JPH10168572A - Injection head of reactive gas - Google Patents

Injection head of reactive gas

Info

Publication number
JPH10168572A
JPH10168572A JP29160297A JP29160297A JPH10168572A JP H10168572 A JPH10168572 A JP H10168572A JP 29160297 A JP29160297 A JP 29160297A JP 29160297 A JP29160297 A JP 29160297A JP H10168572 A JPH10168572 A JP H10168572A
Authority
JP
Japan
Prior art keywords
gas
mixing space
plate
distribution
injection head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29160297A
Other languages
Japanese (ja)
Other versions
JP3649267B2 (en
Inventor
Yukio Fukunaga
由紀夫 福永
Hiroyuki Shinozaki
弘行 篠崎
Kiwamu Tsukamoto
究 塚本
Masao Saito
真佐雄 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP29160297A priority Critical patent/JP3649267B2/en
Publication of JPH10168572A publication Critical patent/JPH10168572A/en
Application granted granted Critical
Publication of JP3649267B2 publication Critical patent/JP3649267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an injection head for a reactive gas which can uniformly inject a gaseous mixture having uniform concentration and component in a stable state to a substrate while preventing an early stage reaction. SOLUTION: This injection head is provided with an injection head main body 68 forming a gas mixing space 66 between a nozzle plate 60 having a number of gas injection holes 74 and a back plate 62, gas supplying pipes 70 supplying at least two kinds of reaction gases to the gas mixing space 66 by being joined to the injection head main body 68 from the back plate side. Gas distributing flow passages 90 individually guiding at least two kinds of reaction gases from the gas supplying pipes 70 to the peripheral part of the gas mixing space 66 are formed between the nozzle plate 60 and the background plate 62.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、薄膜気相成長装置
に用いる反応ガス噴射ヘッドに係り、特に、チタン酸バ
リウム/ストロンチウム等の高誘電体又は強誘電体薄膜
を気相成長させるのに好適な反応ガス噴射ヘッドに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactive gas injection head used in a thin film vapor phase epitaxy apparatus, and more particularly to a method for vapor phase epitaxy of a high dielectric or ferroelectric thin film such as barium / strontium titanate. A reactive gas injection head.

【0002】[0002]

【従来の技術】近年、半導体産業における集積回路の集
積度の向上はめざましく、現状のメガビットオーダか
ら、将来のギガビットオーダを睨んだDRAMの研究開
発が行われている。かかるDRAMの製造のためには、
小さな面積で大容量が得られる素子が必要である。この
ような大容量素子の製造に用いる誘電体薄膜として、誘
電率が10以下であるシリコン酸化膜やシリコン窒化膜
に替えて、誘電率が20程度である五酸化タンタル(T
a25 )薄膜、あるいは誘電率が300程度であるチタ
ン酸バリウム(BaTiO3 )、チタン酸ストロンチウム
(SrTiO3 )又はこれらの混合物であるチタン酸バリ
ウムストロンチウム等の金属酸化物薄膜材料が有望視さ
れている。このような金属酸化物薄膜を気相成長させる
際には、1又は複数の有機金属化合物のガス原料と酸化
ガスとを混合し、一定の温度に加熱した被成膜基板に噴
射する。
2. Description of the Related Art In recent years, the degree of integration of integrated circuits in the semiconductor industry has been remarkably improved, and research and development of DRAMs from the current megabit order to the future gigabit order have been conducted. To manufacture such a DRAM,
An element capable of obtaining a large capacity with a small area is required. As a dielectric thin film used for manufacturing such a large-capacity element, a tantalum pentoxide (T) having a dielectric constant of about 20 is used instead of a silicon oxide film or a silicon nitride film having a dielectric constant of 10 or less.
a 2 O 5 ) thin film or a metal oxide thin film material such as barium titanate (BaTiO 3 ), strontium titanate (SrTiO 3 ) having a dielectric constant of about 300, or barium strontium titanate which is a mixture thereof is promising. Have been. When such a metal oxide thin film is vapor-phase grown, a gas source of one or a plurality of organometallic compounds and an oxidizing gas are mixed and sprayed onto a deposition target substrate heated to a certain temperature.

【0003】[0003]

【発明が解決しようとする課題】一般に、有機金属化合
物ガスと酸化ガスの混合ガスを安定供給できる温度域は
狭く、基板へ導く途中で温度の不均一などがあるとガス
の凝縮や分解が起こりやすい。ここで、例えば混合ガス
の流路が長くなると、原料ガスと酸化ガスの混合ガスが
流路の温度変動の影響を受けやすく、基板へ到達する前
の早期反応により析出物を生成しやすくなる。このよう
に生成した析出物は、ガス放出孔を閉塞させたり、ある
いは下流に流れて基板を汚染する原因となる。
Generally, the temperature range in which a mixed gas of an organometallic compound gas and an oxidizing gas can be stably supplied is narrow. If the temperature is uneven during the introduction to the substrate, the gas condenses or decomposes. Cheap. Here, for example, when the flow path of the mixed gas becomes long, the mixed gas of the raw material gas and the oxidizing gas is easily affected by the temperature fluctuation of the flow path, and precipitates are easily generated by an early reaction before reaching the substrate. The precipitates generated in this way block the gas discharge holes or flow downstream to contaminate the substrate.

【0004】また、原料ガスと酸化ガスの混合をノズル
を出てから行うようにした場合、ノズル穴での詰まりは
減少させることができるが、基板に至る短い過程で均一
な混合状態を得るのが難しい。充分な混合状態を得よう
とすると、ノズル穴を細かく分布させたり、基板までの
距離を大きくするなどの必要があり、装置の複雑化や肥
大化を招き、実用的でない。
In addition, if the mixing of the source gas and the oxidizing gas is performed after leaving the nozzle, clogging in the nozzle hole can be reduced, but a uniform mixed state can be obtained in a short process up to the substrate. Is difficult. In order to obtain a sufficient mixing state, it is necessary to finely distribute the nozzle holes or to increase the distance to the substrate, which makes the apparatus complicated and bloated, which is not practical.

【0005】本発明は、上述した事情に鑑みて為された
もので、濃度や成分の均一な混合ガスを早期反応を防止
しつつ安定した状態で基板に向けて均一に噴射すること
ができる反応ガス噴射ヘッドを提供することを目的とす
る。
[0005] The present invention has been made in view of the above-mentioned circumstances, and a reaction in which a mixed gas having a uniform concentration and components can be uniformly jetted toward a substrate in a stable state while preventing an early reaction. It is an object to provide a gas injection head.

【0006】[0006]

【課題を解決するための手段】この発明は、上記課題を
解決するためになされたもので、請求項1に記載の発明
は、多数のガス噴射孔を有するノズル盤と背板の間にガ
ス混合空間を形成する噴射ヘッド本体と、前記背板側か
ら前記噴射ヘッド本体に接続されて前記ガス混合空間に
少なくとも2種の反応ガスを供給するガス供給配管とを
備え、前記ノズル盤と背板の間には、前記ガス供給配管
からの前記少なくとも2種の反応ガスを個別に前記ガス
混合空間の周辺部に導くガス分配流路が形成されている
ことを特徴とする反応ガス噴射ヘッドである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 has a gas mixing space between a nozzle plate having a number of gas injection holes and a back plate. And a gas supply pipe connected to the ejection head body from the back plate side to supply at least two types of reaction gases to the gas mixing space, and between the nozzle plate and the back plate. And a gas distribution channel for individually guiding the at least two types of reaction gases from the gas supply pipe to a peripheral portion of the gas mixing space.

【0007】ガス分配流路の形状は、適宜のもの、例え
ば、放射状が採用され、また単に平板の間の隙間により
形成してもよい。このような構成により、少なくとも2
種の反応ガスはガス分配流路によりそれぞれ独立にガス
混合空間の周辺部まで導入され、さらにガス混合空間の
中心側へ流れる。この周辺部では各々のガスが周方向に
拡散しつつ中心に向かってほぼ180度向きが変わるの
で激しく流れが乱され、効率的に混合が行われる。ガス
混合空間への流入過程では、流れが円盤状空間の縁部か
ら中心に向かうと同時に混合空間へ流入したガスは、ノ
ズル盤の多数のノズル孔を通して混合ガスが順次噴出す
るため、基板へ向けての均一なガス噴射が得られる。
As the shape of the gas distribution channel, an appropriate one, for example, a radial shape is adopted, and it may be formed simply by a gap between flat plates. With such a configuration, at least 2
The seed reaction gases are independently introduced into the peripheral portion of the gas mixing space by the gas distribution channels, and further flow toward the center of the gas mixing space. In this peripheral portion, the directions of each gas change by approximately 180 degrees toward the center while diffusing in the circumferential direction, so that the flow is violently disturbed, and mixing is efficiently performed. In the process of flowing into the gas mixing space, the gas flowing into the mixing space flows from the edge of the disc-shaped space toward the center at the same time as the gas flows into the mixing space. And uniform gas injection can be obtained.

【0008】請求項2に記載の発明は、前記ノズル盤と
前記背板の間には少なくとも2枚の分配板が配置され、
これらの背板及び分配板の間に前記ガス分配流路が形成
されていることを特徴とする請求項1に記載の反応ガス
噴射ヘッドである。これにより、例えば、これらの部材
に溝や突条を形成することにより、簡単な構成で任意の
形状のガス分配流路を形成することができ、単にこれら
の間の隙間をそのまま用いてもよい。また、背板と分配
板、及び分配板どうしの密着性を維持すれば、分配板と
背板の間の熱伝導を良好にし、分配板の温度を背板によ
り間接的に制御することができる。従って、内部に熱媒
体流路を形成せずにガス分配流路の温度制御を精密に行
ってガス分配流路での反応ガスの凝縮や分解を抑制する
ことができる。
According to a second aspect of the present invention, at least two distribution plates are disposed between the nozzle plate and the back plate.
The reactive gas injection head according to claim 1, wherein the gas distribution channel is formed between the back plate and the distribution plate. Thereby, for example, by forming a groove or a ridge in these members, a gas distribution channel of an arbitrary shape can be formed with a simple configuration, and a gap between these may be used as it is. . If the back plate and the distribution plate and the distribution plate are kept in close contact with each other, the heat conduction between the distribution plate and the back plate can be improved, and the temperature of the distribution plate can be indirectly controlled by the back plate. Therefore, it is possible to precisely control the temperature of the gas distribution channel without forming a heat medium channel therein, thereby suppressing the condensation and decomposition of the reaction gas in the gas distribution channel.

【0009】請求項3に記載の発明は、前記ガス混合空
間内の前記分配板と前記ノズル盤の間に、多数のガス分
散孔を有する分散板が設けられていることを特徴とする
請求項1に記載の反応ガス噴射ヘッドであり、これによ
り、ノズル盤の上流にガス分散空間が形成され、ノズル
盤面上流側でのガス混合の促進と共に圧力分布を均一化
し、これによりノズル盤から基板へ向けてのガス噴射の
均一化が図られる。
According to a third aspect of the present invention, a dispersion plate having a large number of gas dispersion holes is provided between the distribution plate and the nozzle plate in the gas mixing space. 1. The reactive gas injection head according to 1, wherein a gas dispersion space is formed upstream of the nozzle board, and the gas distribution is promoted and the pressure distribution is made uniform on the upstream side of the nozzle board, thereby making the pressure distribution uniform from the nozzle board to the substrate. Gas injection toward the target is made uniform.

