JPH10167189A - Electric proplusive type methanol tanker - Google Patents

Electric proplusive type methanol tanker

Info

Publication number
JPH10167189A
JPH10167189A JP8340663A JP34066396A JPH10167189A JP H10167189 A JPH10167189 A JP H10167189A JP 8340663 A JP8340663 A JP 8340663A JP 34066396 A JP34066396 A JP 34066396A JP H10167189 A JPH10167189 A JP H10167189A
Authority
JP
Japan
Prior art keywords
methanol
hydrogen
oxygen
tank
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8340663A
Other languages
Japanese (ja)
Inventor
Chiharu Kawakita
千春 川北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8340663A priority Critical patent/JPH10167189A/en
Publication of JPH10167189A publication Critical patent/JPH10167189A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H2021/003Use of propulsion power plant or units on vessels the power plant using fuel cells for energy supply or accumulation, e.g. for buffering photovoltaic energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide efficient electric propulsion by rotating a propeller by electric power generated in a fuel cell by separating hydrogen from mixed gas after reforming methanol to the mixed gas of hydrogen and carbon dioxide and by chemical reaction of this hydrogen and oxygen from a tank for oxygen storage. SOLUTION: A tank 1 for methanol storage, a tank 2 for oxygen storage and a reformer 4 to reform methanol taken out of the tank 1 for methanol storage to mixed gas of hydrogen and carbon dioxide are provided in a hull 14. A hydrogen separator 5 to separate hydrogen from the mixed gas generated in the reformer 4 is provided, and a fuel cell 3 to generate a direct electric current by receiving hydrogen fed and supplied from this separator 5 and oxygen fed and supplied from the tank 2 for oxygen storage through an oxygen supplier 8 is provided. Thereafter, propulsive force is provided by connecting an electric motor 6 for propeller driving to an electric power regulator 7 fed electricity from the fuel cell 3 and rotating a propeller 17 by motive power generated by the electric motor 6 through a reducing gear 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、メタノールを運搬
する船舶に関し、特にメタノールの利用により発電して
電気推進を行なえるようにしたメタノール輸送船に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vessel for transporting methanol, and more particularly to a methanol transport vessel capable of generating electric power by utilizing methanol for electric propulsion.

【0002】[0002]

【従来の技術】従来、メタノールのような液体燃料を運
搬する船舶の推進形式は、図3に示すオイルタンカーに
代表されるように、船体14内の重油タンク28から供給さ
れる重油を燃料としたディーゼルエンジン26から動力を
得る推進形式が一般的であるが、図4に示すように、液
体燃料タンク29から得られる液体燃料、例えばメタノー
ルを気化させて、直接、火花点火エンジン27に供給して
動力を得る推進形式も考えられる。そして、ディーゼル
エンジン26または火花点火エンジン27から得られた動力
は、直接プロペラ軸16に伝達されるか、または減速歯車
15を介してプロペラ軸16に伝達され、これによりプロペ
ラ17の回転駆動が行なわれる。
2. Description of the Related Art Conventionally, a propulsion type of a ship for transporting a liquid fuel such as methanol, as represented by an oil tanker shown in FIG. 3, uses heavy oil supplied from a heavy oil tank 28 in the hull 14 as fuel. In general, a propulsion system that obtains power from a diesel engine 26 is used. However, as shown in FIG. 4, a liquid fuel, for example, methanol obtained from a liquid fuel tank 29 is vaporized and directly supplied to a spark ignition engine 27. A form of propulsion that obtains power is also conceivable. The power obtained from the diesel engine 26 or the spark ignition engine 27 is directly transmitted to the propeller shaft 16 or the reduction gear
The propeller shaft 16 is transmitted to the propeller shaft 16 via 15 to thereby rotate the propeller 17.

【0003】[0003]

【発明が解決しようとする課題】図3に示すディーゼル
エンジン26から動力を得る推進形式の船舶により、メタ
ノールを輸送する場合、液体燃料タンク29内に入れられ
るメタノールは沸点が約65°Cであるために、通常液
体の状態であるが、輸送中にメタノールの一部が気化す
ることにより、液体燃料タンク29内の圧力が上昇する。
通常、液体燃料タンク29内の圧力の上昇は危険であるた
めに、気化した気体の一部を大気中に放出し、液体燃料
タンク29内の圧力の上昇を防止するが、メタノールは有
毒であるので、何らかの処理をして無毒とした後に大気
中に放出する必要がある。このためメタノール処理用の
機器が必要となり、経済性が悪化する。
When methanol is transported by a propulsion type ship powered by a diesel engine 26 shown in FIG. 3, the methanol contained in the liquid fuel tank 29 has a boiling point of about 65 ° C. For this reason, the liquid fuel is normally in a liquid state, but the pressure in the liquid fuel tank 29 increases due to the vaporization of part of the methanol during transportation.
Normally, since the pressure increase in the liquid fuel tank 29 is dangerous, a part of the vaporized gas is released to the atmosphere to prevent the pressure increase in the liquid fuel tank 29, but methanol is toxic. Therefore, it must be released to the atmosphere after some treatment to make it non-toxic. For this reason, equipment for methanol treatment is required, and the economic efficiency deteriorates.

【0004】また、処理後のメタノールの大気中への放
出は、メタノールの一部を捨てることになり、メタノー
ル輸送コストが上昇する。このため、放出するメタノー
ルの有効利用が経済上必要となる。メタノールを大気中
に放出する代わりに、図4に示すメタノールを燃料とす
る内燃機関を用いて動力を得る推進方式を採用した船舶
が考えられるが、メタノールを燃料とする内燃機関には
火花点火エンジン27が用いられる。ところが火花点火エ
ンジン27は、一般的にディーゼルエンジン26よりも効率
が低く、回転数も高いので、船舶の推進形式として望ま
しい高効率および低回転(プロペラ効率を考慮した低回
転)の推進形式となっていない。一方、メタノールはデ
ィーゼルエンジン26の燃料には適していない。
[0004] Further, release of methanol after treatment into the atmosphere means that a part of the methanol is discarded, which increases the cost of transporting methanol. For this reason, it is economically necessary to effectively use the released methanol. A ship adopting a propulsion system that obtains power using an internal combustion engine using methanol as shown in FIG. 4 instead of releasing methanol into the atmosphere can be considered, but a spark ignition engine is used for an internal combustion engine using methanol as a fuel. 27 is used. However, since the spark ignition engine 27 is generally less efficient and has a higher rotation speed than the diesel engine 26, the spark ignition engine 27 has a propulsion type of high efficiency and low rotation (low rotation in consideration of propeller efficiency) as a propulsion type of a ship. Not. On the other hand, methanol is not suitable for the fuel of the diesel engine 26.

【0005】火花点火エンジン27の代わりに舶用ガスタ
ービンを使用する手段も考えられるが、ディーゼルエン
ジン26の燃料経済性にははるかに及ばない。また、ディ
ーゼルエンジン26、火花点火エンジン27および舶用ガス
タービンのいずれも、排出ガス中には窒素酸化物が含ま
れており、大気汚染防止上、窒素酸化物を低減させるた
めの装置が必要となる。
Although a marine gas turbine may be used instead of the spark ignition engine 27, the fuel economy of the diesel engine 26 is far less. In addition, in all of the diesel engine 26, the spark ignition engine 27, and the marine gas turbine, the exhaust gas contains nitrogen oxides, and a device for reducing nitrogen oxides is required to prevent air pollution. .

【0006】そこで本発明は、メタノールの改質により
得られる水素ガスを利用して燃料電池により発電し、効
率よく電気推進を行なえるようにした、電気推進式メタ
ノール輸送船を提供することを課題とする。
Accordingly, an object of the present invention is to provide an electric propulsion-type methanol transport ship capable of efficiently generating electric power by using a fuel cell by utilizing hydrogen gas obtained by reforming methanol and efficiently performing electric propulsion. And

【0007】[0007]

【課題を解決するための手段】前述の課題を解決するた
め、本発明の電気推進式メタノール輸送船は、メタノー
ルを輸送するためのメタノール貯蔵用タンクを船内に設
けた船舶において、酸素貯蔵用タンクと、上記メタノー
ル貯蔵用タンクから取り出されたメタノールを水素と二
酸化炭素との混合ガスに改質するための改質器と、上記
混合ガスから水素を分離する水素分離器と、同水素分離
器からの水素と上記酸素貯蔵用タンクからの酸素との化
学反応により直流電流を発生させるための燃料電池と、
同燃料電池を電源として作動しプロペラを回転させる電
動機が装備されたことを特徴としている。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, an electric propulsion type methanol transport ship according to the present invention is provided in a ship provided with a methanol storage tank for transporting methanol therein. And a reformer for reforming the methanol taken out of the methanol storage tank into a mixed gas of hydrogen and carbon dioxide, a hydrogen separator for separating hydrogen from the mixed gas, and a hydrogen separator. A fuel cell for generating a direct current by a chemical reaction between hydrogen and oxygen from the oxygen storage tank,
An electric motor that operates with the fuel cell as a power source and rotates a propeller is provided.

【0008】上述の本発明の電気推進式メタノール輸送
船では、メタノール貯蔵用タンク内のメタノールを直接
燃料とするので、メタノールを大気中に放出する必要も
なく、経済上有利になる。
In the above-mentioned electric propulsion type methanol transport ship of the present invention, since methanol in the methanol storage tank is directly used as fuel, there is no need to discharge methanol into the atmosphere, which is economically advantageous.

【0009】また、メタノールを改質器で改質して、水
素分離器を介し得られた水素が、酸素との化学反応を利
用した燃料電池により直流電流を発電し、その電力が電
気式推進装置に用いられるので、大気汚染上問題となる
窒素酸化物が発生しない。そして、水素および酸素の化
学エネルギーが燃料電池により直接電気エネルギーに変
換されるので、発電効率が高く、経済上有利である。さ
らに、電動機によりプロペラを回動駆動するよう構成さ
れているので、同プロペラ効率上有利となる低回転化が
可能になる。
In addition, methanol obtained by reforming methanol in a reformer and passing through a hydrogen separator generates a direct current by a fuel cell utilizing a chemical reaction with oxygen. Since it is used in an apparatus, nitrogen oxides that are a problem in air pollution are not generated. Since the chemical energy of hydrogen and oxygen is directly converted into electric energy by the fuel cell, the power generation efficiency is high, which is economically advantageous. Furthermore, since the propeller is configured to be rotationally driven by the electric motor, it is possible to reduce the rotation, which is advantageous in terms of the propeller efficiency.

【0010】[0010]

【発明の実施の形態】以下、図面により本発明の一実施
形態としての電気推進式メタノール輸送船について説明
すると、図1はその模式的な縦断面図、図2はそのメタ
ノールを利用した電気推進設備の系統図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic longitudinal sectional view of an electric propulsion type methanol transport ship according to an embodiment of the present invention. FIG. It is a system diagram of equipment.

【0011】図1および図2に示すように、このメタノ
ール輸送船には、船体14の内部にメタノール(CH3
H)を貯蔵するタンク1が設けられるほか、酸素貯蔵用
タンク2と、メタノール貯蔵用タンク1から取り出され
たメタノールを水素と二酸化炭素との混合ガスに改質す
るための改質器4とが設けられている。
As shown in FIGS. 1 and 2, this methanol transport ship has methanol (CH 3 O) inside a hull 14.
In addition to a tank 1 for storing H), an oxygen storage tank 2 and a reformer 4 for reforming methanol taken out from the methanol storage tank 1 into a mixed gas of hydrogen and carbon dioxide are provided. Is provided.

【0012】そして、改質器4で生じた混合ガスから水
素を分離する水素分離器5が設けられるとともに、この
水素分離器5から送給される水素と酸素貯蔵用タンク2
から酸素供給器8を介し送給される酸素とを受けて直流
電流を発電する燃料電池3が設けられている。
Further, a hydrogen separator 5 for separating hydrogen from the mixed gas generated in the reformer 4 is provided, and the hydrogen supplied from the hydrogen separator 5 and the oxygen storage tank 2 are provided.
A fuel cell 3 is provided, which receives oxygen supplied from the oxygen supply device 8 via an oxygen supply device 8 to generate a DC current.

【0013】また燃料電池3で水素と酸素との反応によ
り生じた水は、水タンク30に導かれるようになってお
り、同タンク30は改質器4に接続されている。
Water generated by the reaction between hydrogen and oxygen in the fuel cell 3 is led to a water tank 30, which is connected to the reformer 4.

【0014】燃料電池3は、陽極11,陰極12および電解
質13をそなえており、両極11,12か配線23を介し給電さ
れる電力調節器(あるいはインバータ)7に、プロペラ
駆動用の電動機6が接続されている。すなわち、電動機
6は、減速歯車15およびプロペラ軸16を介してプロペラ
17を回転駆動するようになっている。なお、図1,2に
おける符号9は配管を示し、符号10はメタノール気化器
および安全弁を示している。
The fuel cell 3 includes an anode 11, a cathode 12, and an electrolyte 13. An electric motor 6 for driving a propeller is provided on a power controller (or an inverter) 7 which is supplied with power via the electrodes 11, 12 or the wiring 23. It is connected. That is, the electric motor 6 is driven by the propeller via the reduction gear 15 and the propeller shaft 16.
17 is rotationally driven. 1 and 2, reference numeral 9 indicates a pipe, and reference numeral 10 indicates a methanol vaporizer and a safety valve.

【0015】メタノール貯蔵用タンク1に貯蔵されてい
る液体状態のメタノールは、メタノール気化器および安
全弁10により、気化した状態で配管9を通り、改質器4
へと導かれる。改質器4内において、メタノール(CH
3OH)は、銅を基礎とした触媒などの働きにより、
[化1]式,[化2]式および[化3]式に示す化学反
応を起こし、最終的に水素(H2)と二酸化炭素(C
2)になる。メタノール中の炭素(C)は一酸化炭素
(CO)や二酸化炭素となるが、一酸化炭素は[化2]
式の反応により二酸化炭素と水素となる。水(H2O)
は、水タンク30より供給される。
The methanol in the liquid state stored in the methanol storage tank 1 is vaporized by the methanol vaporizer and the safety valve 10, passes through the pipe 9, and passes through the reformer 4.
It is led to. In the reformer 4, methanol (CH
3 OH) by the action of copper-based catalysts
The chemical reactions shown in the formulas [1], [2] and [3] occur, and finally hydrogen (H 2 ) and carbon dioxide (C
O 2 ). Carbon (C) in methanol becomes carbon monoxide (CO) and carbon dioxide, but carbon monoxide is
The reaction of the formula gives carbon dioxide and hydrogen. Water (H 2 O)
Is supplied from the water tank 30.

【化1】 CH3OH → CO+2H2 (分解反応)Embedded image CH 3 OH → CO + 2H 2 (decomposition reaction)

【化2】 CO+H2O → CO2+H2O (液体−気体相変化反応)Embedded image CO + H 2 O → CO 2 + H 2 O (liquid-gas phase change reaction)

【化3】 CH3OH+H2O → CO2+3H2 (改質反応)Embedded image CH 3 OH + H 2 O → CO 2 + 3H 2 (reforming reaction)

【0016】改質器4から出る水素と二酸化炭素との混
合気体は、水素分離器5に導かれた後、水素と二酸化炭
素とにそれぞれ分離され、水素は燃料電池3の陰極12に
導かれる。そして二酸化炭素は、大気中に放出させる
か、海水中に溶け込ませることにより、船外へと排出さ
れる。
The gas mixture of hydrogen and carbon dioxide coming out of the reformer 4 is led to a hydrogen separator 5 and then separated into hydrogen and carbon dioxide, and the hydrogen is led to a cathode 12 of the fuel cell 3. . Then, the carbon dioxide is discharged out of the ship by being released into the atmosphere or dissolved in seawater.

【0017】酸素貯蔵用タンク2内には、通常、酸素は
液体の形で保存されている。この酸素は酸素供給器8に
導かれ、気化した後、燃料電池3の陽極11へ導かれる。
燃料電池3内では[化4]式の反応が起こる際に、陽極
11と陰極12との間に挟まれた電解質13を介してイオンの
移動が起こり、電力が発生する。
In the oxygen storage tank 2, oxygen is usually stored in a liquid form. This oxygen is led to the oxygen supplier 8, vaporized, and then led to the anode 11 of the fuel cell 3.
In the fuel cell 3, when the reaction of the formula [4] takes place, the anode
The movement of ions occurs through the electrolyte 13 sandwiched between the cathode 11 and the cathode 12, and electric power is generated.

【化4】H2+(1/2)O2 → H2Embedded image H 2 + (1/2) O 2 → H 2 O

【0018】陽極11と陰極12とには多孔質カーボンなど
を、電解質13には高分子ポリマー,リン酸,アルカリ水
溶液,安定化ジルコニアなどを用いる。燃料電池3内の
反応で生成された水22は、水タンク30へ導かれ、改質器
4へ供給する水として再利用される。
The anode 11 and the cathode 12 are made of porous carbon or the like, and the electrolyte 13 is made of a polymer polymer, phosphoric acid, an aqueous alkali solution, stabilized zirconia, or the like. Water 22 generated by the reaction in the fuel cell 3 is guided to a water tank 30 and reused as water to be supplied to the reformer 4.

【0019】燃料電池3で発電された直流電流は、配線
23を通じて電力調節器(あるいはインバータ)7へと導
かれる。電力調節器7は、電動機6が直流モータの場
合、同モータへの出力電圧または出力電流を調節する。
電動機6が交流モータの場合は、電力調節器7にインバ
ータが取り付けられ、燃料電池3からの直流電流を交流
電流に変換する。その後、電力調節器7により出力電圧
または出力電流が調整され、電動機6の電力として用い
られる。
The direct current generated by the fuel cell 3 is connected to a wiring
It is led to the power controller (or inverter) 7 through 23. When the electric motor 6 is a DC motor, the power controller 7 adjusts the output voltage or output current to the motor.
When the electric motor 6 is an AC motor, an inverter is attached to the power controller 7 and converts DC current from the fuel cell 3 into AC current. After that, the output voltage or the output current is adjusted by the power controller 7 and used as the power of the electric motor 6.

【0020】そして、電動機6で発生する動力は、直接
プロペラ軸16に伝達されるか、または、減速歯車15を介
してプロペラ軸16に伝達され、プロペラ17を回転させ
る。
The power generated by the electric motor 6 is transmitted directly to the propeller shaft 16 or transmitted to the propeller shaft 16 via the reduction gear 15 to rotate the propeller 17.

【0021】上述の本実施形態では、メタノール貯蔵用
タンク1内のメタノールを直接燃料とするので、メタノ
ールを大気中に放出する必要がなく、経済的に優れてい
る。また、メタノールを改質器4で水素に改質し、その
水素と酸素の化学反応を利用した燃料電池3により直流
電流を発電し、推進用電動機6の電力としているので、
大気汚染上問題となる窒素酸化物が発生しない。よっ
て、窒素酸化物を低減させるための装置が必要なく、経
済的に優れている。さらに、メタノールには硫黄成分が
含まれていないので、大気汚染上問題となる硫黄酸化物
は発生せず、硫黄酸化物を除去するための装置を設ける
必要がない。
In the above-described embodiment, since methanol in the methanol storage tank 1 is directly used as fuel, there is no need to release methanol into the atmosphere, which is economically excellent. Further, since methanol is reformed into hydrogen in the reformer 4 and a direct current is generated by the fuel cell 3 utilizing a chemical reaction between the hydrogen and oxygen, the electric power is used as the electric power for the propulsion motor 6.
Nitrogen oxides that are a problem in air pollution are not generated. Therefore, there is no need for a device for reducing nitrogen oxides, which is economically excellent. Further, since sulfur components are not contained in methanol, sulfur oxides that are a problem in air pollution are not generated, and it is not necessary to provide a device for removing sulfur oxides.

【0022】また、水素および酸素の化学エネルギーを
燃料電池3により直接電気エネルギーに変換するので、
発電効率が高く、経済的に優れている。さらに、電動機
6によりプロペラ17を回転させて推力を発生しているの
で、プロペラ17の効率上有利となる低回転化が可能であ
る。そして、電動機6の使用により、ディーゼルエンジ
ン26や火花点火エンジン27に比べて、低振動および低騒
音の船舶とすることができる。また液体酸素により、貯
蔵すべき酸素の体積を少なくすることができるので、酸
素貯蔵用タンク2を小さくできる。メタノールは常温に
て液体の状態であるので、メタノール貯蔵用タンク1に
は、特別な防熱材や安全装置を必要とせず、経済的に優
れている。
Further, since chemical energy of hydrogen and oxygen is directly converted into electric energy by the fuel cell 3,
It has high power generation efficiency and is economically excellent. Further, since the propeller 17 is rotated by the electric motor 6 to generate a thrust, the rotation of the propeller 17 can be reduced, which is advantageous in terms of efficiency. The use of the electric motor 6 makes it possible to provide a ship having lower vibration and lower noise than the diesel engine 26 and the spark ignition engine 27. Further, since the volume of oxygen to be stored can be reduced by liquid oxygen, the size of the oxygen storage tank 2 can be reduced. Since methanol is in a liquid state at normal temperature, the methanol storage tank 1 does not require any special heat insulating material or safety device, and is economically excellent.

【0023】[0023]

【発明の効果】以上詳述したように、本発明の電気推進
式メタノール輸送船によれば次のような効果が得られ
る。 (1) メタノール貯蔵用タンク内のメタノールを直接燃料
とするので、メタノールを大気中に放出する必要がな
く、経済的に優れている。 (2) メタノールを改質器で水素に改質し、その水素と酸
素の化学反応を利用した燃料電池により直流電流を発電
し、推進用電動機の電力としているので、大気汚染上問
題となる窒素酸化物が発生しない。よって、窒素酸化物
を低減させるための装置が必要なく、経済的に優れてい
る。 (3) メタノールには硫黄成分が含まれていないので、大
気汚染上問題となる硫黄酸化物は発生せず、硫黄酸化物
を除去するための装置を設ける必要がない。 (4) 水素および酸素の化学エネルギーを燃料電池により
直接電気エネルギーに変換するので、発電効率が高く、
経済的に優れている。 (5) 電動機によりプロペラを回転させて推力を発生して
いるので、プロペラの効率上有利となる低回転化が可能
である。 (6) 電動機の使用により、ディーゼルエンジンや火花点
火エンジンに比べて、低振動および低騒音の船舶とする
ことができる。 (7) 液体酸素により、貯蔵すべき酸素の体積を少なくす
ることができるので、酸素貯蔵用タンクを小さくでき
る。 (8) メタノールは常温にて液体の状態であるので、メタ
ノール貯蔵用タンクには、特別な防熱材や安全装置を必
要とせず、経済的に優れている。
As described in detail above, the electric propulsion type methanol transport ship of the present invention has the following effects. (1) Since methanol in the methanol storage tank is used directly as fuel, there is no need to release methanol into the atmosphere, which is economically superior. (2) Methanol is reformed into hydrogen in a reformer, and a direct current is generated by a fuel cell utilizing the chemical reaction between the hydrogen and oxygen, which is used as power for the propulsion motor. No oxides are generated. Therefore, there is no need for a device for reducing nitrogen oxides, which is economically excellent. (3) Since methanol does not contain a sulfur component, sulfur oxides, which pose a problem in air pollution, are not generated, and there is no need to provide a device for removing sulfur oxides. (4) Since the chemical energy of hydrogen and oxygen is directly converted into electric energy by the fuel cell, the power generation efficiency is high,
Excellent financially. (5) Since the thrust is generated by rotating the propeller by the electric motor, it is possible to reduce the rotation, which is advantageous for the propeller efficiency. (6) By using an electric motor, a ship with lower vibration and lower noise can be provided as compared with a diesel engine or a spark ignition engine. (7) Since the volume of oxygen to be stored can be reduced by liquid oxygen, the size of the oxygen storage tank can be reduced. (8) Since methanol is in a liquid state at room temperature, the methanol storage tank does not require special heat insulating materials or safety devices, and is economically excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態としての電気推進式メタノ
ール輸送船を模式的に示す縦断面図である。
FIG. 1 is a longitudinal sectional view schematically showing an electric propulsion type methanol transport ship as one embodiment of the present invention.

【図2】図1の船舶の電気推進設備を示す系統図であ
る。
FIG. 2 is a system diagram showing an electric propulsion facility of the ship of FIG.

【図3】従来の重油を燃料とした推進形式を有する液体
燃料輸送船の縦断面図である。
FIG. 3 is a longitudinal sectional view of a conventional liquid fuel transport ship having a propulsion type using heavy oil as fuel.

【図4】従来のメタノールを燃料とした推進形式を有す
る液体燃料輸送船の縦断面図である。
FIG. 4 is a longitudinal sectional view of a conventional liquid fuel transport ship having a propulsion type using methanol as a fuel.

【符号の説明】[Explanation of symbols]

1 メタノール貯蔵用タンク 2 酸素貯蔵用タンク 3 燃料電池 4 改質器 5 水素分離器 6 電動機 7 電力調節器あるいはインバータ 8 酸素供給器 9 配管 10 メタノール気化器および安全弁 11 陽極 12 陰極 13 電解質 14 船体 15 減速歯車 16 プロペラ軸 17 プロペラ 23 配線 26 ディーゼルエンジン 27 火花点火エンジン 28 重油タンク 29 液体燃料タンク 30 水タンク DESCRIPTION OF SYMBOLS 1 Methanol storage tank 2 Oxygen storage tank 3 Fuel cell 4 Reformer 5 Hydrogen separator 6 Electric motor 7 Power controller or inverter 8 Oxygen supply 9 Piping 10 Methanol vaporizer and safety valve 11 Anode 12 Cathode 13 Electrolyte 14 Hull 15 Reduction gear 16 Propeller shaft 17 Propeller 23 Wiring 26 Diesel engine 27 Spark ignition engine 28 Fuel oil tank 29 Liquid fuel tank 30 Water tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 メタノールを輸送するためのメタノール
貯蔵用タンクを船内に設けた船舶において、酸素貯蔵用
タンクと、上記メタノール貯蔵用タンクから取り出され
たメタノールを水素と二酸化炭素との混合ガスに改質す
るための改質器と、上記混合ガスから水素を分離する水
素分離器と、同水素分離器からの水素と上記酸素貯蔵用
タンクからの酸素との化学反応により直流電流を発生さ
せるための燃料電池と、同燃料電池を電源として作動し
プロペラを回転させる電動機が装備されたことを特徴と
する、電気推進式メタノール輸送船。
In a ship provided with a methanol storage tank for transporting methanol therein, an oxygen storage tank and methanol extracted from the methanol storage tank are converted into a mixed gas of hydrogen and carbon dioxide. A hydrogen separator for separating hydrogen from the mixed gas, and a direct current for generating a direct current by a chemical reaction between hydrogen from the hydrogen separator and oxygen from the oxygen storage tank. An electrically propelled methanol transport ship, comprising: a fuel cell; and an electric motor that operates using the fuel cell as a power source and rotates a propeller.
JP8340663A 1996-12-05 1996-12-05 Electric proplusive type methanol tanker Pending JPH10167189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8340663A JPH10167189A (en) 1996-12-05 1996-12-05 Electric proplusive type methanol tanker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8340663A JPH10167189A (en) 1996-12-05 1996-12-05 Electric proplusive type methanol tanker

Publications (1)

Publication Number Publication Date
JPH10167189A true JPH10167189A (en) 1998-06-23

Family

ID=18339135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8340663A Pending JPH10167189A (en) 1996-12-05 1996-12-05 Electric proplusive type methanol tanker

Country Status (1)

Country Link
JP (1) JPH10167189A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1395531A2 (en) * 2000-08-18 2004-03-10 Have Blue, LLC System and method for the production and use of hydrogen on board a marine vessel
JP2006224885A (en) * 2005-02-21 2006-08-31 Ebara Corp Hydrogen manufacturing equipment and manufacturing method
WO2009095778A1 (en) * 2008-02-01 2009-08-06 Stefan Tarkovacs Autonomous dynamic sailing hull
KR101225689B1 (en) 2011-05-30 2013-01-23 삼성중공업 주식회사 Fuel cell system and ship having the same
KR101355999B1 (en) * 2011-12-27 2014-02-05 대우조선해양 주식회사 Fuel cell system for ship
JP2015202792A (en) * 2014-04-15 2015-11-16 三井造船株式会社 Fuel supply system for crude oil tanker
JP2015221645A (en) * 2014-05-23 2015-12-10 三井造船株式会社 Ship using methanol as fuel
EP2444314A4 (en) * 2010-05-07 2017-04-19 Daewoo Shipbuilding&Marine Engineering Co., Ltd. Electricity generating device of lng carrier and method thereof
JP2020125798A (en) * 2019-02-04 2020-08-20 住友金属鉱山株式会社 Methanol delivery pipe support member
CN114671002A (en) * 2022-04-28 2022-06-28 广船国际有限公司 Hydrogen fuel ship capable of reducing NOx emission

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1395531A2 (en) * 2000-08-18 2004-03-10 Have Blue, LLC System and method for the production and use of hydrogen on board a marine vessel
EP1395531A4 (en) * 2000-08-18 2010-06-02 Have Blue Llc System and method for the production and use of hydrogen on board a marine vessel
JP2006224885A (en) * 2005-02-21 2006-08-31 Ebara Corp Hydrogen manufacturing equipment and manufacturing method
WO2009095778A1 (en) * 2008-02-01 2009-08-06 Stefan Tarkovacs Autonomous dynamic sailing hull
FR2927059A1 (en) * 2008-02-01 2009-08-07 Stefan Tarkovacs DYNAMIC HULL OF NAVIGATION
EP2444314A4 (en) * 2010-05-07 2017-04-19 Daewoo Shipbuilding&Marine Engineering Co., Ltd. Electricity generating device of lng carrier and method thereof
KR101225689B1 (en) 2011-05-30 2013-01-23 삼성중공업 주식회사 Fuel cell system and ship having the same
KR101355999B1 (en) * 2011-12-27 2014-02-05 대우조선해양 주식회사 Fuel cell system for ship
JP2015202792A (en) * 2014-04-15 2015-11-16 三井造船株式会社 Fuel supply system for crude oil tanker
JP2015221645A (en) * 2014-05-23 2015-12-10 三井造船株式会社 Ship using methanol as fuel
JP2020125798A (en) * 2019-02-04 2020-08-20 住友金属鉱山株式会社 Methanol delivery pipe support member
CN114671002A (en) * 2022-04-28 2022-06-28 广船国际有限公司 Hydrogen fuel ship capable of reducing NOx emission

Similar Documents

Publication Publication Date Title
CN100386936C (en) Energy system for watercraft
US20070122667A1 (en) Fuel cell system with integrated fuel processor
US6610193B2 (en) System and method for the production and use of hydrogen on board a marine vessel
KR20190073050A (en) Hybrid Generation System and Method for a Ship
JP6741372B2 (en) Zero emission power generation sailboat
JP4228608B2 (en) Propulsion device for liquefied gas carrier
JP2013514494A (en) Efficiency improving turbine
US10577067B1 (en) Zero emission power generation sailing ship
JPH10167189A (en) Electric proplusive type methanol tanker
JP2004051049A (en) Bog processing method and device of liquefied gas carrying vessel
JP2004066917A (en) Power supply system for vessel
US20230041653A1 (en) Offshore production facility arrangement
KR101584561B1 (en) Propulsion System And Method For Fuel Cell Submarine
WO2022250078A1 (en) Ship
KR20170029889A (en) Hydrogen supply system of underwater moving body using gasoline fuel
KR20180075263A (en) Ship
KR20170080824A (en) Ship
KR101956240B1 (en) Fuel cell system for ship
KR20210095257A (en) Ship having hydrogen fuel cell and available of hydrogen producing using steam produced by exhaust gas
KR101717855B1 (en) Reformer system of underwater moving body and the managing method thereof
JP2001167784A (en) Fuel cell system
KR20170047505A (en) Carbon dioxide purging system and method of underwater moving body
KR20180075304A (en) Ship
KR102121285B1 (en) Ship
KR20180075300A (en) Ship

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040218