるようにしている。
The valve device having the structure shown in FIGS. 1 and 2 is a slide type valve device for mixing hot water and water, that is, a valve element is superimposed on a valve seat having a valve hole, and the valve element is placed on the valve seat with respect to the valve seat. A valve device which slides the valve hole to open and close the valve hole.
The valve seat 5 provided on the bottom plate 2 is formed with two valve holes 6 communicating with each of the inflow ports 4, and a lever holder 8 is rotatably mounted on a valve body 7, and a pin 9 is mounted on the lever holder 8. The lower end of a lever shaft 10 slidably supported through the valve body 7 is connected to a state in which the lower end of the lever shaft 10 is fitted into a square recess 11 on the upper surface of the valve body 7,
The valve body 7 is slidably contacted with the seat surface 13 of the valve seat 5 by the operation of swinging up and down and right and left, so that the two valve holes 6 or both the valve holes 6 and 6 are simultaneously opened and closed.

【0053】弁体7を動作させて弁孔6を開放すると、
2つの流入口4にそれぞれ供給される湯と水は、弁孔6
から弁体7の下部に切り欠いて形成された流路14に流
れて混合室15に流入し、さらに弁箱1の側壁に形成さ
れた混合水の出口16から蛇口先端方向に吐出されるこ
とになる。
When the valve body 7 is operated to open the valve hole 6,
Hot water and water supplied to the two inflow ports 4 respectively are supplied to the valve holes 6.
Flow into the mixing chamber 15 from the bottom of the valve element 7 and flow into the mixing chamber 15, and further discharged from the outlet 16 of the mixed water formed on the side wall of the valve box 1 toward the faucet tip. become.

【0054】なお、上記弁装置においては、レバーホル
ダ8の下面にリング状のシール部材17を取付けて軸挿
入孔18に漏水するのを防止し、リング状のシール部材
19によって、両部材からの漏水を防止している。
In the valve device described above, a ring-shaped seal member 17 is attached to the lower surface of the lever holder 8 to prevent water from leaking into the shaft insertion hole 18, and a ring-shaped seal member 19 is used to prevent the water from leaking from both members. Prevents water leakage.

【0055】前述のようにして得られた弁体7は、摺接
面(座面)を平面研削盤で研削して平面度を高め、さら
にラップ機で表面粗さを充分に低下(Ra0.1〜0.
2μm)させて、これをアルミナ製の弁座5(日立化成
社製:アルミナH555、表面粗さ0.01μmRa)
と組み合わせて弁装置に取付け、以下のような機能性試
験Bを行ない、止水性、操作性、傷付性および吸水によ
る形状変形性をそれぞれ観察し、その結果を表3または
表4中に示した。
In the valve element 7 obtained as described above, the sliding contact surface (seat surface) is ground by a surface grinder to increase the flatness, and the surface roughness is sufficiently reduced by a lapping machine (Ra0. 1-0.
2 μm), and this is made into a valve seat 5 made of alumina (Hitachi Kasei: Alumina H555, surface roughness 0.01 μm Ra).
And mounted on the valve device, and the following functional test B was performed, and the water stoppage, operability, scratching property, and shape deformability due to water absorption were observed, and the results are shown in Table 3 or Table 4. Was.

【0056】[機能性試験B] (1)止水性と操作性 弁装置(内部構造は図1および図2に示したものと同
じ)の弁体を図3に示すようなシングルレバー式混合水
栓に組み込んで、止水性と操作性を調べた。
[Functional test B] (1) Water stoppage and operability The valve body of the valve device (the internal structure is the same as that shown in FIGS. 1 and 2) is replaced with a single lever type mixed water as shown in FIG. It was incorporated into a stopper and examined for water stoppage and operability.

【0057】止水性は、レバーを中央下部(止水状態)
にし、ポンプによって水圧を17.5kgf/cm2
けて30秒間保持し、30秒後の漏水による圧力降下量
(kgf/cm2 )を測定した。このときの圧力降下量
が0.3kgf/cm2 以下であれば良好と判定した。
For the water stoppage, set the lever at the lower center (water stop state).
Then, the water pressure was maintained at 17.5 kgf / cm 2 by a pump for 30 seconds, and the pressure drop (kgf / cm 2 ) due to water leakage after 30 seconds was measured. If the amount of pressure drop at this time was 0.3 kgf / cm 2 or less, it was determined to be good.

【0058】操作性は、レバーの上下(止水、吐水、流
量調節)、左右(湯温の調節)のトルクを、トルク測定
器(シンボ工業社製:DFG−2K)を用いて測定し
た。このときのトルク測定値(操作力)が300〜10
00gfであれば良好と判定した。トルクが300gf
より小さい場合は使用中にハンドルが自重で下がる不具
合があり、トルクが1000gfを越えると円滑な操作
性が得られないからであり、このような傾向からより好
適な範囲は400〜800gfである。
The operability was measured by measuring the torque of the lever up and down (water stoppage, water discharge, flow rate adjustment) and left and right (adjustment of hot water temperature) using a torque meter (DFG-2K, manufactured by Symbo Kogyo KK). The measured torque value (operating force) at this time is 300 to 10
If it was 00 gf, it was determined to be good. Torque is 300gf
If the torque is smaller than 1000 gf, smooth operation is not obtained if the torque exceeds 1000 gf. Therefore, a more preferable range is 400 to 800 gf.

【0059】このような止水性と操作性を、以下に示す
とおりの初期試験、耐久試験および吸水試験で確
認した。 初期試験:耐久試験前に初期の止水性と操作性を測
定した。 耐久試験:初期試験で使用した弁体を使用して、耐
久試験機(NTN精密樹脂社製)にレバーを連結し、図
3に示すように、レバーを右端上部Ru(止水)から右
端下部Rd(冷水)→左端下部Ld(熱湯90℃)→左
端上部Lu(止水)→左端下部Ld(熱湯90℃)→中
央下部Cd(温水45℃)→中央上部Cu(止水)→中
央下部Cd(温水45℃)→右端下部Rd(冷水)→右
端上部Ru(止水)を1サイクル(所要時間約25秒)
として行ない、20万サイクル後の止水性と操作性を確
認した。なお、止水性の低下したものについては、それ
以上の耐久試験は行なわなかった。 吸水試験:弁体を熱湯(90℃)中で200時間浸
漬した後、止水性と操作性を測定した。
The water stoppage and operability were confirmed by the following initial tests, durability tests and water absorption tests. Initial test: The initial water stoppage and operability were measured before the durability test. Endurance test: Using the valve body used in the initial test, the lever was connected to an endurance tester (manufactured by NTN Seimitsu Plastics Co., Ltd.), and as shown in FIG. Rd (cold water) → lower left lower Ld (hot water 90 ° C) → upper left upper Lu (water stop) → lower left lower Ld (hot water 90 ° C) → lower center Cd (hot water 45 ° C) → upper center Cu (water stop) → lower center One cycle of Cd (hot water 45 ° C) → lower right end Rd (cold water) → upper right end Ru (water stoppage) (time required: about 25 seconds)
The water stoppage and operability after 200,000 cycles were confirmed. In addition, about the thing with which the water stopping property fell, the further durability test was not performed. Water absorption test: After immersing the valve body in hot water (90 ° C.) for 200 hours, the water stoppage and operability were measured.

【0060】(2)傷付性 流入路から平均粒径3μmの金属片(鉋金)1gを毎分
8リットルの水と共に流入させ、レバーを前記耐久試験
と同じ動作で10サイクル操作した。その後、弁体の摺
接面を表面粗さ計(日本真空社製:DektakII)を
用いて調べ、この結果を、全く傷がないもの○印、傷の
深さが1μm未満のもの△印、傷の深さが1μm以上の
もの×印の三段階に評価した。
(2) Scratchability 1 g of a piece of metal (plane metal) having an average particle size of 3 μm was flowed together with 8 liters of water per minute from the inflow path, and the lever was operated for 10 cycles in the same operation as in the endurance test. Thereafter, the sliding surface of the valve element was examined using a surface roughness meter (Dektak II, manufactured by Nihon Vacuum Co., Ltd.), and the results were evaluated as follows: ○ without any flaw, Δ with flaw less than 1 μm, When the depth of the flaw was 1 μm or more, the evaluation was made in three stages of x.

【0061】(3)吸水による形状変形性 弁体の摺接面の表面形状を、初期および熱湯(90℃)
中で弁体を200時間浸漬した後で、表面粗さ計を用い
て測定し、摺接面の形状変化が3μm未満のもの〇印、
形状変化が3μm以上5μm未満のもの△印、形状変化
が5μm以上のもの×印の三段階に評価した。
(3) Deformability due to Water Absorption The surface shape of the sliding surface of the valve body is changed between initial and hot water (90 ° C.).
After the valve body was immersed for 200 hours in the container, it was measured using a surface roughness meter, and the shape change of the sliding contact surface was less than 3 μm.
When the shape change was 3 μm or more and less than 5 μm, the evaluation was made in three grades: Δ, and when the shape change was 5 μm or more, ×.

【0062】[0062]

【表3】 [Table 3]

【0063】[0063]

【表4】 [Table 4]

【0064】表3または表4の結果から明らかなよう
に、実施例1〜8は、いずれも機能性試験における初期
試験で止水性、操作性ともに良好な値を示しており、2
0万サイクル後の耐久試験結果でも、止水性が圧力降下
量0.3kgf/cm2 以下であり、操作性がトルク測
定値300〜1000gfの範囲にある良好なものであ
った。また、吸水による影響も止水性、操作性および形
状変形性に認められなかった。
As is clear from the results of Table 3 or Table 4, Examples 1 to 8 all showed good values in both the water stoppage property and the operability in the initial tests in the functional tests.
The endurance test results after 100,000 cycles also showed that the water stoppage was a pressure drop of 0.3 kgf / cm 2 or less, and the operability was good with a torque measured in the range of 300 to 1000 gf. In addition, no influence due to water absorption was observed in the water stopping property, operability and shape deformability.

【0065】PTFE粉末を添加した実施例5〜8は、
添加していないものと比較すると、操作性が若干軽快に
なっていた。
In Examples 5 to 8 to which PTFE powder was added,
The operability was slightly lighter as compared with the case where no additive was added.

【0066】傷付性では、PEN100重量部に対し
て、ガラス状カーボン40重量部およびPTFE粉末3
0重量部を添加した実施例6に僅かな傷が認められた
が、性能上は何ら問題にならない程度のものであった。
In terms of scratch resistance, 40 parts by weight of glassy carbon and PTFE powder 3
Although slight damage was observed in Example 6 in which 0 parts by weight was added, the performance was not so much as to cause any problem.

【0067】一方、PEN100重量部に対し、ガラス
状カーボン30重量部の材料からなる比較例1では、止
水性の圧力降下量が0.3kgf/cm2 を越えてい
た。またガラス状カーボンを40重量部または165重
量部配合した比較例2、3では、PTFEを添加してい
るにも拘らず止水性が悪く、傷付性で深い傷が多数認め
られた。
On the other hand, in Comparative Example 1 comprising 30 parts by weight of glassy carbon per 100 parts by weight of PEN, the water-stopping pressure drop exceeded 0.3 kgf / cm 2 . Further, in Comparative Examples 2 and 3 in which glassy carbon was blended in an amount of 40 parts by weight or 165 parts by weight, water-stopping was poor, and a large number of deep scratches were observed despite the addition of PTFE.

【0068】また、PENにマイカを添加した比較例
4、PEIに炭素繊維を添加した比較例7、PESに炭
素繊維を添加した比較例8は、操作性が非常に大きく使
用に適さなかった。また、PEに炭素繊維を添加した比
較例5は、止水性が著しく劣っており、PPSに炭素繊
維とマイカを添加した比較例6も止水性が不充分であっ
た。
In Comparative Example 4 in which mica was added to PEN, Comparative Example 7 in which carbon fiber was added to PEI, and Comparative Example 8 in which carbon fiber was added to PES, the operability was extremely large and not suitable for use. Comparative Example 5 in which carbon fibers were added to PE was significantly inferior in water stopping properties, and Comparative Example 6 in which carbon fibers and mica were added to PPS was also insufficient in water stopping properties.

【0069】なお、弁体またはその相手部材の少なくと
も一方の摺動面の表面粗さは、Rmax、Ra、Rz等
のJISで定義された評価法によって、約3〜25μm
程度以下であり、好ましくは約8μm以下、より好まし
くは約3μm以下である。なぜなら、表面粗さが前記所
定範囲を越えると、摺動面に傷が多く付くようになり、
これは摩耗の原因になると考えられるからである。
The surface roughness of the sliding surface of at least one of the valve element and its mating member is about 3 to 25 μm according to an evaluation method defined by JIS such as Rmax, Ra, Rz.
Or less, preferably about 8 μm or less, more preferably about 3 μm or less. Because, when the surface roughness exceeds the above-mentioned predetermined range, a lot of scratches are given to the sliding surface,
This is because it is considered to cause wear.

【0070】なお、弁体またはその相手材表面の仕上げ
加工などの工程に長時間を要するので、効率的でないこ
とや樹脂材の転移膜の形成に影響される可能性もあるた
め、摩耗に影響されないような仕様や条件であれば、約
3〜8μm程度の範囲以下としても良いと推定される。
It takes a long time to finish the surface of the valve element or its mating member, and it takes a long time. Therefore, it is inefficient and may be affected by the formation of a transfer film of the resin material. It is estimated that if the specifications and conditions are not satisfied, the range may be about 3 to 8 μm or less.

【0071】[0071]

【効果】以上説明したように、ポリシアノアリールエー
テル樹脂と所定粒径のガラス状カーボンの所定量とから
なる弁体および弁座の発明は、成形時の収縮率に異方性
がなく、寸法精度のよいものとなり、さらにフッ素樹脂
を配合したものでは自己潤滑性を充分にできる利点があ
る。
As described above, the invention of the valve element and the valve seat comprising the polycyano aryl ether resin and the predetermined amount of the glassy carbon having the predetermined particle size has no anisotropy in the shrinkage ratio at the time of molding and has a small size. It has high precision, and the addition of a fluorine resin has the advantage that the self-lubricating property can be sufficiently obtained.

【0072】弁座または弁体の少なくとも一つが、ポリ
シアノアリールエーテル樹脂と所定粒径のガラス状カー
ボンの所定量とからなる樹脂組成物の成形体とした発明
では、弁座または弁体が寸法誤差なく精密に成形され、
かつそれらは耐摩耗性に優れており、使用中に摺接面の
表面粗さが増大したり、異物の侵入によって傷つき難い
ものとなる利点がある。
In the invention in which at least one of the valve seat or the valve body is a molded body of a resin composition comprising a polycyanoaryl ether resin and a predetermined amount of glassy carbon having a predetermined particle diameter, the valve seat or the valve body has a dimension. Molded precisely without errors,
Further, they are excellent in abrasion resistance, and have the advantage that the surface roughness of the sliding contact surface increases during use, and that they are less likely to be damaged by invasion of foreign matter.

【0073】またそのような弁体および弁座は、耐クリ
ープ性などの機械的強度および自己潤滑性に優れたもの
となって、長時間連続して使用した場合にも止水性を充
分に改善できると共に、水量を調節するハンドルの操作
性にも優れたものとなる利点もある。
Further, such a valve body and a valve seat have excellent mechanical strength such as creep resistance and self-lubricating properties, and sufficiently improve the water stopping performance even when used continuously for a long time. In addition to this, there is an advantage that the handleability for adjusting the amount of water is excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の縦断面図FIG. 1 is a longitudinal sectional view of an embodiment.

【図2】実施例の部品分解斜視図FIG. 2 is an exploded perspective view of parts of the embodiment.

【図3】混合栓の外観およびレバーの動作状態を示す斜
視図
FIG. 3 is a perspective view showing an external appearance of a mixing tap and an operation state of a lever.

【符号の説明】[Explanation of symbols]

1 弁箱 2 底板 3 環状パッキン 4 流入口 5 弁座 6 弁孔 7 弁体 8 レバーホルダ 9 ピン 10 レバー軸 11 窪み 12 レバー 13 座面 14 流路 15 混合室 16 出口 17、19 シール部材 18 軸挿入孔 DESCRIPTION OF SYMBOLS 1 Valve box 2 Bottom plate 3 Annular packing 4 Inflow port 5 Valve seat 6 Valve hole 7 Valve 8 Lever holder 9 Pin 10 Lever shaft 11 Depression 12 Lever 13 Seat surface 14 Flow path 15 Mixing chamber 16 Exit 17, 19 Seal member 18 Shaft Insertion hole

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 弁座に弁体を重ね合わせ、弁体を弁座に
対して摺動させる弁装置用の弁体において、 前記弁体が、ポリシアノアリールエーテル樹脂100重
量部に対して、平均粒径が3〜30μmのガラス状カー
ボン40〜165重量部を配合した樹脂組成物の成形体
であることを特徴とする弁体。
1. A valve body for a valve device in which a valve body is overlapped on a valve seat and the valve body is slid with respect to the valve seat, wherein the valve body is based on 100 parts by weight of a polycyano aryl ether resin. A valve body which is a molded body of a resin composition containing 40 to 165 parts by weight of glassy carbon having an average particle diameter of 3 to 30 µm.
【請求項2】 弁座に弁体を重ね合わせ、弁体を弁座に
対して摺動させる弁装置用の弁体において、 前記弁体が、ポリシアノアリールエーテル樹脂100重
量部に対して、平均粒径が3〜30μmのガラス状カー
ボン40〜165重量部、フッ素系樹脂粉末を1〜30
重量部の割合で配合した樹脂組成物の成形体であること
を特徴とする弁体。
2. A valve body for a valve device in which a valve body is overlapped on a valve seat and the valve body is slid with respect to the valve seat, wherein the valve body is based on 100 parts by weight of a polycyano aryl ether resin. 40 to 165 parts by weight of glassy carbon having an average particle size of 3 to 30 μm, and 1 to 30 parts of a fluororesin powder.
A valve body characterized in that it is a molded body of a resin composition blended in parts by weight.
【請求項3】 前記フッ素系樹脂粉末が、四フッ化エチ
レン樹脂粉末である請求項2記載の弁体。
3. The valve body according to claim 2, wherein the fluororesin powder is ethylene tetrafluoride resin powder.
【請求項4】 前記四フッ化エチレン樹脂粉末が、再生
四フッ化エチレン樹脂粉末である請求項3記載の弁体。
4. The valve element according to claim 3, wherein the tetrafluoroethylene resin powder is a recycled tetrafluoroethylene resin powder.
【請求項5】 前記ガラス状カーボンが、フェノール樹
脂またはフラン樹脂を炭化焼成して得られるガラス状カ
ーボンである請求項1または2記載の弁体。
5. The valve body according to claim 1, wherein the glassy carbon is a glassy carbon obtained by carbonizing and firing a phenol resin or a furan resin.
【請求項6】 前記ガラス状カーボンが、800〜20
00℃で焼成して得られるガラス状カーボンである請求
項1、2または5記載の弁体。
6. The glassy carbon according to claim 6, wherein the glassy carbon is 800 to 20.
The valve body according to claim 1, which is a glassy carbon obtained by firing at 00 ° C.
【請求項7】 前記弁体の摺動面の表面粗さが、25μ
m以下である請求項1または2記載の弁体。
7. The sliding surface of the valve element has a surface roughness of 25 μm.
The valve body according to claim 1, wherein m is equal to or less than m.
【請求項8】 前記弁体の摺動面の表面粗さが、JIS
で定義された評価法のRaによって25μm以下である
請求項1または2記載の弁体。
8. The sliding surface of the valve body has a surface roughness of JIS.
3. The valve body according to claim 1, wherein the value is 25 μm or less according to Ra of the evaluation method defined in (3).
【請求項9】 弁座に弁体を重ね合わせ、弁体を弁座に
対して摺動させる弁装置用の弁座において、 前記弁座が、ポリシアノアリールエーテル樹脂100重
量部に対して、平均粒径が3〜30μmのガラス状カー
ボン40〜165重量部を配合した樹脂組成物の成形体
であることを特徴とする弁座。
9. A valve seat for a valve device in which a valve body is superimposed on a valve seat and the valve body is slid with respect to the valve seat, wherein the valve seat is 100 parts by weight of a polycyano aryl ether resin. A valve seat characterized in that it is a molded product of a resin composition containing 40 to 165 parts by weight of glassy carbon having an average particle size of 3 to 30 µm.
【請求項10】 弁座に弁体を重ね合わせ、弁体を弁座
に対して摺動させる弁装置用の弁座において、 前記弁座が、ポリシアノアリールエーテル樹脂100重
量部に対して、平均粒径が3〜30μmのガラス状カー
ボン40〜165重量部、フッ素系樹脂粉末を1〜30
重量部の割合で配合した樹脂組成物の成形体であること
を特徴とする弁座。
10. A valve seat for a valve device in which a valve body is overlapped on a valve seat and the valve body is slid with respect to the valve seat, wherein the valve seat is 100 parts by weight of a polycyano aryl ether resin. 40 to 165 parts by weight of glassy carbon having an average particle size of 3 to 30 μm, and 1 to 30 parts of a fluororesin powder.
A valve seat characterized in that it is a molded product of a resin composition blended in parts by weight.
【請求項11】 前記フッ素系樹脂粉末が、四フッ化エ
チレン樹脂粉末である請求項10記載の弁座。
11. The valve seat according to claim 10, wherein the fluororesin powder is an ethylene tetrafluoride resin powder.
【請求項12】 前記四フッ化エチレン樹脂粉末が、再
生四フッ化エチレン樹脂粉末である請求項11記載の弁
座。
12. The valve seat according to claim 11, wherein the tetrafluoroethylene resin powder is a regenerated tetrafluoroethylene resin powder.
【請求項13】 前記ガラス状カーボンが、フェノール
樹脂またはフラン樹脂を炭化焼成して得られるガラス状
カーボンである請求項9または10記載の弁座。
13. The valve seat according to claim 9, wherein the glassy carbon is glassy carbon obtained by carbonizing and firing a phenol resin or a furan resin.
【請求項14】 前記ガラス状カーボンが、800〜2
000℃で焼成して得られるガラス状カーボンである請
求項9、10または13記載の弁座。
14. The glassy carbon according to claim 1, wherein the glassy carbon is 800-2.
The valve seat according to claim 9, 10 or 13, which is glassy carbon obtained by firing at 000 ° C.
【請求項15】 前記弁座の摺動面の表面粗さが、25
μm以下である請求項9または10記載の弁座。
15. The sliding surface of the valve seat has a surface roughness of 25.
The valve seat according to claim 9, wherein the valve seat is not more than μm.
【請求項16】 前記弁座の摺動面の表面粗さが、JI
Sで定義された評価法のRaによって25μm以下であ
る請求項9または10記載の弁座。
16. The sliding surface of the valve seat has a surface roughness of JI.
The valve seat according to claim 9, wherein the value is 25 μm or less according to Ra of the evaluation method defined in S. 11.
JP26641397A 1994-12-29 1997-09-30 Valve body and valve seat Pending JPH10169803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26641397A JPH10169803A (en) 1994-12-29 1997-09-30 Valve body and valve seat

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34019794 1994-12-29
JP6-340197 1994-12-29
JP26641397A JPH10169803A (en) 1994-12-29 1997-09-30 Valve body and valve seat

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7253912A Division JP3053756B2 (en) 1994-12-29 1995-09-29 Underwater slidable resin composition and valve device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP33027497A Division JPH10184950A (en) 1994-12-29 1997-12-01 Valve element of valve device or manufacture of valve seat

Publications (1)

Publication Number Publication Date
JPH10169803A true JPH10169803A (en) 1998-06-26

Family

ID=26547429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26641397A Pending JPH10169803A (en) 1994-12-29 1997-09-30 Valve body and valve seat

Country Status (1)

Country Link
JP (1) JPH10169803A (en)

Similar Documents

Publication Publication Date Title
WO1995027162A1 (en) Valve device
US6367981B1 (en) Retainer and rolling bearing having the same
JP4017671B2 (en) Low permeability fluid seal for flow control device
US5435348A (en) Valve assembly
JPH0996363A (en) Seal ring
JP7405599B2 (en) Seals for flow control valves and flow control valve devices
JP3053756B2 (en) Underwater slidable resin composition and valve device
JPH0971704A (en) Tetrafluoroethylene resin composition
JP2965309B2 (en) Hot water mixing faucet
JPH10184950A (en) Valve element of valve device or manufacture of valve seat
JP2024028254A (en) Manufacturing method of seal for flow rate control valve
JPH09286916A (en) Underwater slidable resin composition and disk valve for faucet
JP2703025B2 (en) Faucet valve device
JPH10169803A (en) Valve body and valve seat
JPH0989111A (en) Synthetic resin made seal ring
JP4475977B2 (en) Sliding resin composition
JP2703026B2 (en) Faucet valve device
JP2703040B2 (en) Faucet valve device
JP2703041B2 (en) Faucet valve device
JP3162502B2 (en) Seal member for compressor
JPH0920883A (en) Seal member composition for scroll type compressor
JPH07286670A (en) Oil seal ring
JPH08261341A (en) Valve device
JP4109822B2 (en) Resin composition for fluid lubrication
JP2501530B2 (en) Method for manufacturing mixed valve body