【0010】請求項4に記載の発明は、前記ガス混合空
間の周辺部の壁は、前記ガス分配流路出口から前記ガス
混合空間の中央部に向かうに従い内側に向かうように傾
斜していることを特徴とする請求項1に記載の反応ガス
噴射ヘッドであるので、ガス混合空間の周辺部では強い
乱流を発生させ、各々のガスが周方向に拡散しながら混
合する。更に縁部の急角度の偏向により、ガス混合空間
の中心側に向けて濃度分布の均一な一様なガスの流れを
生成することができる。
According to a fourth aspect of the present invention, the peripheral wall of the gas mixing space is inclined so as to be inward toward the center of the gas mixing space from the outlet of the gas distribution channel. Since the reactive gas injection head according to claim 1, a strong turbulent flow is generated in the peripheral portion of the gas mixing space, and the respective gases mix while diffusing in the circumferential direction. In addition, the sharp edge deflection at the edge can generate a uniform gas flow having a uniform concentration distribution toward the center of the gas mixing space.

【0011】請求項5に記載の発明は、前記ガス分配流
路及び前記ノズル盤とを所定温度に維持するための温度
維持手段が設けられていることを特徴とする請求項1に
記載の反応ガス噴射ヘッドである。これにより、ガス分
配流路及びノズル盤の温度制御を精密に行って、その結
果、輻射や伝熱で間接的に加熱される混合空間やガス分
散板を含め、ガス分配流路及び各ノズル流路での反応ガ
スの凝縮や分解を抑制することができる。
The invention according to claim 5 is characterized in that a temperature maintaining means for maintaining the gas distribution flow path and the nozzle panel at a predetermined temperature is provided. It is a gas injection head. As a result, the temperature of the gas distribution channel and the nozzle panel is precisely controlled, and as a result, the gas distribution channel and each nozzle flow including the mixing space and the gas distribution plate heated indirectly by radiation and heat transfer. Condensation and decomposition of the reaction gas in the passage can be suppressed.

【0012】なお、前記反応ガスの流路断面積を、下流
になるに従い減少するようにしてもよい。つまり、供給
配管、ガス分配流路、ガス分散孔及び前記ガス噴射孔の
各流路断面積(の各地点での総和)をS1,S2,S3
4 とすると、 S1>S2,S3>S4 の関係が成立するようにする。これにより、分配板を通
してその周囲の混合空間に均一に分配させると共に、混
合空間の圧力を均一にしてガス噴射孔からのガス噴出を
均一なものにすることができる。また、上記ガス混合空
間の周辺部と上記ガス混合空間の中央部の間に周方向に
延びる狭隘部を形成してもよい。
The cross-sectional area of the flow path of the reaction gas may be reduced as it goes downstream. That is, the cross-sectional area of each flow path of the supply pipe, the gas distribution flow path, the gas dispersion holes, and the gas injection holes (sum at each point) is represented by S 1 , S 2 , S 3 ,
When S 4, S 1> S 2 , S 3> relation S 4 are so satisfied. Accordingly, the gas can be uniformly distributed to the surrounding mixing space through the distribution plate, and the pressure of the mixing space can be made uniform so that the gas jet from the gas injection holes can be made uniform. Further, a narrow portion extending in the circumferential direction may be formed between a peripheral portion of the gas mixing space and a central portion of the gas mixing space.

【0013】[0013]

【発明の実施の形態】以下、図1ないし図6を参照し
て、本発明の一つの実施の形態を説明する。この薄膜気
相成長装置は、成膜室10を構成する釜状の容器本体1
2と、容器底部14の中央に開口する筒状部16内を昇
降可能なサセプタ(基板保持手段)18と、容器本体1
2の頂部に取り付けられたシャワーヘッド(原料ガス噴
射ノズル)20とを備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. This thin film vapor phase growth apparatus includes a kettle-shaped container body 1 constituting a film forming chamber 10.
2, a susceptor (substrate holding means) 18 capable of moving up and down in a cylindrical portion 16 opened at the center of the container bottom 14, and a container body 1
2 is provided with a shower head (raw material gas injection nozzle) 20 attached to the top.

【0014】これら容器本体12、底部14及び筒状部
16とシャワーヘッド20には、オイルのような熱媒体
を流通させる熱媒体流路22,24,26,28a,2
8cが形成され、これらの流路は外部配管30を介し
て、ポンプ等の抽送手段32、及びヒータ等の加熱手段
34からなる熱媒体ユニット36に流通している。ま
た、必要箇所を冷却するために冷却水循環ユニットが設
けられている(図示せず)。容器底部14には、生成ガ
スを排気する排気孔38が開口し、これは図示しない真
空ポンプに連結している。
Heat medium flow paths 22, 24, 26, 28a, and 2 through which a heat medium such as oil flows are provided in the container body 12, the bottom portion 14, the cylindrical portion 16, and the shower head 20.
8 c are formed, and these flow paths are circulated through an external pipe 30 to a heat medium unit 36 including a drawing means 32 such as a pump and a heating means 34 such as a heater. In addition, a cooling water circulation unit is provided for cooling required parts (not shown). An exhaust hole 38 for exhausting the generated gas is opened in the container bottom 14, and this is connected to a vacuum pump (not shown).

【0015】サセプタ18は支持軸40を介して成膜室
10の下方に配置された昇降装置42に連結され、これ
により筒状部16の中を昇降する。筒状部16の所定高
さには、搬送用のロボット44を有するロボット室46
に向かう位置に基板搬送口48が開口しており、これは
ベローズ(通路)50を介してロボット室46のゲート
52に接続されている。この基板搬送口48にはパージ
ガス供給口54が開口している。サセプタ18には基板
Wを加熱するためのヒータ56が設けられ、所定位置に
取り付けられた基板温度センサの検出値に基づいて該ヒ
ータ56への電力を調整して基板温度を一定に維持する
ようにしている。
The susceptor 18 is connected via a support shaft 40 to an elevating device 42 disposed below the film forming chamber 10, thereby moving up and down in the cylindrical portion 16. A robot chamber 46 having a transfer robot 44 is provided at a predetermined height of the cylindrical portion 16.
A substrate transfer port 48 is opened at a position toward the robot chamber 46, and is connected to a gate 52 of the robot chamber 46 via a bellows (passage) 50. A purge gas supply port 54 is opened at the substrate transfer port 48. The susceptor 18 is provided with a heater 56 for heating the substrate W, and adjusts electric power to the heater 56 based on a detection value of a substrate temperature sensor attached at a predetermined position to maintain a constant substrate temperature. I have to.

【0016】シャワーヘッド20は、成膜対象の基板W
に対向して配置されるノズル盤60と背板62及び周壁
64によってほぼ円盤状のガス混合空間66を形成する
噴射ヘッド本体68と、前記背板62側から前記噴射ヘ
ッド本体68に接続されて前記ガス混合空間66に少な
くとも2種の反応ガスを供給するガス供給配管70とを
備えている。ガス供給配管70は同軸の多重管であり、
中心にはノズル盤面に達する熱電対(温度センサ)72
が挿入されている。
The shower head 20 includes a substrate W on which a film is to be formed.
An injection head body 68 that forms a substantially disk-shaped gas mixing space 66 by a nozzle plate 60, a back plate 62, and a peripheral wall 64 that are disposed opposite to the nozzle plate 60, and is connected to the injection head body 68 from the back plate 62 side. A gas supply pipe 70 for supplying at least two kinds of reaction gases to the gas mixing space 66. The gas supply pipe 70 is a coaxial multiple pipe,
Thermocouple (temperature sensor) 72 reaching the nozzle board at the center
Is inserted.

【0017】ノズル盤60は、基板Wよりやや大きい径
に設定され、上側に延びる上記周壁64と一体に形成さ
れており、これによりノズル盤60の上側に凹所を形成
している。図6に示すように、ノズル盤60には、多数
のジェットノズル形状のガス噴射孔74を有するノズル
要素76が装着され、上記熱媒体流路28aが各ノズル
要素76を取り囲むように形成されている。28b,2
8b’は各々の熱媒体のノズル盤60への出入口であ
る。上記凹所には、以下に説明するように、複数の平板
状部材が順次装着されている。
The nozzle board 60 has a diameter slightly larger than the substrate W and is formed integrally with the peripheral wall 64 extending upward, thereby forming a recess on the upper side of the nozzle board 60. As shown in FIG. 6, the nozzle board 60 is provided with nozzle elements 76 having a large number of gas nozzles 74 in the form of jet nozzles, and the heating medium flow path 28a is formed so as to surround each nozzle element 76. I have. 28b, 2
Reference numeral 8b 'denotes an entrance of each heat medium to the nozzle board 60. As described below, a plurality of flat members are sequentially mounted in the recess.

【0018】ノズル盤60の上側には、多数のガス分散
孔78を有する分散板80が配置され、ノズル盤60と
の間にガス分散空間82が形成されている。分散板80
の縁部には上下に延びる筒状壁84が形成されて、上下
にガス混合空間を形成している。ガス分散孔78は、ノ
ズル盤60のガス噴射孔74と互い違いになるように配
置されており、その総流路断面積S3はガス噴射孔74
の総流路断面積S4より大きく設定されている。分散板
80の筒状壁84の上端に接するように背板62が装着
され、背板62の中央には、同軸の多重管である上記ガ
ス供給配管が挿入されている。
A dispersion plate 80 having a large number of gas dispersion holes 78 is arranged above the nozzle plate 60, and a gas dispersion space 82 is formed between the dispersion plate 80 and the nozzle plate 60. Dispersion plate 80
A vertically extending cylindrical wall 84 is formed at the edge of the upper surface, and a gas mixing space is formed above and below. The gas dispersion holes 78 are arranged so as to be alternated with the gas injection holes 74 of the nozzle board 60, and the total flow path cross-sectional area S 3 is different from the gas injection holes 74.
It has largely been set than the total flow path cross-sectional area S 4 of the. The back plate 62 is mounted so as to be in contact with the upper end of the cylindrical wall 84 of the dispersion plate 80, and the gas supply pipe, which is a coaxial multiple pipe, is inserted into the center of the back plate 62.

【0019】周壁64の内面、背板62の上面、ガス供
給配管70の外面を覆うように外被86が設けられ、こ
れと周壁64の間にはシールリング88が配されて内部
を密閉している。この外被86と背板62の上面及びガ
ス供給配管70の外面の間には、図5に示すように熱媒
体流路28cが形成されており、ガス供給配管70と分
配板92,94とを加熱している。
An outer cover 86 is provided so as to cover the inner surface of the peripheral wall 64, the upper surface of the back plate 62, and the outer surface of the gas supply pipe 70. A seal ring 88 is disposed between the outer cover and the peripheral wall 64 to seal the inside. ing. As shown in FIG. 5, a heat medium flow path 28c is formed between the outer cover 86, the upper surface of the back plate 62, and the outer surface of the gas supply pipe 70, and the gas supply pipe 70, the distribution plates 92, 94 Is heating.

【0020】背板62と分散板80の間の空間には、図
2に示すように、それぞれ上面に放射状の溝(ガス分配
流路)90が形成された上下2枚の分配板92,94が
装着されている。これらの溝90は、この例では各分配
板92,94において同数が周方向同位置に軸対称に形
成されている。ガス供給配管70の外側のガス供給路9
6は上側の分配板92と背板62の間の溝90に、内側
のガス供給路98は上下の分配板92,94の間の溝9
0に、それぞれ分配板92,94の中央のガス分配凹所
100を介して連通するようになっている。
In the space between the back plate 62 and the dispersion plate 80, as shown in FIG. 2, upper and lower two distribution plates 92 and 94 each having a radial groove (gas distribution channel) 90 formed on the upper surface. Is installed. In this example, the same number of these grooves 90 is formed axially symmetrically at the same position in the circumferential direction in each of the distribution plates 92 and 94. Gas supply path 9 outside gas supply pipe 70
6 is a groove 90 between the upper distribution plate 92 and the back plate 62, and an inner gas supply passage 98 is a groove 9 between the upper and lower distribution plates 92 and 94.
0 through the gas distribution recess 100 at the center of the distribution plates 92 and 94, respectively.

【0021】分配板92,94の外周と分散板80の筒
状壁84の間には環状の第1混合空間66aが形成さ
れ、下側の分配板94と分散板80の間には円盤状の第
2混合空間66bが形成され、これらの第1混合空間6
6aと第2混合空間66bがガス混合空間66を構成し
ている。この例では、筒状壁84の内面が分散板80に
向かうに従い内側に向く傾斜面102となっており、分
配板92,94の溝90から放出されたガスを混合し反
射して第2混合空間66bにスムースに導くようになっ
ている。なお、上側の分配板92と背板62、及び分配
板92,94どうしは溝以外の箇所では密着しており、
背板62との熱伝導性を良好にしている。背板62は熱
媒体流路28cにより所定の温度に維持されているの
で、分配板92,94の温度も原料ガスの凝縮や分解が
起きない温度に維持される。
An annular first mixing space 66a is formed between the outer peripheries of the distribution plates 92 and 94 and the cylindrical wall 84 of the dispersion plate 80, and a disc-shaped space is formed between the lower distribution plate 94 and the dispersion plate 80. Are formed, and these first mixing spaces 6b are formed.
6a and the second mixing space 66b constitute a gas mixing space 66. In this example, the inner surface of the cylindrical wall 84 is an inclined surface 102 that faces inward toward the dispersion plate 80, and mixes and reflects the gas discharged from the grooves 90 of the distribution plates 92 and 94 to form the second mixing surface. The space 66b is smoothly guided to the space 66b. Note that the upper distribution plate 92 and the back plate 62 and the distribution plates 92 and 94 are in close contact with each other at locations other than the grooves.
The thermal conductivity with the back plate 62 is improved. Since the back plate 62 is maintained at a predetermined temperature by the heat medium flow path 28c, the temperature of the distribution plates 92 and 94 is also maintained at a temperature at which condensation or decomposition of the raw material gas does not occur.

【0022】このシャワーヘッドにおいては、反応ガ
ス、すなわち、原料ガスと酸化ガスの流路は、その管路
断面積が、下流に向かうに従い順次減少するように設定
されている。すなわち、ガス供給配管70の2つの供給
路96,98の断面積の和S1、2つの分配板92,9
4の溝90の断面積の総和S2、分散板80のガス分散
孔78の断面積の総和S3、ノズル盤60のガス噴射孔
74の断面積の総和S4の間には、 S1>S2,S3>S4 と関係がある。これにより、これらの各流路、即ち分配
板92,94の各溝90やガス分散空間でのガスの背圧
を維持して圧力変動を抑えるように制御し、ガス噴射孔
74からの面内均一なガス噴射が得られる。
In this shower head, the flow path of the reactant gas, ie, the raw material gas and the oxidizing gas, is set such that the cross-sectional area of the pipe gradually decreases toward the downstream. That is, the sum S 1 of the cross-sectional areas of the two supply passages 96 and 98 of the gas supply pipe 70 and the two distribution plates 92 and 9
The sum S 2 of the cross-sectional area of the groove 90 of No. 4 , the sum S 3 of the cross-sectional area of the gas dispersion hole 78 of the dispersion plate 80, and the sum S 4 of the cross-sectional area of the gas injection hole 74 of the nozzle board 60 are represented by S 1. > S 2 , S 3 > S 4 . Thereby, control is performed so as to maintain the back pressure of the gas in each of the flow paths, that is, in each of the grooves 90 of the distribution plates 92 and 94 and the gas dispersion space to suppress the pressure fluctuation, and to control the in-plane from the gas injection holes 74. A uniform gas injection is obtained.

【0023】また、分配板92,94の溝の数について
は、ガス量の周方向の分布の均一性を確保するために多
く設けることが好ましいが、加工工数の点からは少ない
方が好ましい。本例では、分配板周縁部の溝90の開口
部間隔が、周長で45mmより小さければ全く問題がない
ことが分かっている。
The number of grooves in the distribution plates 92 and 94 is preferably large in order to ensure uniform distribution of the gas amount in the circumferential direction, but is preferably small in terms of the number of processing steps. In this example, it has been found that there is no problem at all if the interval between the openings of the grooves 90 at the peripheral edge of the distribution plate is smaller than 45 mm in circumference.

【0024】このように構成された反応ガス噴射ヘッド
の作用を説明する。反応ガス、すなわち、原料ガスと酸
化ガスは、図示しない供給源からガス供給配管70にそ
れぞれ導入される。原料ガスは、例えば、Ba(DP
M)2 、Sr(DPM)2 及びTi(i−OC374
の有機金属化合物を溶剤に溶解したものが混合されて気
化され、Ar等のキャリアガスに搬送させられたもので
あり、酸化ガスは、例えば、O2 ,N2O ,H2O等の
酸素含有ガス、あるいはこれにオゾナイザにより生成さ
れたオゾン(O3)を含むようにしたものである。
The operation of the thus-configured reactive gas injection head will be described. The reaction gas, that is, the raw material gas and the oxidizing gas are respectively introduced into the gas supply pipe 70 from a supply source (not shown). The source gas is, for example, Ba (DP
M) 2 , Sr (DPM) 2 and Ti (i-OC 3 H 7 ) 4 and other organic metal compounds dissolved in a solvent are mixed and vaporized and transported to a carrier gas such as Ar. The oxidizing gas is, for example, an oxygen-containing gas such as O 2 , N 2 O, or H 2 O, or a gas containing ozone (O 3 ) generated by an ozonizer.

【0025】反応ガスは、ガス供給配管70(本例では
原料ガスは供給路96から、酸化ガスは供給路98)か
ら導入され、ガス分配凹所100、溝90を介してそれ
ぞれ独立に環状の第1混合空間66aに噴射され、傾斜
面102に当たって偏向して円盤状の第2混合空間66
bに中央に向けて流入する。原料ガスと酸化ガスは、こ
の過程で拡散・混合されるが、特に第1混合空間66a
においては、溝90の先端から周方向に広がりながら出
口が絞られた傾斜面102に沿って下降する複雑な流れ
となるので、流れの乱れが形成されて充分に撹拌され、
均一に混合される。
The reaction gas is introduced from a gas supply pipe 70 (in this example, the source gas is supplied from a supply path 96 and the oxidizing gas is supplied from a supply path 98). The liquid is injected into the first mixing space 66a, deflects on the inclined surface 102, and deflects.
b flows toward the center. The source gas and the oxidizing gas are diffused and mixed in this process.
In the above, a complicated flow descending along the inclined surface 102 where the outlet is narrowed while expanding in the circumferential direction from the tip of the groove 90 is formed, so that the turbulence of the flow is formed and the mixture is sufficiently stirred,
Evenly mixed.

【0026】一方、第2混合空間66bでは、ガスは周
囲から流入して中心に向かい、その過程で分散板80の
ガス分散孔78から順次分散空間82に流入する。この
分散空間82では、流量の多い周辺部では流路断面積が
大きく、流量が少ない中心部では流路断面積が小さいの
で、流れがスムースで圧力変動や乱流が生じにくい。分
散空間82では、分散板80及びノズル要素76による
断面積の変化(S3>S4)の作用によって背圧を維持
し、ほぼ均一で安定な圧力分布が達成されており、各ノ
ズル76要素のガス噴射孔74から均一な反応ガスの噴
射が行われる。
On the other hand, in the second mixing space 66b, the gas flows from the surroundings toward the center, and in the process, flows from the gas dispersion holes 78 of the dispersion plate 80 into the dispersion space 82 sequentially. In the dispersion space 82, the flow path cross-sectional area is large in the peripheral part where the flow rate is high, and the flow path cross-sectional area is small in the central part where the flow rate is low. In the dispersion space 82, the back pressure is maintained by the action of the cross-sectional area change (S 3 > S 4 ) by the dispersion plate 80 and the nozzle element 76, and a substantially uniform and stable pressure distribution is achieved. The uniform injection of the reaction gas is performed from the gas injection holes 74.

【0027】上記において、熱媒体は熱媒体ユニット3
6から熱媒体配管30を介してノズル盤60、周壁6
4、及び外被86と背板62の間の熱媒体流路28に供
給されており、これにより各部を所定温度に維持してい
る。背板62と上側の分配板92、及び分配板92,9
4どうしは溝90以外の箇所で密着させられており、分
配板92と背板62及び分配板92,94どうしの間の
熱伝導が良好な状態になっている。従って、分配板9
2,94の温度を背板62により間接的に制御し、ガス
分配流路90の温度制御を精密に行ってガス分配流路9
0での反応ガスの凝縮や分解を抑制することができる。
In the above, the heat medium is the heat medium unit 3
6 through the heat medium pipe 30, the nozzle panel 60, the peripheral wall 6
4 and the heat medium flow path 28 between the jacket 86 and the back plate 62, thereby maintaining each part at a predetermined temperature. Back plate 62, upper distribution plate 92, and distribution plates 92, 9
The four plates are adhered to each other at locations other than the groove 90, and the heat conduction between the distribution plate 92 and the back plate 62 and the distribution plates 92 and 94 is in a good state. Therefore, the distribution plate 9
The temperature of the gas distribution channel 9 is controlled indirectly by the back plate 62 and the temperature of the gas distribution channel 90 is precisely controlled.
It is possible to suppress the condensation and decomposition of the reaction gas at zero.

【0028】図7は、この発明の他の実施の形態を示す
ものである。この実施の形態においては、第1混合空間
66aと第2混合空間66bの境界部に狭隘部104を
形成している。すなわち、同図(a)の実施の形態で
は、下側の分配板94の下面縁部に周方向に延びる凸部
106が形成され、一方、同図(b)の実施の形態で
は、分散盤80の上面の傾斜壁102の下部に、周方向
に延びる凸部108が形成されている。狭隘部104の
流路断面積は、第1混合空間66aのそれと同じかより
小さい適宜の値を選択する。
FIG. 7 shows another embodiment of the present invention. In this embodiment, a narrow portion 104 is formed at the boundary between the first mixing space 66a and the second mixing space 66b. That is, in the embodiment of FIG. 7A, a convex portion 106 extending in the circumferential direction is formed on the lower surface edge of the lower distribution plate 94, while in the embodiment of FIG. A projection 108 extending in the circumferential direction is formed below the inclined wall 102 on the upper surface of the projection 80. The flow path cross-sectional area of the narrow portion 104 selects an appropriate value equal to or smaller than that of the first mixing space 66a.

【0029】このような構成により、第1混合空間66
aの背圧を維持して、外周から中心へ向けた第2混合空
間66bへのガスの流入を周方向で均一に制御し、第2
混合空間66bにおいて均一で安定な圧力分布を形成す
ることができる。従って、分散板80から分散空間82
に至るガス流れの面内均一性を予め確保して、最終的に
ノズル盤60の各噴射孔74からのガス流れの面内均一
性を高めることができる。
With such a configuration, the first mixing space 66
a, the inflow of gas into the second mixing space 66b from the outer periphery toward the center is uniformly controlled in the circumferential direction while maintaining the back pressure of
A uniform and stable pressure distribution can be formed in the mixing space 66b. Therefore, the dispersion space 82
, The in-plane uniformity of the gas flow leading to the nozzle plate 60 can be secured in advance, and the in-plane uniformity of the gas flow from each of the injection holes 74 of the nozzle board 60 can be finally improved.

【0030】[0030]

【発明の効果】以上説明したように、この発明によれ
ば、少なくとも2種の反応ガスをガス分配流路によりそ
れぞれ独立にガス混合空間の周辺部まで導入してからガ
ス混合空間の中心側へ偏向させて強制的に混合しさら
に、ガス混合空間への流入過程では、流れが円盤状空間
の縁部から中心に向かうので、圧力変動や乱流の発生が
起きにくく、混合ガスの反応や分解が抑制される。従っ
て、ノズル孔より濃度や成分を均一とした反応生成物や
不純物の無い反応ガスを基板に向けて噴射して、品質の
良い成膜を安定して行なうことができ、これによって、
反応ガスの温度に対する安定条件の厳しい高誘電率の誘
電体薄膜の形成への対応も容易である。
As described above, according to the present invention, at least two kinds of reaction gases are independently introduced into the peripheral portion of the gas mixing space by the gas distribution flow path, and then are introduced toward the center of the gas mixing space. In addition, during the inflow process into the gas mixing space, the flow is directed from the edge of the disc-shaped space to the center, so that pressure fluctuations and turbulence do not easily occur, and the reaction and decomposition of the mixed gas Is suppressed. Therefore, a reaction gas having a uniform concentration and components and a reaction gas containing no impurities can be jetted toward the substrate from the nozzle hole to stably perform high-quality film formation.
It is also easy to cope with the formation of a dielectric thin film having a high dielectric constant, which has a severe stability condition with respect to the reaction gas temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の薄膜気相成長装置の概略を示
す断面図である。
FIG. 1 is a cross-sectional view schematically showing a thin film vapor phase growth apparatus according to an embodiment of the present invention.

【図2】本発明の実施例の反応ガス噴射ヘッドの断面図
である。
FIG. 2 is a sectional view of a reactive gas injection head according to an embodiment of the present invention.

【図3】本発明の反応ガス噴射ヘッドを分解して示す斜
視図である。
FIG. 3 is an exploded perspective view showing a reactive gas injection head of the present invention.

【図4】本発明の反応ガス噴射ヘッドの分配板を示す図
である。
FIG. 4 is a view showing a distribution plate of the reactive gas injection head of the present invention.

【図5】図2のA−A矢視図である。FIG. 5 is a view taken in the direction of arrows AA in FIG. 2;

【図6】ノズル要素の要部断面図である。FIG. 6 is a sectional view of a main part of a nozzle element.

【図7】本発明の他の実施例の反応ガス噴射ヘッドの断
面図である。
FIG. 7 is a sectional view of a reactive gas injection head according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

28 熱媒体流路 36 熱媒体ユニット 60 ノズル盤 62 背板 66 ガス混合空間 68 噴射ヘッド本体 70 ガス供給配管 74 ガス噴射孔 78 ガス分散孔 80 分散板 90 ガス分配流路 92,94 分配板 102 傾斜壁 104 狭隘部 28 Heat medium passage 36 Heat medium unit 60 Nozzle panel 62 Back plate 66 Gas mixing space 68 Injection head main body 70 Gas supply pipe 74 Gas injection hole 78 Gas dispersion hole 80 Dispersion plate 90 Gas distribution passage 92,94 Distribution plate 102 Inclined Wall 104 narrow part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 真佐雄 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masao Saito 11-1 Haneda Asahimachi, Ota-ku, Tokyo Inside the Ebara Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 多数のガス噴射孔を有するノズル盤と背
板の間にガス混合空間を形成する噴射ヘッド本体と、前
記背板側から前記噴射ヘッド本体に接続されて前記ガス
混合空間に少なくとも2種の反応ガスを供給するガス供
給配管とを備え、 前記ノズル盤と背板の間には、前記ガス供給配管からの
前記少なくとも2種の反応ガスを個別に前記ガス混合空
間の周辺部に導くガス分配流路が形成されていることを
特徴とする反応ガス噴射ヘッド。
1. An injection head main body that forms a gas mixing space between a nozzle plate having a large number of gas injection holes and a back plate, and at least two types of gas mixing spaces connected to the injection head main body from the back plate side. A gas supply pipe for supplying a reaction gas of the type described above, and a gas distribution flow for guiding the at least two kinds of reaction gases from the gas supply pipe to a peripheral portion of the gas mixing space between the nozzle board and the back plate. A reaction gas injection head having a passage formed therein.
【請求項2】 前記ノズル盤と前記背板の間には少なく
とも2枚の分配板が配置され、これらの背板及び分配板
の間に前記ガス分配流路が形成されていることを特徴と
する請求項1に記載の反応ガス噴射ヘッド。
2. The gas distribution channel according to claim 1, wherein at least two distribution plates are arranged between the nozzle panel and the back plate, and the gas distribution passage is formed between the back plate and the distribution plate. The reaction gas injection head according to item 1.
【請求項3】 前記ガス混合空間内の前記分配板と前記
ノズル盤の間に、多数のガス分散孔を有する分散板が設
けられていることを特徴とする請求項1に記載の反応ガ
ス噴射ヘッド。
3. The reactive gas injection according to claim 1, wherein a dispersion plate having a large number of gas dispersion holes is provided between the distribution plate and the nozzle plate in the gas mixing space. head.
【請求項4】 前記ガス混合空間の周辺部の壁は、前記
ガス分配流路出口から前記ガス混合空間の中央部に向か
うに従い内側に向かうように傾斜していることを特徴と
する請求項1に記載の反応ガス噴射ヘッド。
4. The gas mixing space according to claim 1, wherein a wall at a peripheral portion of the gas mixing space is inclined inward from a gas distribution channel outlet toward a central portion of the gas mixing space. The reaction gas injection head according to item 1.
【請求項5】 前記ガス分配流路及び前記ノズル盤とを
所定温度に維持するための温度維持手段が設けられてい
ることを特徴とする請求項1に記載の反応ガス噴射ヘッ
ド。
5. The reactive gas injection head according to claim 1, further comprising temperature maintaining means for maintaining said gas distribution channel and said nozzle panel at a predetermined temperature.
JP29160297A 1996-10-11 1997-10-08 Reactive gas injection head Expired - Fee Related JP3649267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29160297A JP3649267B2 (en) 1996-10-11 1997-10-08 Reactive gas injection head

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28922196 1996-10-11
JP8-289221 1996-10-11
JP29160297A JP3649267B2 (en) 1996-10-11 1997-10-08 Reactive gas injection head

Publications (2)

Publication Number Publication Date
JPH10168572A true JPH10168572A (en) 1998-06-23
JP3649267B2 JP3649267B2 (en) 2005-05-18

Family

ID=26557516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29160297A Expired - Fee Related JP3649267B2 (en) 1996-10-11 1997-10-08 Reactive gas injection head

Country Status (1)

Country Link
JP (1) JP3649267B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100421223B1 (en) * 2001-12-13 2004-03-02 삼성전자주식회사 Showerhead for chemical vapor reactor
JP2005317958A (en) * 2004-04-12 2005-11-10 Applied Materials Inc Design of gas diffusion shower head for large-area plasma-enhanced chemical vapor deposition
JP2006203022A (en) * 2005-01-21 2006-08-03 Showa Shell Sekiyu Kk Transparent conductive film formation apparatus and multilayer transparent conductive film continuous formation apparatus, and film formation method thereof
JP2008106366A (en) * 2001-02-09 2008-05-08 Tokyo Electron Ltd Film-forming apparatus
JP2008214763A (en) * 2001-02-09 2008-09-18 Tokyo Electron Ltd Film-forming apparatus
KR100931331B1 (en) 2007-08-24 2009-12-15 주식회사 케이씨텍 Injection unit of thin film deposition apparatus
KR100967612B1 (en) 2008-07-09 2010-07-05 주식회사 메카로닉스 Triple showerhead and ald apparatus including the triple showerhead
WO2010140778A3 (en) * 2009-06-01 2011-03-10 (주)피에조닉스 Showerhead for film depositing vacuum equipment
JP2017092140A (en) * 2015-11-05 2017-05-25 株式会社ニューフレアテクノロジー Shower plate, vapor phase deposition apparatus, and vapor phase deposition method
JP2018157202A (en) * 2017-03-15 2018-10-04 漢民科技股▲分▼有限公司 Detachable gas injection device adapted for semiconductor equipment
WO2022260042A1 (en) * 2021-06-07 2022-12-15 京セラ株式会社 Shower plate

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106366A (en) * 2001-02-09 2008-05-08 Tokyo Electron Ltd Film-forming apparatus
JP2008214763A (en) * 2001-02-09 2008-09-18 Tokyo Electron Ltd Film-forming apparatus
KR100421223B1 (en) * 2001-12-13 2004-03-02 삼성전자주식회사 Showerhead for chemical vapor reactor
US8795793B2 (en) 2004-04-12 2014-08-05 Applied Materials, Inc. Gas diffusion shower head design for large area plasma enhanced chemical vapor deposition
JP2005317958A (en) * 2004-04-12 2005-11-10 Applied Materials Inc Design of gas diffusion shower head for large-area plasma-enhanced chemical vapor deposition
US11692268B2 (en) 2004-04-12 2023-07-04 Applied Materials, Inc. Gas diffusion shower head design for large area plasma enhanced chemical vapor deposition
JP2006203022A (en) * 2005-01-21 2006-08-03 Showa Shell Sekiyu Kk Transparent conductive film formation apparatus and multilayer transparent conductive film continuous formation apparatus, and film formation method thereof
KR100931331B1 (en) 2007-08-24 2009-12-15 주식회사 케이씨텍 Injection unit of thin film deposition apparatus
KR100967612B1 (en) 2008-07-09 2010-07-05 주식회사 메카로닉스 Triple showerhead and ald apparatus including the triple showerhead
WO2010140778A3 (en) * 2009-06-01 2011-03-10 (주)피에조닉스 Showerhead for film depositing vacuum equipment
JP2017092140A (en) * 2015-11-05 2017-05-25 株式会社ニューフレアテクノロジー Shower plate, vapor phase deposition apparatus, and vapor phase deposition method
JP2018157202A (en) * 2017-03-15 2018-10-04 漢民科技股▲分▼有限公司 Detachable gas injection device adapted for semiconductor equipment
WO2022260042A1 (en) * 2021-06-07 2022-12-15 京セラ株式会社 Shower plate

Also Published As

Publication number Publication date
JP3649267B2 (en) 2005-05-18

Similar Documents

Publication Publication Date Title
KR100492258B1 (en) Reaction gas ejection head
CN100519834C (en) Device and method for manufacturing thin films
KR100974848B1 (en) Mixer, and device and method for manufacturing thin-film
US7246796B2 (en) Carburetor, various types of devices using the carburetor, and method of vaporization
US6176929B1 (en) Thin-film deposition apparatus
US7479303B2 (en) Method for chemical vapor deposition (CVD) with showerhead and method thereof
CN100505175C (en) Gas processing apparatus and film-forming apparatus
JP2000144432A (en) Gas injection head
KR100427425B1 (en) Thin film deposition apparatus
US6461435B1 (en) Showerhead with reduced contact area
US5728223A (en) Reactant gas ejector head and thin-film vapor deposition apparatus
US5702531A (en) Apparatus for forming a thin film
KR20050106509A (en) Vaporizer, film forming apparatus including the same, method of vaporization and method of forming film
KR19980070372A (en) Gaseous film growth apparatus and gas ejection head
CN101509129B (en) Integral structure body of film forming groove upper cap and show head
JPH10168572A (en) Injection head of reactive gas
JP3534940B2 (en) Thin film vapor deposition equipment
WO2001099171A1 (en) Gas supply device and treating device
JP4391413B2 (en) Vaporizer, disperser, film forming apparatus, and vaporization method
JP2001064777A (en) Gas jet head
JP5016416B2 (en) Vaporizer and vaporization method
JP2000252270A (en) Gas jetting head
JPH11158632A (en) Thin film vapor phase growth apparatus
JPH11302850A (en) Gas injection device
JP4773469B2 (en) Thin film forming apparatus and thin film forming method

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20041102

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050208

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050208

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees