JPH10166121A - Flux for melting and casting metal and method for melting and casting copper-iron alloy - Google Patents

Flux for melting and casting metal and method for melting and casting copper-iron alloy

Info

Publication number
JPH10166121A
JPH10166121A JP8344494A JP34449496A JPH10166121A JP H10166121 A JPH10166121 A JP H10166121A JP 8344494 A JP8344494 A JP 8344494A JP 34449496 A JP34449496 A JP 34449496A JP H10166121 A JPH10166121 A JP H10166121A
Authority
JP
Japan
Prior art keywords
metal
alloy
copper
casting
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8344494A
Other languages
Japanese (ja)
Inventor
Osamu Ogawa
修 小川
Hiromi Kawachi
博美 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seiko Co Ltd
Original Assignee
Tokyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seiko Co Ltd filed Critical Tokyo Seiko Co Ltd
Priority to JP8344494A priority Critical patent/JPH10166121A/en
Publication of JPH10166121A publication Critical patent/JPH10166121A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the absorbing separation, melting and mixing characteristic of impurity and reliability and to obtain a high quality metal or alloy by using a flux containing the lime component composed of hexagonal crystal and platy laminated grain structure at a specific quantity or more and the balance contaminant. SOLUTION: An induction heating furnace 1 has an induction coil 2 and melts by charging the flux S together with a metal M1 of Fe, and Cu, etc., or the metal M1 and an alloying metal M2 of Fe, etc. In such a way, molten metal or molten alloy M3 (M6) is formed. The flux S contains essentially of >=95wt.% the lime component composed of the hexagonal crystal and the platy laminated grain structure and the balance <5wt.% contaminant. The lime component is efficiently fined in the molten metal, and the deoxidizing separation to dissolved oxygen and separating performance to the impurity, are improved. Further, Si at about 0.3wt.% and Mn at about 1.0wt.% are added into the molten metal or alloy together with the flux. By this method, the absorbing separation, melting and mixing characteristic of the impurity and the reliability can remarkably be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種の金属や銅鉄
合金等の合金を溶解して鋳造するのに好適な金属溶解・
鋳造用の溶剤及び銅鉄合金溶解・鋳造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal melting and melting method suitable for melting and casting various metals and alloys such as copper-iron alloys.
The present invention relates to a casting solvent and a method of melting and casting a copper-iron alloy.

【0002】[0002]

【従来の技術】各種の鉄系鋼の溶解、鋳造について従来
例を説明すると、まず高炉によつて製造した銑鉄を、転
炉により精練して成分調整をした後、鋳型で鋳込み凝固
させて鋼塊にする。次に、誘導加熱炉等により鋼塊を溶
解し、必要な母合金を添加して溶解し、溶剤による脱酸
分離により各種の不純物を浮上して除去するとともに、
上部に形成された溶剤スラブ(鋼滓)により酸化を防止
して溶融鋼とし、この溶融鋼を直接に又は鋳型等で鋳塊
にして、この鋳塊を鍛造や圧延等して各種の形鋼や板鋼
等に製造したり、又は、溶融鋼をノヅルで連続して取り
出し急冷して線材とし、この線材をさらに伸線して各種
のワイヤに製造している。
2. Description of the Related Art A conventional example of melting and casting of various iron-based steels will be described. First, pig iron produced by a blast furnace is refined by a converter to adjust the components, and then cast and solidified by a mold to cast the steel. Make a lump. Next, the steel ingot is melted by an induction heating furnace, etc., the necessary mother alloy is added and melted, and various impurities are floated and removed by deoxidation and separation with a solvent.
Solvent slab (steel slag) formed on the upper part prevents oxidation to form molten steel. This molten steel is made into an ingot directly or with a mold or the like, and this ingot is forged or rolled to form various shaped steels. They are manufactured into steel or sheet steel, or molten steel is continuously taken out with a nozzle and quenched into a wire, which is further drawn to manufacture various wires.

【0003】また、各種の金属又は合金の融解に際し、
その溶剤に適用されている従来の生石灰は、石灰石の焼
成品であつて、図4に示すように主として六角状結晶で
柱状塊粒の組織からなる生石灰成分からなり、炉内で溶
解される金属又は合金中の溶存酸素を脱酸分離して不純
物を吸収し精度や溶解、混合性を高めるとともに、溶け
た金属又は合金を覆い酸化を防止する役割をしている。
In melting various metals or alloys,
The conventional quicklime applied to the solvent is a calcined product of limestone. As shown in FIG. 4, the quicklime mainly comprises a quicklime component composed of hexagonal crystals and columnar aggregates, and is dissolved in the furnace. Alternatively, it functions to deoxidize and separate dissolved oxygen in the alloy to absorb impurities to improve accuracy, dissolution, and mixing, and to cover the molten metal or alloy to prevent oxidation.

【0004】例えば、銅鉄合金の溶解・鋳造において、
溶剤に適用されている従来の生石灰は、前記のような組
織になつているため溶湯中で微細化し難く、脱酸分離性
能とともに鉄の微細化、即ちその拡散混合性能等に限界
があつて、銅含有率を20wt%以上の高率にすると、
図5に示すように鉄が著しく偏析した組織になり均質な
共晶組織の銅鉄合金が得られない。従って、現在では低
い銅含有率(10wt%以下)の銅鉄合金に製造されて
いる。このような低い銅含有率の銅鉄合金は銅特性があ
まり発揮されないため、高い銅含有率の銅鉄合金の溶解
・鋳造技術の開発が望まれている。
For example, in the melting and casting of a copper-iron alloy,
The conventional quick lime applied to the solvent is difficult to be refined in the molten metal because it has such a structure, and there is a limit to the deoxidation and separation performance as well as the refinement of iron, that is, its diffusion and mixing performance. When the copper content is increased to 20 wt% or more,
As shown in FIG. 5, iron has a remarkably segregated structure, and a copper-iron alloy having a homogeneous eutectic structure cannot be obtained. Therefore, at present, it is manufactured into a copper-iron alloy having a low copper content (10% by weight or less). Since a copper-iron alloy having such a low copper content does not exhibit much copper properties, it is desired to develop a technique for melting and casting a copper-iron alloy having a high copper content.

【0005】[0005]

【発明が解決しようとする課題】従来、各種の金属又は
合金の溶解・鋳造用の溶剤は、前記のように溶湯中でさ
らに微細化し難い組織の生石灰成分からなり、溶けた金
属又は合金との馴染み性が悪く、脱酸分離性能とともに
鉄の微細化、即ち拡散混合性等に限界があるなどの基本
的な課題がある。また、例えば高い銅含有率の銅鉄合金
を溶解・鋳造する場合は、図5に示すように鉄が著しく
偏析した組織になつて、均質な共晶組織の銅鉄合金に製
造できないなどの課題がある。
Conventionally, a solvent for dissolving and casting various metals or alloys is composed of a quicklime component having a structure that is more difficult to be finely divided in a molten metal as described above, and is used in combination with a molten metal or alloy. There are basic problems such as poor conformability and a reduction in iron fineness, that is, diffusion mixing property, etc. together with deoxidation separation performance. Further, for example, when a copper-iron alloy having a high copper content is melted and cast, as shown in FIG. 5, a structure in which iron segregates remarkably cannot be produced into a copper-iron alloy having a homogeneous eutectic structure. There is.

【0006】本発明は、前記のような課題を解決するた
めに開発されたものであり、その目的とする処は、主に
六角状結晶で板状積層粒の組織からなる生石灰成分を含
み、又はさらに適量のシリコン及びマンガンを添加した
溶剤として、脱酸分離性能や溶解及び拡散混合性能を高
めるなど、不純物の分離や溶解及び混合性能、信頼性を
向上して品質を高めた金属溶解・鋳造用の溶剤及び銅鉄
合金の溶解・鋳造方法を提供するにある。
The present invention has been developed to solve the above-mentioned problems, and its object is to mainly include a quicklime component composed of hexagonal crystals and a plate-like laminated grain structure, Or, as a solvent to which an appropriate amount of silicon and manganese are added, the metal dissolution / casting with improved quality by improving the separation / dissolution / mixing performance and reliability of impurities, such as enhancing the deoxidation separation performance and the dissolution / diffusion / mixing performance. And a method of melting and casting a copper iron alloy.

【0007】[0007]

【課題を解決するための手段】本発明は、金属又は合金
に溶剤を添加して溶かし、溶剤により金属中の溶存酸素
を脱酸分離するとともに不純物を吸収し酸化を防止して
溶融金属又は溶融合金とし、溶融金属又は溶融合金を鋳
造する金属溶解・鋳造用の溶剤において、主として六角
状結晶で板状積層粒の組織からなる生石灰成分を95w
t%以上含み、残り5wt%未満を混入物が占める金属
溶解・鋳造用の溶剤に特徴を有し、この六角状結晶で板
状積層粒の組織からなる95wt%以上の生石灰成分
は、溶湯中で効果的に微細化して、溶存酸素の脱酸分
離、不純物の分離性能を高め、金属を結晶粒状に微細化
して金属又は合金の溶解、混合性能を効果的に高めるな
ど、各種の金属又は合金の溶解・鋳造用の溶剤として汎
用される。
SUMMARY OF THE INVENTION The present invention relates to a method for melting a metal or alloy by adding a solvent to a metal or alloy and dissolving the dissolved oxygen in the metal with the solvent and absorbing impurities to prevent oxidation. In a metal melting / casting solvent for casting a molten metal or a molten alloy as an alloy, a quicklime component consisting mainly of hexagonal crystals and having the structure of plate-like laminated grains is 95 watts.
It is characterized by a solvent for metal melting and casting in which contaminants account for at least 5% by weight and the remaining less than 5% by weight. The quicklime component of 95% by weight or more composed of hexagonal crystals and composed of plate-like laminated grains is contained in the molten metal. Various kinds of metals or alloys, such as effective refinement, deoxidation separation of dissolved oxygen, enhancement of impurity separation performance, and refinement of metals into crystal grains to effectively improve melting or mixing performance of metals or alloys It is widely used as a solvent for dissolving and casting.

【0008】また、前記の金属溶解・鋳造用の溶剤にお
いて、この溶剤に、溶解する金属又は合金に対しシリコ
ンを約0.3wt%及びマンガンを約1.0wt%添加
した金属溶解・鋳造用の溶剤に特徴を有し、適度のシリ
コン及びマンガンの添加によつて溶存酸素の脱酸分離、
不純物の分離性能とともに溶解、混合性能をさらに高め
ている。
In addition, in the above-mentioned solvent for melting and casting a metal, about 0.3% by weight of silicon and about 1.0% by weight of manganese are added to the solvent or metal to be dissolved. Characterized by the solvent, deoxidation and separation of dissolved oxygen by addition of moderate silicon and manganese,
Dissolving and mixing performance as well as impurity separation performance are further enhanced.

【0009】さらに、誘導加熱炉に銅を入れて溶かし、
主に六角状結晶で板状積層粒の組織からなる生石灰成分
を95wt%以上含み残り5wt%未満を混合物が占
め、又はさらに溶解する合金に対しシリコンを約0.3
wt%及びマンガンを約1.0wt%添加した溶剤を、
鉄とともに溶けた銅中に入れて溶かし、溶剤により銅及
び鉄中の溶存酸素を脱酸分離して鉄を溶けた銅中に結晶
核状に微細化し拡散して溶かし込むとともに、不純物を
吸収し酸化を防止して銅鉄溶融合金にした後、銅鉄溶融
合金を鋳造する銅鉄合金の溶解・鋳造方法に特徴を有
し、前記の溶剤による優れた溶存酸素の脱酸分離、不純
物の分離性能とともに溶融金属の微細化、拡散混合性能
により、微細化して溶けた銅内に鉄が結晶核状に拡散さ
れて溶かし込まれた銅鉄溶融合金となり、高い銅含有率
にしても銅と鉄が均質な共晶組織になつた高精度の銅鉄
合金に鋳造される。
Further, copper is put into an induction heating furnace and melted,
The mixture occupies 95 wt% or more of the quicklime component mainly composed of hexagonal crystals and a plate-like laminated grain structure, and the mixture occupies the remaining less than 5 wt%.
wt% and about 1.0 wt% manganese added solvent
Dissolve in copper melted with iron, dissolve and separate dissolved oxygen in copper and iron by solvent, refine the crystal nucleus into iron melted copper, disperse and melt, and absorb impurities. The method is characterized by the method of melting and casting a copper-iron alloy for casting a copper-iron molten alloy after preventing oxidation to a copper-iron molten alloy, and excellent deoxidation of dissolved oxygen and separation of impurities by the above-mentioned solvent. Due to the refinement and diffusion mixing performance of the molten metal together with the performance, iron is diffused into the crystal nucleus in the refined and melted copper and melted into a copper-iron molten alloy, and even with a high copper content copper and iron Is cast into a high-precision copper-iron alloy with a homogeneous eutectic structure.

【0010】[0010]

【発明の実施の形態】図1Aに本発明の金属溶解・鋳造
用の溶剤の一実施例、図1B及び図2Aに金属溶解・鋳
造方法(第1実施例)、図2Bに銅鉄合金の溶解・鋳造
方法(第2実施例)を示している。図中1は誘導コイル
2を有する誘導加熱炉、3は誘導加熱炉の底部に設けた
ノズル、5は受皿(タンディツシュ)、6は鋳型、11
は冷却水10を収容した冷却・鋳造槽、CaOは生石灰
成分、M1は溶解して鋳造する金属(鉄Feや銅Cu等
の金属)、M2は金属M1に溶け込ませる合金用の金属
(鉄Fe等の金属)、M1,M2は合金、Sは溶剤、S
1は溶剤等で形成されて溶融金属又は溶融合金の上部を
覆つた生石灰スラブ(鋼滓)、M3は溶融金属又は溶融
合金、M6は銅鉄溶融合金である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1A shows an embodiment of a metal melting and casting solvent according to the present invention, FIGS. 1B and 2A show a metal melting and casting method (first embodiment), and FIG. 9 shows a melting / casting method (second embodiment). In the figure, 1 is an induction heating furnace having an induction coil 2, 3 is a nozzle provided at the bottom of the induction heating furnace, 5 is a tray (tandish), 6 is a mold, 11
Is a cooling / casting tank containing the cooling water 10, CaO is a quicklime component, M1 is a metal to be melted and cast (metals such as iron Fe and copper Cu), and M2 is a metal (iron Fe) for an alloy to be melted into the metal M1. M1, M2 are alloys, S is a solvent, S
1 is a quicklime slab (steel slag) formed of a solvent or the like and covering the top of the molten metal or molten alloy, M3 is a molten metal or molten alloy, and M6 is a copper-iron molten alloy.

【0011】図示の実施例は、金属M1又は合金M1,
M2に溶剤を添加して溶かし、溶剤により金属M1、M
2中の溶存酸素を脱酸分離するとともに不純物を吸収し
酸化を防止して溶融金属又は溶融合金M3にして、溶融
金属又は溶融合金を鋳造する金属溶解・鋳造用の溶剤に
おいて、主として六角状結晶で板状積層粒の組織からな
る生石灰成分CaOを95wt%以上含み、残り5wt
%未満を混入物が占めることを特徴とする金属溶解・鋳
造用の溶剤Sになつている。
In the illustrated embodiment, the metal M1 or alloy M1,
A solvent is added to and dissolved in M2, and metals M1, M
2 is a solvent for metal melting and casting for casting molten metal or molten alloy by deoxidizing and separating dissolved oxygen in 2 and absorbing impurities to prevent oxidation to form molten metal or molten alloy M3. Contains 95% by weight or more of quicklime component CaO composed of a plate-like laminated grain structure, and the remaining 5%
% Of the mixture is a solvent S for melting and casting a metal, characterized in that the contaminants account for less than 10%.

【0012】また、前記の金属溶解・鋳造用の溶剤にお
いて、この溶剤に、溶解する金属M1又は合金M1,M
2に対しシリコンSiを約0.3wt%とマンガンMn
を約1wt%添加したことを特徴とする金属溶解・鋳造
用の溶剤Sになつている。
In the above-mentioned solvent for melting and casting metal, the metal M1 or alloy M1, M1
About 0.3 wt% of silicon Si and manganese Mn
Is added to the solvent S for metal melting and casting.

【0013】さらに、誘導加熱炉1に銅Cuを入れて溶
かし、主に六角状結晶で板状積層粒の組織からなる生石
灰成分を95wt%以上含み残り5wt%未満を混合物
が占め、又はさらに溶解する合金M1,M2に対しシリ
コンSiを約0.3wt%及びマンガンMnを約1wt
%添加した溶剤Sを、鉄Feとともに溶けた銅Cu中に
入れて溶かし、銅及び鉄中の溶存酸素を脱酸分離して鉄
を溶けた銅中に結晶核状に微細化し拡散して溶かし込む
とともに、不純物を吸収し酸化を防止して銅鉄溶融合金
M6にした後、銅鉄溶融合金M6を鋳造することを特徴
とする銅鉄合金の溶解・鋳造方法になつている。
Further, copper Cu is put into the induction heating furnace 1 and melted, and the mixture accounts for 95% by weight or more of the quicklime component mainly composed of hexagonal crystals and the structure of plate-like laminated grains, and the mixture accounts for less than 5% by weight, or further melts. About 0.3 wt% of silicon Si and about 1 wt% of manganese Mn with respect to alloys M1 and M2
% Of the added solvent S is dissolved in copper Cu dissolved with iron Fe, and the dissolved oxygen in copper and iron is deoxidized and separated into fine particles in the form of crystal nuclei in copper in which iron is dissolved. In addition, the molten copper-iron alloy M6 is cast after absorbing the impurities to prevent oxidation to prevent oxidation and then casting the molten copper-iron alloy M6.

【0014】さらに詳述すると、本発明の金属溶解・鋳
造用の溶剤Sは、好ましくは各種の貝殻を温度850℃
〜1000℃程度の範囲内で焼成して形成され、図1A
に示すように主として六角状結晶で板状積層粒の組織か
らなる生石灰成分CaOを95wt%以上含み、残り5
wt%未満はMgやSi,Al等の混入物からなり、適
度のアルカリ性(PH9.8程度)、融点約848℃及
び沸点1,487℃であつて比較的に不純物が少なく、
誘導加熱炉1においてこの溶剤Sを鉄Fe、銅Cuやア
ルミニウムAl等の各種の金属M1又は合金M1,M2
とともに入れて溶かすと、前記のような六角状結晶で板
状積層粒の組織になつているため、溶湯中でさらに容易
に著しく微粒化つまり微細化されて、金属または合金の
優れた脱酸分離、不純物の吸収分離や溶解及び拡散混合
性能を効果的に発揮する。また、石灰石を焼成を従来よ
りも数百度高い高温で焼成するなどの特殊の加工手段で
処理すると、前記のような組織からなる生石灰成分Ca
Oに製造することも可能であり、各種の金属又は合金の
溶解・鋳造用の溶剤として汎用される。
More specifically, the solvent S for dissolving and casting metal of the present invention is preferably used to form various shells at a temperature of 850 ° C.
It is formed by firing in the range of about 1000 ° C.
As shown in the figure, the quicklime component mainly composed of hexagonal crystals and having the structure of plate-like laminated grains contains 95% by weight or more, and the remaining 5%
Less than wt% is composed of contaminants such as Mg, Si, and Al, has a moderate alkalinity (about pH 9.8), a melting point of about 848 ° C. and a boiling point of 1,487 ° C., and has relatively few impurities.
In the induction heating furnace 1, this solvent S is replaced with various metals M1 or alloys M1 and M2 such as iron Fe, copper Cu and aluminum Al.
When melted together, the hexagonal crystal forms a plate-like laminated grain structure as described above, so it is more easily remarkably atomized or refined in the molten metal, and excellent deoxidation and separation of metal or alloy is achieved. In addition, it effectively exhibits the absorption / separation, dissolution and diffusion / mixing performance of impurities. In addition, when limestone is treated by a special processing means such as firing at a high temperature several hundred degrees higher than the conventional method, the quicklime component Ca having the above-described structure can be obtained.
O can also be manufactured, and is widely used as a solvent for melting and casting various metals or alloys.

【0015】また、前記の金属溶解・鋳造用の溶剤Sに
おいて、必要に応じ好ましくは溶解する各種の金属M1
又は合金M1,M2の質量に対しシリコンSiを約0.
3wt%及びマンガンMnを約1wt%添加した溶剤S
として適用する。この適量のシリコン及びマンガンの添
加によつて、脱酸分離性能、不純物の分離性能や溶解及
び拡散混合性能をさらに高めることができる。
In the above-mentioned solvent S for melting and casting metal, various kinds of metals M1 which are preferably dissolved if necessary.
Alternatively, silicon Si is added to the alloy M1 and M2 in an amount of about 0.
Solvent S containing 3 wt% and about 1 wt% of manganese Mn
Apply as By adding the appropriate amounts of silicon and manganese, the deoxidizing and separating performance, the separating performance of impurities, and the dissolving and diffusion mixing performance can be further enhanced.

【0016】また、誘導加熱炉1は、好ましくは図1B
に示すように誘導コイル2を有し、鉄Fe等の各種の金
属M1、又は金属M1と銅Cu等の金属M2とともに前
記の溶剤Sを入れて、電磁誘導により金属M1又は合金
M1,M2を加熱すると、溶けた金属又は合金が図示点
線のように流動して混合性が高められ、溶存酸素の離酸
分離が助長されるとともに、上部に生石灰スラブS1が
形成されて溶けた金属又は合金の表面を大気と遮断して
その酸化を防止し、高精度の溶融金属や溶融合金M3
(銅鉄溶融合金M6)に形成する。この溶融金属又は溶
融合金は、図2Aに示すように鋳造されて高精度の金属
又は合金が得られる。必要に応じ炉底部にノズル3を設
ける。
Further, the induction heating furnace 1 preferably has a structure shown in FIG.
As shown in FIG. 3, the solvent S is put together with various metals M1 such as iron Fe or a metal M1 such as iron Fe and a metal M2 such as copper Cu, and the metal M1 or the alloys M1 and M2 are electromagnetically induced. When heated, the melted metal or alloy flows as shown by the dotted line to enhance the mixing property, promotes the separation of dissolved oxygen from acid, and forms a quicklime slab S1 at the upper part to form the melted metal or alloy. High-precision molten metal or molten alloy M3
(Copper-iron molten alloy M6). The molten metal or alloy is cast as shown in FIG. 2A to obtain a highly accurate metal or alloy. If necessary, a nozzle 3 is provided at the furnace bottom.

【0017】図2Aに示す第1実施例は、各種の金属又
は合金を溶解して鋳造する一般的な方法であつて、図示
のように加熱炉1に金属M1又は合金M1,M2及び適
量の溶剤Sを入れて加熱すると、金属又は合金が融けて
矢示点線のように流動し、この溶剤Sは、主として六角
状結晶で板状積層粒の組織からなる生石灰成分CaOを
95wt%以上含み(残り5wt%未満を混入物が占め
る)、基本的に溶湯中で容易に微細化されて下降Y1
し、溶けた金属又は合金の流動で効果的に混合されて、
優れた溶存酸素の脱酸分離、不純物の分離性能を発揮す
るとともに金属の微粒子化が効果的に助長されて、各金
属中の不純物が効果的に溶剤に吸収分離されて高精度と
なり、各金属は効果的に拡散され均質に混合されて溶解
される。また、金属中の不純物を吸収した溶剤は浮上Y
2して上部に溶剤スラブS1を形成して、溶融金属又は
溶融合金M3を覆い酸化を効果的に防止するなど、高精
度の溶融金属又は溶融合金M3が得られる。図示のよう
な誘導加熱炉1の適用により溶融金属M2の流動が効果
的に助長される。この溶融金属又は溶融合金M3は、直
接的に鋳造したり、図示のように受皿5等で鋳型6によ
り鋳造して鋳塊M4とした後、この鋳塊を鍛造や圧延加
工をして高精度で均質な金属材又は合金材M5に加工さ
れる。
The first embodiment shown in FIG. 2A is a general method for melting and casting various metals or alloys. As shown in the drawing, a metal M1 or an alloy M1, M2 and an appropriate amount When the solvent S is added and heated, the metal or alloy melts and flows as shown by the dotted line, and the solvent S contains 95% by weight or more of quicklime component CaO mainly composed of hexagonal crystals and having a structure of plate-like laminated grains ( The remaining less than 5 wt% is occupied by contaminants.
And effectively mixed with the flow of the molten metal or alloy,
Demonstrates excellent deoxygenation and separation of dissolved oxygen and impurities, and effectively promotes fine metal particles.The impurities in each metal are effectively absorbed and separated by the solvent, resulting in high precision. Are effectively diffused and homogeneously mixed and dissolved. The solvent that has absorbed the impurities in the metal is floating Y
2, a high-precision molten metal or molten alloy M3 is obtained, for example, by forming a solvent slab S1 on the upper portion to cover the molten metal or molten alloy M3 and effectively prevent oxidation. By applying the induction heating furnace 1 as shown, the flow of the molten metal M2 is effectively promoted. This molten metal or molten alloy M3 is cast directly, or as shown in the drawing, is cast with a mold 6 using a saucer 5 or the like to form an ingot M4. To a homogeneous metal or alloy material M5.

【0018】また、前記の溶解・鋳造において、前記の
溶剤Sの他に、金属M1又は合金M1,M2の質量に対
しシリコンSiを約0.3wt%及びマンガンMnを約
0.3wt%添加して溶解し鋳造すると、金属又は合金
の脱酸分離性能がさらに高められ、溶解や拡散混合性能
等もさらに高められるなど、さらに高精度で均質に溶解
して鋳造することができる。
In addition, in the melting and casting, in addition to the solvent S, about 0.3 wt% of silicon Si and about 0.3 wt% of manganese Mn are added to the mass of the metal M1 or the alloys M1 and M2. When the metal or alloy is melted and cast, the deoxidizing and separating performance of the metal or alloy can be further enhanced, and the melting and diffusion mixing performance can be further enhanced.

【0019】図2Bに示す第2実施例は、銅鉄合金の融
解・鋳造方法であつて、図示のように誘導加熱炉1に銅
Cuを入れ誘導加熱して適度に溶けると、この溶けた銅
に鉄Feと溶剤S(好ましくは前記のようにシリコンS
iとマンガンMnを添加)をそれぞれ適量入れて溶解す
る。比較的に低融点の溶けた銅Cu(M2)に高融点の
鉄Fe(M1)が溶けて図示点線のように流動して拡散
される。溶剤Sは、前記のように優れた溶存酸素の脱酸
分離、不純物の分離、溶解及び酸化防止性能を発揮し、
溶けた銅中に鉄が良く拡散されて混合され結晶核状にな
つて溶かし込まれ均質な銅鉄溶融合金M6に溶解され
る。この銅鉄溶融合金は、好ましくは図示のノズル3か
ら等速で連続して取り出し、冷却・鋳造槽剤11の冷却
水10中で自然落下Yせしめ急冷して線状の銅鉄合金M
7に鋳造される。高い銅含有率にすると鋳造中に切断さ
れ易くなるが、この溶解・鋳造方法によれば、優れた高
精度で均質な銅鉄合金として円滑に製造される。銅含有
率を60〜80%の高率にしても図3に示すように均質
な共晶組織の銅鉄合金M7に溶解して鋳造することがで
きる。この高銅含有率の銅鉄合金は、鉄特性とともに銅
特性が著しく高められて溶接棒線材やブレーキ摩擦材、
熱交換材等として効果的に汎用される。
The second embodiment shown in FIG. 2B is a method of melting and casting a copper-iron alloy. When copper Cu is put into an induction heating furnace 1 as shown in FIG. Copper has iron Fe and solvent S (preferably silicon S as described above).
i and manganese Mn are added) and dissolved. Iron Fe (M1) having a high melting point is melted in copper Cu (M2) having a relatively low melting point and flows and diffuses as indicated by the dotted line in the figure. The solvent S exhibits excellent deoxidation separation of dissolved oxygen, separation of impurities, dissolution and antioxidation performance as described above,
Iron is well diffused and mixed in the melted copper to form a crystal nucleus and is melted and melted in a homogeneous copper-iron molten alloy M6. This molten copper-iron alloy is preferably continuously taken out from the nozzle 3 shown in the drawing at a constant speed, dropped naturally in the cooling water 10 of the cooling / casting tank agent 11 and rapidly cooled to obtain a linear copper-iron alloy M.
7 is cast. A high copper content makes it easier to cut during casting, but according to this melting and casting method, an excellent, highly accurate and homogeneous copper iron alloy can be produced smoothly. Even when the copper content is as high as 60 to 80%, it can be melted and cast in a copper-iron alloy M7 having a homogeneous eutectic structure as shown in FIG. This high-copper-content copper-iron alloy has significantly improved copper properties as well as iron properties.
It is widely used effectively as a heat exchange material.

【0020】前記の銅鉄合金の溶融、鋳造において、銅
Cuの融点は1,085℃及び鉄Feの融点は1,53
5℃であるのに対し、この溶剤SはCa融点848℃,
沸点1,487℃であつて、銅と鉄の溶解に際し溶剤の
機能が効果的に発揮されて前記のような優れた溶解、鋳
造の作用、効果が得られる。
In the melting and casting of the copper-iron alloy, the melting point of copper Cu is 1,085 ° C. and the melting point of iron Fe is 1,53.
5 ° C., this solvent S has a Ca melting point of 848 ° C.
With a boiling point of 1,487 ° C., the function of the solvent is effectively exhibited in dissolving copper and iron, and the above-mentioned excellent dissolving and casting actions and effects can be obtained.

【0021】本発明の金属溶解・鋳造用の溶剤Sは、各
種の金属又は合金の溶融・鋳造に適用される。また、図
示例の他に各種の誘導加熱炉を使用して各種の鋳造工程
に適用して汎用される。
The solvent S for melting and casting metal of the present invention is applied to melting and casting of various metals or alloys. Further, in addition to the illustrated example, various induction heating furnaces are used, and are widely applied to various casting processes.

【0022】[0022]

【発明の効果】本発明は、前述のような構成からなり主
として六角状結晶で板状積層粒の組織からなる生石灰成
分を95wt%以上含み、残り5wt%未満を混入物が
占める金属溶解・鋳造用の溶剤とし、この六角状結晶で
板状積層粒の組織からなる95wt%以上の生石灰成分
は、溶湯中で著しく微細化して溶解した金属又は合金中
の溶存酸素の脱酸分離、不純物の分離性能を高めるとと
もに、金属又は合金を結晶粒状に微細化して溶解、混合
性能を効果的に高めるなど、不純物の吸収分離や溶解及
び混合性能、信頼性を著しく向上して、高品質の金属又
は合金を得ることができる。
According to the present invention, there is provided a metal melting / casting apparatus having a composition as described above, comprising 95% by weight or more of quicklime composed mainly of hexagonal crystals and having the structure of plate-like laminated grains, and the remaining less than 5% by weight of contaminants. 95% by weight or more of quicklime component consisting of hexagonal crystal and plate-like laminated grain structure is remarkably finely divided in molten metal and deoxidized and separated from dissolved oxygen in dissolved metals or alloys. In addition to enhancing the performance, the metal or alloy is refined into crystal grains to improve the melting and mixing performance effectively. Can be obtained.

【0023】また、前記の金属溶解・鋳造用の溶剤にお
いて、この溶剤に、溶解する金属又は合金に対しシリコ
ンを約0.3wt%及びマンガンを約1.0wt%添加
した金属溶解・鋳造用の溶剤として、この適度のシリコ
ン及びマンガンの添加によつて溶存酸素の脱酸分離、不
純物の分離性能とともに溶融の微細化、混合性能をさら
に高めることができる。
In the above-mentioned solvent for metal melting and casting, the solvent or metal for alloy melting is prepared by adding about 0.3% by weight of silicon and about 1.0% by weight of manganese to the dissolved metal or alloy. By adding moderate amounts of silicon and manganese as a solvent, it is possible to further enhance the deoxidation separation of dissolved oxygen and the separation performance of impurities, as well as the finer melting and mixing performance.

【0024】さらに、前記のような構成からなる前記の
溶剤を使用した銅鉄合金の溶解、鋳造により、この溶剤
による優れた溶存酸素の脱酸分離、不純物の分離ととも
に溶融金属の微細化、混合性能によつて、溶けた銅内に
鉄が結晶核状に拡散混合されて溶かし込まれ、高い銅含
有率にしても銅中に鉄が均質な共晶組織になつて、容易
に高精度の銅鉄合金に溶解して鋳造することができるな
ど、銅鉄合金の溶解、鋳造性能、信頼性が著しく向上さ
れている。
Further, by dissolving and casting a copper-iron alloy using the above-mentioned solvent having the above-mentioned constitution, excellent deoxidation and separation of dissolved oxygen by this solvent, separation of impurities, and refinement and mixing of molten metal. Due to the performance, iron is diffused and mixed in the form of crystal nuclei in the melted copper, and even when the copper content is high, the iron has a homogeneous eutectic structure in the copper, and easily has high precision. Melting, casting performance and reliability of the copper-iron alloy are remarkably improved, for example, the copper-iron alloy can be melted and cast.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の金属溶解・鋳造用溶剤の一実施例を示
すマイクロ写真図(A)及び誘導加熱炉の一実施例を示
す縦断面図(B)
FIG. 1 is a microphotograph showing one embodiment of a solvent for metal melting and casting of the present invention (A), and a longitudinal sectional view showing one embodiment of an induction heating furnace (B).

【図2】金属又は合金の溶解・鋳造方法を示す第1実施
例の工程図(A)及び銅鉄合金の溶解・鋳造方法を示す
第2実施例の工程図(B)
FIG. 2 is a process diagram (A) of a first embodiment showing a method of melting and casting a metal or an alloy, and a process diagram (B) of a second embodiment showing a method of melting and casting a copper-iron alloy.

【図3】第2実施例で製造した銅鉄合金のマイクロ写真
FIG. 3 is a microphotograph of the copper-iron alloy manufactured in the second embodiment.

【図4】従来の溶剤を示すマイクロ写真図FIG. 4 is a microphotograph showing a conventional solvent.

【図5】従来の溶剤を使用して製造した銅鉄合金のマイ
クロ写真図である。
FIG. 5 is a microphotograph of a copper-iron alloy manufactured using a conventional solvent.

【符号の説明】[Explanation of symbols]

1 誘導加熱炉 M1,M2 金属又は合金 M3 溶融金属又は溶融合金 M6 銅鉄溶融合金 S 溶剤 1 Induction heating furnace M1, M2 Metal or alloy M3 Molten metal or molten alloy M6 Molten copper-iron alloy S Solvent

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属又は合金に溶剤を添加して溶かし、
溶剤により金属中の溶存酸素を脱酸分離するとともに不
純物を吸収し酸化を防止して溶融金属又は溶融合金にし
て、溶融金属又は溶融合金を鋳造する金属溶解・鋳造用
の溶剤において、主として六角状結晶で板状積層粒の組
織からなる生石灰成分を95wt%以上含み、残り5w
t%未満を混入物が占めることを特徴とする金属溶解・
鋳造用の溶剤。
1. A solvent is added to a metal or alloy and dissolved.
Solvents for metal dissolution and casting are used to deoxidize and separate dissolved oxygen in metals with a solvent, absorb impurities and prevent oxidation to form a molten metal or molten alloy. Contains 95% by weight or more of quicklime component consisting of crystal and plate-like laminated grain structure, and the remaining 5w
metal dissolution characterized in that contaminants account for less than t%
Solvent for casting.
【請求項2】 請求項1に記載の金属溶解・鋳造用の溶
剤において、前記の溶剤に、溶解する金属又は合金に対
しシリコンを約0.3wt%とマンガンを約1.0wt
%添加したことを特徴とする金属溶解・鋳造用の溶剤。
2. The metal melting and casting solvent according to claim 1, wherein said solvent contains about 0.3% by weight of silicon and about 1.0% by weight of manganese based on the dissolved metal or alloy.
% Solvent for dissolving and casting metal, characterized in that it has been added in%.
【請求項3】 誘導加熱炉に銅を入れて溶かし、主に六
角状結晶で板状積層粒の組織からなる生石灰成分を95
wt%以上含み残り5wt%未満を混入物が占め、又は
さらに溶解する合金に対しシリコンを約0.3wt%と
マンガンを約1.0wt%添加した溶剤を、鉄とともに
溶けた銅中に入れて溶かし、溶剤により銅及び鉄中の溶
存酸素を脱酸分離して鉄を溶けた銅中に溶かし込み結晶
核状に微細化し拡散して溶かし込むとともに、不純物を
吸収し酸化を防止して銅鉄溶融合金にした後、銅鉄溶融
合金を鋳造することを特徴とする銅鉄合金の溶解・鋳造
方法。
3. Introducing copper into an induction heating furnace and melting it, and removing quicklime component consisting mainly of hexagonal crystals and having the structure of plate-like laminated grains into 95%.
Contaminants occupy more than 5% by weight and contain less than 5% by weight, or a solvent in which about 0.3% by weight of silicon and about 1.0% by weight of manganese are added to the alloy to be further dissolved is put into copper dissolved with iron. Dissolves and dissolves and separates dissolved oxygen in copper and iron with a solvent, dissolves it into copper in which iron is dissolved, refines it into crystal nuclei, diffuses it, and dissolves it. A method for melting and casting a copper-iron alloy, comprising casting a molten copper-iron alloy after forming the molten alloy.
JP8344494A 1996-12-10 1996-12-10 Flux for melting and casting metal and method for melting and casting copper-iron alloy Pending JPH10166121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8344494A JPH10166121A (en) 1996-12-10 1996-12-10 Flux for melting and casting metal and method for melting and casting copper-iron alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8344494A JPH10166121A (en) 1996-12-10 1996-12-10 Flux for melting and casting metal and method for melting and casting copper-iron alloy

Publications (1)

Publication Number Publication Date
JPH10166121A true JPH10166121A (en) 1998-06-23

Family

ID=18369709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8344494A Pending JPH10166121A (en) 1996-12-10 1996-12-10 Flux for melting and casting metal and method for melting and casting copper-iron alloy

Country Status (1)

Country Link
JP (1) JPH10166121A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142005A1 (en) * 2010-05-12 2011-11-17 Aimアセットマネジメント株式会社 Process for producing ingot of copper-iron base alloy
CN114535524A (en) * 2022-03-21 2022-05-27 江西省科学院应用物理研究所 Covering agent for semi-continuous casting crystallizer for copper-iron alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142005A1 (en) * 2010-05-12 2011-11-17 Aimアセットマネジメント株式会社 Process for producing ingot of copper-iron base alloy
CN114535524A (en) * 2022-03-21 2022-05-27 江西省科学院应用物理研究所 Covering agent for semi-continuous casting crystallizer for copper-iron alloy
CN114535524B (en) * 2022-03-21 2023-02-28 江西省科学院应用物理研究所 Covering agent for semi-continuous casting crystallizer for copper-iron alloy

Similar Documents

Publication Publication Date Title
WO2006068487A1 (en) Modifying agents for cast iron
JPS58501042A (en) Boron alloy additive for continuous casting of boron steel
CN105970027A (en) Anti-corrosion aluminum alloy and production process thereof
JP4280163B2 (en) Low carbon steel sheet, low carbon steel slab and method for producing the same
US3314782A (en) Refining agent for steel-works
US2247262A (en) Composition and method for treating molten metals
CN109266886B (en) Method for refining intermetallic compound phase of manganese-iron-containing aluminum alloy
CN111575511A (en) Method for improving micro-macro segregation of copper-tin alloy
JPH10166121A (en) Flux for melting and casting metal and method for melting and casting copper-iron alloy
US3459540A (en) Production of clean fine grain steels
US5037609A (en) Material for refining steel of multi-purpose application
CN113458351A (en) MnO-containing high-aluminum steel casting powder
JPH0464766B2 (en)
JP2961448B2 (en) Method for finely dispersing MnS in high S content steel
JPH03287712A (en) Manufacture of steel containing dispersed fine oxide
RU2192495C2 (en) Deoxidizer
JP2002105527A (en) Method for producing high cleanliness steel
JP4227478B2 (en) Low carbon steel slab manufacturing method
RU2041967C1 (en) Method for production of hypereutectic aluminum-silicon alloys
JP4746434B2 (en) Method for producing spheroidal graphite cast iron
RU2059010C1 (en) Hypoeutectic aluminum silicate alloys production method
JP2000273525A (en) Production of high cleanliness steel
RU2148088C1 (en) Method for vanadium cast iron conversion
JPH0347664A (en) Method for making fine and uniformly dispersing inclusion in steel
SU855047A1 (en) Master alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees