JPH10165975A - Waste water treatment apparatus with carrier expansion phase - Google Patents

Waste water treatment apparatus with carrier expansion phase

Info

Publication number
JPH10165975A
JPH10165975A JP32877596A JP32877596A JPH10165975A JP H10165975 A JPH10165975 A JP H10165975A JP 32877596 A JP32877596 A JP 32877596A JP 32877596 A JP32877596 A JP 32877596A JP H10165975 A JPH10165975 A JP H10165975A
Authority
JP
Japan
Prior art keywords
carrier
phase
reaction tank
biological reaction
expansion phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32877596A
Other languages
Japanese (ja)
Other versions
JP3331887B2 (en
Inventor
Masayuki Kojima
正行 小島
Tamio Igarashi
民夫 五十嵐
Naomichi Mori
直道 森
Hironori Nakamura
裕紀 中村
Masataka Kasai
正隆 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP32877596A priority Critical patent/JP3331887B2/en
Publication of JPH10165975A publication Critical patent/JPH10165975A/en
Application granted granted Critical
Publication of JP3331887B2 publication Critical patent/JP3331887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To improve water quality of treated water by an apparatus wherein an aeration means for forming an aeration phase on the upper part of a deep tank type bioreactor and a circulation means for forming a static water phase between a carrier expansion phase formed in the lower part of the bioreactor and wherein a carrier carrying microorganism floats up slightly and an aeration phase are installed. SOLUTION: After waste water flowing into a bioreactor 16 is sufficiently aerated in an aeration phase 42 by means of an aeration device 18, it is lowered as a downward stream in a communication pipe 26 and is delivered to the bottom part of the bioreactor 16. The waste water delivered to the bottom part of this bioreactor 16 is elevated as a up-blow in the bioreactor 16 and by keeping linear velocity when it passes through a carrier expansion phase 46 formed on the lower part of the bioreactor 16 at 0.5-7cm/sec, a static water phase 48 with a flow velocity at which the carrier 14 can enough naturally settle is formed in the water region on the top side of the carrier expansion phase 46. In addition, aerobic atmospheres are formed in the upper part and the lower part of the bioreactor 16 and BOD ingredient and ammoniacal nitrogen are mainly nitrification-treated respectively in the aeration phase 42 and the carrier expansion phase 46.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は担体膨張相廃水処理
装置に係り、特に下水や工場廃水中に含まれるBOD成
分、アンモこア性窒素等を低減する担体膨張相廃水処理
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for treating a carrier expanded phase wastewater, and more particularly to an apparatus for treating a carrier expanded phase wastewater which reduces BOD components, ammophilic nitrogen and the like contained in sewage and industrial wastewater.

【0002】[0002]

【従来の技術】近年の環境汚染防止の一貫として、下水
等の廃水を処理する下水処理場から排出される処理水の
水質を向上させることが要求されている。廃水中のBO
D、アンモニア性窒素を低減する水処理方法の1つとし
て、生物反応槽内に微生物を包括固定化した担体又は結
合した担体を6〜20容量%収納し、生物反応槽の底部
全面から空気を曝気し、生物反応槽内に好気性雰囲気を
形成すると共に、曝気されたエアにより担体を均一に浮
遊、流動せしめる方式が採用されている。この方式で
は、BOD成分は主に水中に浮遊する活性汚泥によって
好気性雰囲気下で酸化分解され、アンモニア性窒素は担
体に担持された硝化細菌と活性汚泥中の硝化細菌によっ
て好気性雰囲気下で亜硝酸又は硝酸にまで酸化されるよ
うに設計されている。
2. Description of the Related Art In recent years, as a part of environmental pollution prevention, it is required to improve the quality of treated water discharged from a sewage treatment plant for treating wastewater such as sewage. BO in wastewater
D. As one of the water treatment methods for reducing ammoniacal nitrogen, 6 to 20% by volume of a carrier entrapping and immobilizing microorganisms or a combined carrier is accommodated in a biological reaction tank, and air is blown from the entire bottom surface of the biological reaction tank. In this method, aeration is performed to form an aerobic atmosphere in the biological reaction tank, and the carrier is uniformly floated and flowed by the aerated air. In this method, the BOD component is oxidatively decomposed in an aerobic atmosphere mainly by activated sludge floating in water, and the ammonia nitrogen is sublimated in an aerobic atmosphere by nitrifying bacteria supported on a carrier and nitrifying bacteria in the activated sludge. Designed to be oxidized to nitric acid or nitric acid.

【0003】ところで、都市部では下水処理場の敷地が
狭隘なため、生物反応槽の深さを深くすることにより、
同じ敷地面積でも好気的な反応を行うための反応槽容量
を大きくすることのできる深槽式の廃水処理装置が用い
られている。しかし、空気を曝気することによって生物
反応槽内に好気的雰囲気を形成する場合、通常の曝気装
置(ブロアー)の吐出圧力は7000ミリ水柱程度であ
って、水深が大きくなってこれ以上の吐出圧力を必要と
する場合は、特別な仕様の曝気装置が必要となり、曝気
量当りの消費電力が増大する。標準的な下水処理場で
は、曝気装置の消費電力は全施設の使用電力の半分くら
いに達し、これ以上消費電力が増えることは運転費が過
剰となる。
[0003] In urban areas, the site of a sewage treatment plant is narrow, so by increasing the depth of a biological reaction tank,
Even in the same site area, a deep tank type wastewater treatment apparatus capable of increasing the capacity of a reaction tank for performing an aerobic reaction is used. However, when an aerobic atmosphere is formed in a biological reaction tank by aerating air, the discharge pressure of a normal aeration device (blower) is about 7000 mm water column, and the discharge depth becomes larger due to an increase in water depth. When pressure is required, an aeration device with special specifications is required, and power consumption per aeration amount increases. In a standard sewage treatment plant, the power consumption of the aeration device reaches about half of the power consumption of all facilities, and any further increase in power consumption results in excessive operating costs.

【0004】このため、曝気装置を配設する水深が5m
以内となるように生物反応槽を上下槽に仕切り、曝気装
置を有する生物反応槽の上槽のみで好気的な生物処理を
行ことが提案されている。また、深槽型の生物反応槽内
に縦方向に上下の開口した仕切板により生物反応槽内に
旋回水路を形成し、曝気装置からのエアで廃水を旋回し
易くすることにより、曝気装置の吐出圧力が大きくなら
ないようにすることが提案されている。
For this reason, the water depth at which the aeration device is provided is 5 m.
It has been proposed to divide the biological reaction tank into upper and lower tanks so that the aerobic biological treatment is performed only in the upper tank of the biological reaction tank having the aeration device. In addition, a swirling channel is formed in the biological reaction tank by a vertically opened partition plate in the biological reaction tank of the deep tank type, and the wastewater is easily swirled by air from the aeration apparatus. It has been proposed to keep the discharge pressure from increasing.

【0005】[0005]

【発明が解決しようとする課題】従って、生物反応槽を
上下2槽にすると、反応槽容量を大きくするために生物
反応槽を深槽にしても、生物反応槽の上部のみでしか好
気的な生物処理を行うことができないために好気的な生
物処理の容量不足が生じ、処理水の水質を向上させるこ
とができないという欠点がある。更に、廃水中に曝気さ
れたエアは、水圧が大きいほど廃水中に溶解し易く、好
気的な生物処理に使用される効率が良くなる。しかし、
生物反応槽を上下2槽にすると、曝気装置を配設する水
深が5m以内であるために、廃水中に溶解しずらく生物
処理に使用される効率が悪いと共に、溶解しなかった微
細な気泡が担体表面に多量に付着する。これにより、担
体の見掛け比重が小さくなり、生物反応槽の液面近傍に
担体が密集し、廃水と担体との接触効率が悪くなるとい
う欠点がある。特に、担体を分離するスクリーンを備え
た処理水の放流口に担体が集まり易いために、スクリー
ンを閉塞してしまい処理水の流れを阻害するという欠点
がある。
Therefore, when the biological reaction tank is made up of two upper and lower tanks, even if the biological reaction tank is made deep to increase the capacity of the reaction tank, it is aerobic only at the upper part of the biological reaction tank. This is disadvantageous in that the capacity of aerobic biological treatment is insufficient due to the inability to carry out biological treatment, and the quality of treated water cannot be improved. Furthermore, the greater the water pressure, the more easily the air aerated in the wastewater is dissolved in the wastewater, and the more efficiently the air is used for aerobic biological treatment. But,
When the biological reaction tank is composed of two upper and lower tanks, the water depth at which the aeration device is installed is within 5 m, so it is difficult to dissolve in wastewater and the efficiency used for biological treatment is low, and fine bubbles that did not dissolve Adhere to the carrier surface in large quantities. This has the disadvantage that the apparent specific gravity of the carrier is reduced, the carrier is densely packed near the liquid surface of the biological reaction tank, and the contact efficiency between the wastewater and the carrier is reduced. In particular, the carrier tends to collect at the outlet of the treated water provided with a screen for separating the carrier, so that the screen is blocked and the flow of the treated water is hindered.

【0006】また、生物反応槽内に仕切板を設けると、
担体が旋回しやくなる反面、担体が生物反応槽内で旋回
することにより担体が生物反応槽の内壁に擦れるため、
短期間で担体が磨耗するという欠点がある。本発明はこ
のような事情に鑑みてなされたもので、深槽式であって
も好気的な生物処理のための容量を大きくとれるので処
理水の水質を向上でき、曝気に要する消費電力を削減で
きると共に担体の流出を防止するスクリーンを必要とせ
ず、更には担体の磨耗を低減できる担体膨張相廃水処理
装置を提供することを目的とする。
Further, when a partition plate is provided in the biological reaction tank,
On the other hand, the carrier is easily swirled, but the carrier is rubbed against the inner wall of the biological reaction tank by the swirling of the carrier in the biological reaction tank,
There is a disadvantage that the carrier is worn out in a short time. The present invention has been made in view of such circumstances, and even if it is a deep tank type, a large capacity for aerobic biological treatment can be taken, so that the quality of treated water can be improved, and the power consumption required for aeration can be reduced. It is an object of the present invention to provide a carrier expansion phase wastewater treatment apparatus which can reduce the amount of the carrier, does not require a screen for preventing the carrier from flowing out, and can further reduce the wear of the carrier.

【0007】[0007]

【課題を解決するための手段】本発明は前記目的を達成
する為に、廃水の流入口と被処理液の排出口とを備えた
深槽型の生物反応槽と、前記生物反応槽内の上部に空気
の曝気相を形成する曝気手段と、前記曝気相と前記生物
反応槽の底部とを連通する連通管を介して前記曝気相で
酸素を含有した液を生物反応槽の底部に送給し、前記生
物反応槽内の底部から所定の線速度を有する上向流を発
生させることによって生物反応槽の下部に微生物を担持
した担体がわずかに浮上する担体膨張相を形成し、前記
担体膨張相と前記曝気相との間に、担体膨張相を通過し
た後の上向流の線速度が担体の自然沈降速度よりも遅い
静止水相を形成する循環手段と、を備えたことを特徴と
する。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a deep biological reactor having an inlet for wastewater and an outlet for a liquid to be treated, An aeration means for forming an aeration gas of air at the top, and a liquid containing oxygen in the aeration gas being supplied to the bottom of the biological reaction tank through a communication pipe communicating the aeration gas and the bottom of the biological reaction tank. An upward flow having a predetermined linear velocity is generated from the bottom of the biological reaction tank to form a carrier expansion phase in which a carrier carrying microorganisms slightly floats in the lower part of the biological reaction tank, and the carrier expansion And a circulating means for forming a stationary aqueous phase in which the linear velocity of the upward flow after passing through the carrier expansion phase is lower than the natural sedimentation velocity of the carrier, between the phase and the exposed gas phase. I do.

【0008】本発明によれば、生物反応槽の下部に硝化
細菌を含んだ微生物を担持した担体が収納される。そし
て、生物反応槽の上部の曝気相で酸素を十分に含んだ液
を連通管を介して生物反応槽の底部に循環し、生物反応
槽の底部から所定の線速度で上向流として流して担体膨
脹相を形成する。また、上向流を前記所定の線速度に設
定することにより、担体膨脹相と曝気相との間の水域
に、担体が十分に自然沈降する流速城の静止水相を形成
する。
According to the present invention, a carrier carrying microorganisms containing nitrifying bacteria is stored in the lower part of the biological reaction tank. Then, the liquid containing sufficient oxygen in the exposed gas phase at the top of the biological reaction tank is circulated to the bottom of the biological reaction tank via the communication pipe, and flows upward from the bottom of the biological reaction tank at a predetermined linear velocity. A swelling phase of the carrier is formed. In addition, by setting the upward flow to the predetermined linear velocity, a stationary water phase of a flow velocity castle where the carrier sufficiently settles naturally is formed in a water area between the carrier expansion phase and the exposed gas phase.

【0009】そして、この担体膨張相では、好気性雰囲
気で廃水中の主としてアンモニア性窒素の硝化処理が行
われ、アンモニア性窒素が亜硝酸態窒素又は硝酸態窒素
に酸化される。また、前記曝気相では、好気性雰囲気で
廃水中の主としてBOD成分の酸化処理が行われ、BO
D成分が酸化分解される。また、生物反応槽で処理され
た処理液を曝気相の領域から排出すれば、排出口にスク
リーンを設けなくても担体が処理液に同伴して生物反応
槽から流出することがない。
[0009] In the carrier expansion phase, nitrification treatment of mainly ammonia nitrogen in wastewater is performed in an aerobic atmosphere, and the ammonia nitrogen is oxidized to nitrite nitrogen or nitrate nitrogen. Further, in the aerated phase, oxidation treatment of mainly BOD components in wastewater is performed in an aerobic atmosphere, and BO
The D component is oxidatively decomposed. Further, if the treatment liquid treated in the biological reaction tank is discharged from the region of the exposed gas phase, the carrier does not flow out of the biological reaction tank along with the treatment liquid without providing a screen at the outlet.

【0010】[0010]

【発明の実施の形態】以下に、本発明に係る担体膨張相
廃水処理装置の好ましい実施の形態について詳説する。
図1は、本発明の担体膨張相廃水処理装置の第1の実施
の形態を説明する断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, preferred embodiments of a carrier expansion phase wastewater treatment apparatus according to the present invention will be described in detail.
FIG. 1 is a sectional view for explaining a first embodiment of a carrier expansion phase wastewater treatment apparatus of the present invention.

【0011】図1に示すように、第1の実施の形態に係
る担体膨張相廃水処理装置10は、主として、下水等の
廃水が原水流入管12を介して流入すると共に多数の担
体14が収納される生物反応槽16と、生物反応槽16
内にエアを曝気する曝気装置18と、生物反応槽16の
上部の液を底部に循環する循環装置20と、で構成され
る。
As shown in FIG. 1, in a carrier expansion phase wastewater treatment apparatus 10 according to a first embodiment, wastewater such as sewage mainly flows in through a raw water inflow pipe 12 and a large number of carriers 14 are stored. Biological reaction tank 16 to be used, and biological reaction tank 16
An aeration device 18 for aerating air into the inside and a circulation device 20 for circulating the liquid at the top of the biological reaction tank 16 to the bottom.

【0012】生物反応槽16は、深さが通常7〜15m
程度の深槽に形成される。生物反応槽16内には、硝化
細菌を含む微生物を担持した多数の包括固定化担体14
又は結合担体14が収納される。この担体14の比重
は、静止状態の廃水中で沈降可能であり且つ生物反応槽
16内に形成される上向流によりわずかに浮上可能な
1.02〜1.2の範囲に形成される。また、担体14
の粒径は0.5〜5mmのサイコロ状又は球状に形成さ
れる。この生物反応槽16には、原水供給管12を介し
てアンモニア性窒素及びBOD成分を含有する廃水の原
水が流入すると供に、原水供給管12の途中に原水分岐
配管22が接続される。この原水分岐配管22は、バル
ブ24を介して後記する連通管26の上部に接続され
る。また、生物反応槽16の水面近傍には、生物反応槽
16で処理された処理液が越流するトラフ28が設けら
れ、トラフ28に越流した処理水は、処理水配管30を
介して固液分離槽32に送水される。固液分離槽32で
は、処理水に同伴して流出した活性汚泥等(廃水に含有
して生物反応槽に流入)の固形物を沈降分離し、戻し配
管34を介して生物反応槽16に戻される。
The biological reactor 16 has a depth of usually 7 to 15 m.
It is formed in a deep tank. A large number of entrapping immobilized carriers 14 carrying microorganisms including nitrifying bacteria are contained in the biological reaction tank 16.
Alternatively, the binding carrier 14 is stored. The specific gravity of the carrier 14 is set in a range of 1.02 to 1.2, which can be settled in the wastewater in a stationary state and can slightly float by the upward flow formed in the biological reaction tank 16. In addition, carrier 14
Are formed in a dice shape or a spherical shape having a particle size of 0.5 to 5 mm. The raw water supply pipe 12 is connected to a raw water branch pipe 22 in the middle of the raw water supply pipe 12 when raw water containing waste ammonia containing ammoniacal nitrogen and a BOD component flows into the biological reaction tank 16. The raw water branch pipe 22 is connected via a valve 24 to an upper part of a communication pipe 26 described later. Further, a trough 28 is provided near the water surface of the biological reaction tank 16 where the processing liquid treated in the biological reaction tank 16 overflows, and the treated water flowing into the trough 28 is solidified through a treated water pipe 30. Water is sent to the liquid separation tank 32. In the solid-liquid separation tank 32, solids such as activated sludge and the like (which are contained in wastewater and flow into the biological reaction tank) that flowed out with the treated water are settled and separated, and returned to the biological reaction tank 16 via a return pipe 34. It is.

【0013】曝気装置18は、生物反応槽16内の上部
に横方向に配設された複数の散気管36と、散気管36
にエアを供給するエア配管38と、図示しないブロアー
(送風機)とで構成され、散気管36に設けられた多数
のエアノズルからエア40が上向きに曝気される。これ
により、生物反応槽16の上部に酸素が十分に溶解した
液の領域である曝気相42が形成される。
The aeration device 18 includes a plurality of diffuser tubes 36 disposed laterally above the biological reaction tank 16,
The air 40 is constituted by an air pipe 38 for supplying air to the air and a blower (not shown), and the air 40 is upwardly aerated from a number of air nozzles provided in the air diffuser 36. As a result, an exposed gas phase 42, which is a liquid region in which oxygen is sufficiently dissolved, is formed in the upper part of the biological reaction tank 16.

【0014】循環装置20は、主として、生物反応槽1
6の上部(曝気相)と底部を連通する連通管26と、連
通管26の途中に設けられ循環水量の制御可能な循環ポ
ンプ44とで構成される。そして、曝気相42において
エア40が曝気された液は、連通管26を流れて生物反
応槽16の底部に送水され、生物反応槽16の底部から
上向きな上向流を形成する。この上向流は所定の線速度
を有するように循環ポンプ44の循環量が制御される。
これにより、生物反応槽16の底部に沈殿していた多数
の担体14が、上向流によりわずかに浮上する担体膨張
相46を形成し、生物反応槽16の下部に多数の担体1
4が集合状態で浮遊した領域である担体膨張相46が形
成される。この担体膨張相46の膨張高さは、生物反応
槽16の有効深さ(実際に貯水される深さ)の60%以
下にすると良く、更に好ましくは40%程度が良い。こ
の担体を膨張させるための上向流の線速度は、担体膨張
相46を通過する時の線速度において0.5〜7cm/
秒に維持すると良く、好ましくは1〜6cm/秒が良
い。比重が1.02〜1.2、粒径が0.5〜5mmの担
体を静止した水中におくと、充填密度はほぼ60〜70
%になるので、担体の存在領域を2倍に膨脹させると、
担体の密度は30〜35%になる。担体膨張相46は、
生物反応槽16の有効深さの60%以下、好ましくは4
0%以下であるので、生物反応槽16全体に換算する
と、担体密度は12〜21%となる。
The circulation device 20 mainly includes the biological reaction tank 1
6 is constituted by a communication pipe 26 communicating the upper part (exposure gas phase) and the bottom part, and a circulation pump 44 provided in the middle of the communication pipe 26 and capable of controlling the amount of circulating water. Then, the liquid to which the air 40 has been aerated in the aerated gas phase 42 flows through the communication pipe 26 and is sent to the bottom of the biological reaction tank 16 to form an upward upward flow from the bottom of the biological reaction tank 16. The amount of circulation of the circulation pump 44 is controlled so that the upward flow has a predetermined linear velocity.
As a result, the large number of carriers 14 that have settled at the bottom of the biological reaction tank 16 form a carrier expansion phase 46 that slightly floats due to the upward flow, and a large number of carriers 1 are formed at the bottom of the biological reaction tank 16.
A carrier expansion phase 46, which is a region in which the particles 4 float in an aggregated state, is formed. The expansion height of the carrier expansion phase 46 is preferably not more than 60% of the effective depth of the biological reaction tank 16 (depth in which water is actually stored), and more preferably about 40%. The linear velocity of the upward flow for expanding the carrier is 0.5 to 7 cm / linear velocity when passing through the carrier expansion phase 46.
It is better to maintain the time in seconds, preferably 1 to 6 cm / second. When a carrier having a specific gravity of 1.02 to 1.2 and a particle size of 0.5 to 5 mm is placed in still water, the packing density becomes almost 60 to 70.
%, So if the area where the carrier exists is doubled,
The density of the carrier amounts to 30-35%. The carrier expansion phase 46 includes
60% or less of the effective depth of the biological reaction tank 16, preferably 4%
Since it is 0% or less, the carrier density is 12 to 21% when converted to the entire biological reaction tank 16.

【0015】また、上向流をこの線速度の範囲に維持す
ることにより、担体膨脹相46と曝気相42との間の水
域に、担体14が十分に自然沈降する流速城である静止
水相48を形成することができる。即ち、静止水相48
では、担体膨張相46に比べて担体14の体積分だけ単
位断面積当たりの空間が増大し、上向流の線速度が減少
するので、担体14の沈降速度が上向流の線速度よりも
大きくなり自然沈降する。
By maintaining the upward flow in this linear velocity range, the stationary water phase, which is a flow velocity castle where the carrier 14 sufficiently settles naturally in the water area between the carrier expansion phase 46 and the exposed gas phase 42. 48 can be formed. That is, the stationary aqueous phase 48
In this case, the space per unit cross-sectional area is increased by the volume of the carrier 14 as compared with the carrier expansion phase 46, and the linear velocity of the upward flow is reduced. It grows and settles naturally.

【0016】また、連通管26の途中に設けられた循環
ポンプ44の吸水側には、エア供給管50の吐出口が設
けられる。これにより、エア供給管50から吐出された
エアは循環ポンプ44内で気泡が微細化して液中に溶解
され易くなる。更に、生物反応槽16の底部にも下部エ
ア配管52の吐出口が設けられる。これらエア供給管5
0及び下部エア配管52は、曝気装置だけではエア不足
が生じた場合に使用すると良い。
A discharge port of an air supply pipe 50 is provided on the water suction side of the circulation pump 44 provided in the middle of the communication pipe 26. As a result, the air discharged from the air supply pipe 50 becomes finer in the circulation pump 44 and is easily dissolved in the liquid. Further, a discharge port of the lower air pipe 52 is provided also at the bottom of the biological reaction tank 16. These air supply pipes 5
The 0 and lower air pipes 52 may be used when air shortage occurs only with the aeration device.

【0017】次に、上記の如く構成された担体膨張相廃
水処理装置の第1の実施の形態の作用について説明す
る。原水供給管12を介して生物反応槽16に流入した
廃水の原水は、曝気相において曝気装置18によりエア
40が十分曝気された後、連通管26を流れて生物反応
槽16の底部に送られる。廃水が連通管下向流として下
降する際に、廃水には大きな水圧が付与されるので、廃
水中のエアの溶解を促進し、廃水中の溶存酸素(以下、
DOという)濃度を高める。廃水が連通管26を下降す
る時に、エア供給管50からエアを供給すると更にDO
濃度を高めることができる。
Next, the operation of the first embodiment of the carrier expansion phase wastewater treatment apparatus configured as described above will be described. Raw water of wastewater flowing into the biological reaction tank 16 via the raw water supply pipe 12 is sent to the bottom of the biological reaction tank 16 through the communication pipe 26 after the air 40 is sufficiently aerated by the aeration device 18 in the aerated phase. . When the wastewater descends as the downward flow of the communication pipe, a large water pressure is applied to the wastewater, so that the dissolution of air in the wastewater is promoted, and the dissolved oxygen in the wastewater (hereinafter, referred to as “
DO). When the wastewater descends through the communication pipe 26, air is supplied from the air supply pipe 50 to further increase DO.
The concentration can be increased.

【0018】次に、エアが十分に溶解されて生物反応槽
16の底部に送られた廃水は、上向流となって生物反応
槽16内を上昇する。この上向流の線速度が、担体膨張
相46を通過する時の線速度において0.5〜7cm/
秒、好ましくは1〜6cm/秒に維持することにより生
物反応槽の下部に適切な膨張高さを有する担体膨張相4
6を形成し、担体膨脹相46の上側の水域に担体14が
十分に自然沈降する流速城である静止水相48を形成す
る。これにより、上向流に乗って担体膨張相46から静
止水相48に上昇してきた一部の担体14は、静止水相
48での上向流の線速度の低下によって上昇の勢いが弱
められ、担体膨張相46の領域まで自然沈降する。
Next, the wastewater that has been sufficiently dissolved in the air and sent to the bottom of the biological reaction tank 16 flows upward and rises in the biological reaction tank 16. The linear velocity of the upward flow is 0.5 to 7 cm / in terms of the linear velocity when passing through the carrier expansion phase 46.
Seconds, preferably 1 to 6 cm / sec, so that the carrier expansion phase 4 has a suitable expansion height at the bottom of the biological reactor.
6 is formed, and a stationary water phase 48 is formed in the water body above the expansion phase 46 of the carrier, which is a flow velocity castle where the carrier 14 is sufficiently settled by itself. As a result, some of the carriers 14 that have risen from the carrier expansion phase 46 to the stationary aqueous phase 48 while riding on the upward flow are weakened by the decrease in the linear velocity of the upward flow in the stationary aqueous phase 48. , Spontaneously settle to the region of the carrier expansion phase 46.

【0019】即ち、本発明の担体膨張相廃水処理装置1
0は、生物反応槽16の下部から上部にかけて、好気性
雰囲気で担体14と廃水を接触させてアンモニア性窒素
の硝化処理を行う担体膨張相46、担体14を自然沈降
させて担体14の流出を防止する静止水相48、曝気装
置18を有し廃水中の主としてBOD成分の酸化分解を
行う曝気相42を形成することにより以下の効果を得る
ことができる。
That is, the carrier expansion phase wastewater treatment apparatus 1 of the present invention.
0, from the lower part to the upper part of the biological reaction tank 16, the carrier expansion phase 46 in which the carrier 14 and the wastewater are brought into contact with each other in an aerobic atmosphere to perform the nitrification treatment of ammonia nitrogen, and the carrier 14 is allowed to settle naturally to prevent the carrier 14 from flowing out. The following effects can be obtained by forming the aerated gas phase 42 having the stationary aqueous phase 48 for prevention and the aeration device 18 and mainly performing the oxidative decomposition of the BOD component in the wastewater.

【0020】生物反応槽16の上部(曝気相)と下部
(担体膨張相)に好気性雰囲気を形成し、且つ曝気相4
2で主としてBOD成分を分解し、担体膨張相46で主
としてアンモニア性窒素を硝化処理するようにしたの
で、深槽式の生物反応槽16であっても好気的な生物処
理を行うための容量を大きくとることができる。従っ
て、処理水の水質を向上させることができる。
An aerobic atmosphere is formed in the upper part (exposure gas phase) and the lower part (expansion phase of the carrier) of the biological reaction tank 16, and
Since the BOD component is mainly decomposed in step 2 and the ammonia nitrogen is mainly nitrified in the carrier expansion phase 46, the capacity for performing aerobic biological treatment even in the deep-type biological reaction tank 16. Can be increased. Therefore, the quality of the treated water can be improved.

【0021】また、曝気相42でエア曝気した廃水を
連通管26を介して担体膨張相46に循環させると共
に、水深の浅いところで曝気した時に廃水中へのエアの
溶解性が小さくなる不具合を、連通管26内を廃水が下
降する際に加わる大きな水圧により液中へのエアの溶解
を促進することで解消した。また、生物反応槽16の下
部に形成される担体膨張相46にも十分な好気性雰囲気
を形成することができる。これにより、曝気装置18を
生物反応槽16の上部、例えば、水面から7メートル以
内の水深の位置に配設することができるので、低い吐出
圧力のブロアーを使用することができ、消費電力の大幅
な低減を行うことができる。
Further, the wastewater aerated with the air in the aerated gas phase 42 is circulated to the carrier expansion phase 46 through the communication pipe 26, and the problem that the solubility of air in the wastewater becomes small when aerated at a shallow depth of water is reduced. The problem was solved by promoting the dissolution of air into the liquid by a large water pressure applied when the wastewater descends in the communication pipe 26. Also, a sufficient aerobic atmosphere can be formed in the carrier expansion phase 46 formed in the lower part of the biological reaction tank 16. This allows the aeration device 18 to be disposed above the biological reaction tank 16, for example, at a depth of 7 m or less from the surface of the water, so that a blower having a low discharge pressure can be used, and power consumption is greatly reduced. A significant reduction can be achieved.

【0022】また、担体14が存在する担体膨張相4
6で曝気するよりも担体14のない曝気相42で曝気し
た方が液中に溶解する酸素の溶解量が高くなるので、曝
気相42でエアを溶解した廃水を担体膨張相46に循環
することで、担体膨張相46で曝気しなくても担体膨張
相46に十分な量のエアを供給することができる。も
し、エア量が不足する場合は、エア供給管50や下部エ
ア配管52から、不足分だけを補充する補助的なエア供
給を付加することができる。
The carrier expanded phase 4 in which the carrier 14 is present
Since the amount of dissolved oxygen dissolved in the liquid is higher when aerated in the aerated gas phase 42 without the carrier 14 than in the aerated gas phase 6, the wastewater in which the air is dissolved in the aerated gas phase 42 is circulated to the expanded carrier phase 46. Thus, a sufficient amount of air can be supplied to the carrier expansion phase 46 without aeration in the carrier expansion phase 46. If the amount of air is insufficient, an auxiliary air supply for supplementing only the insufficient amount can be added from the air supply pipe 50 or the lower air pipe 52.

【0023】また、生物反応槽16の下部に担体膨張
相46を形成すると共に、処理水を生物反応槽の上部に
形成した曝気相42の領域から排出するようにし、且つ
担体膨張相46と曝気相42の間に静止水相48を形成
したので、生物反応槽16から担体14を流出をせるこ
となく担体膨張相46に保持することができる。従っ
て、従来のようにトラフに担体の流出を防止するスクリ
ーンを必要しない。
In addition, a carrier expansion phase 46 is formed at the lower part of the biological reaction tank 16, and the treated water is discharged from the region of the aerated gas phase 42 formed at the upper part of the biological reaction tank. Since the stationary aqueous phase 48 is formed between the phases 42, the carrier 14 can be retained in the carrier expanded phase 46 without flowing out of the carrier 14 from the biological reactor 16. Therefore, there is no need for a screen for preventing the carrier from flowing out as in the conventional case.

【0024】担体14が生物反応槽16内で激しく流
動しない担体膨張相46を形成することにより、担体1
4が生物反応槽16の内壁に擦れて磨耗することがな
い。従って、担体14の寿命を長くすることができる。
次に、図2に従って本発明の担体膨張相廃水処理装置1
0の第2の実施の形態を説明する。尚、第1の実施の形
態で説明した装置、部材には同符号を付すと共に、その
説明は省略する。
The carrier 1 forms a carrier expansion phase 46 which does not flow violently in the biological reaction tank 16, thereby forming the carrier 1.
4 does not rub against the inner wall of the biological reactor 16. Therefore, the life of the carrier 14 can be extended.
Next, according to FIG. 2, the carrier expansion phase wastewater treatment apparatus 1 of the present invention
A second embodiment of the present invention will be described. The devices and members described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

【0025】第2の実施の形態は、生物反応槽16に隣
接させて生物反応槽16と同じ深さの深槽式の嫌気槽5
4を設け、生物反応槽16の硝化処理により生成された
硝酸態窒素を脱窒処理するようにしたものである。この
嫌気槽54には、脱窒細菌を含む微生物、例えば活性汚
泥が収納されると共に、その底部には周面全体に液の吸
込スリット56Aを有し、上面に液の吹出口56Bを有
する水中攪拌器56が設けられる。生物反応槽16と嫌
気槽54の間には、生物反応槽16の曝気相48に取水
口を有すると共に、嫌気槽54に配設された前記水中攪
拌器56の側面近傍に開口した水路58がある。
In the second embodiment, an anaerobic tank 5 of the deep tank type having the same depth as the biological reaction tank 16 is provided adjacent to the biological reaction tank 16.
4 is provided to denitrify the nitrate nitrogen generated by the nitrification treatment of the biological reaction tank 16. The anaerobic tank 54 contains microorganisms including denitrifying bacteria, for example, activated sludge, and has a liquid suction slit 56A on the entire bottom surface at the bottom and a liquid outlet 56B on the upper surface. A stirrer 56 is provided. Between the biological reaction tank 16 and the anaerobic tank 54, a water channel 58 having an intake port in the exposed gas phase 48 of the biological reaction tank 16 and opening near the side surface of the underwater agitator 56 disposed in the anaerobic tank 54 is formed. is there.

【0026】また、生物反応槽16の上部と下部を連通
する連通管26は、生物反応槽16内の中央部に立設さ
れる。そして、連通管26の曝気相42の領域に取水口
26Aが形成され、生物反応槽16の底部近傍に位置す
る連通管排水口には、周面全体に液の吹出スリット60
Aを有し、上面に液の取水口60Bを有する水中攪拌器
60が連結される。連通管26の途中には、連通管26
内にエア供給可能なエア供給管50が設けられる。生物
反応槽16に設置する水中攪拌器60は、嫌気槽54に
設置した水中攪拌器56よりも巾広に形成され、水中攪
拌器60から吹き出された廃水が生物反応槽16の横断
面全体の上向流となるようにした。これにより第1の実
施の形態における循環ポンプを省略している。尚、第1
の実施の形態の場合も、循環ポンプの代わりに水中攪拌
器を設けることができる。
A communication pipe 26 for communicating the upper part and the lower part of the biological reaction tank 16 is provided upright at the center of the biological reaction tank 16. A water intake 26A is formed in the region of the gaseous phase 42 of the communication pipe 26, and a liquid discharge slit 60 is formed on the entire peripheral surface of the communication pipe drain located near the bottom of the biological reaction tank 16.
A, and an underwater stirrer 60 having a liquid intake 60B on the upper surface is connected thereto. In the middle of the communication pipe 26, the communication pipe 26
An air supply pipe 50 capable of supplying air is provided therein. The underwater stirrer 60 installed in the biological reaction tank 16 is formed wider than the underwater stirrer 56 installed in the anaerobic tank 54, and the wastewater blown out from the underwater stirrer 60 is used for the entire cross section of the biological reaction tank 16. Upflow was set. Thus, the circulation pump in the first embodiment is omitted. The first
Also in the case of the embodiment, an underwater stirrer can be provided instead of the circulation pump.

【0027】また、第2の実施の形態の場合は、廃水が
原水供給管12を介して嫌気槽54に流入する。更に、
嫌気槽54の上部から生物反応槽16への循環配管62
が配設され、循環配管62の途中にはポンプ64が設け
られる。また、循環配管62の途中から処理水配管66
が分岐している。本発明の第2の実施の形態によれば、
第1の実施の形態と同様の効果を得ることができると共
に、生物反応槽16の硝化処理により生成された硝酸態
窒素を嫌気槽54において脱窒処理により窒素ガスに確
実に変換して除去することができる。また、嫌気槽54
での脱窒処理により生物反応槽16で残存したBOD成
分も低減される。
In the case of the second embodiment, wastewater flows into the anaerobic tank 54 through the raw water supply pipe 12. Furthermore,
A circulation pipe 62 from the upper part of the anaerobic tank 54 to the biological reaction tank 16
Is provided, and a pump 64 is provided in the middle of the circulation pipe 62. Further, the treated water piping 66
Has branched. According to the second embodiment of the present invention,
The same effects as in the first embodiment can be obtained, and nitrate nitrogen generated by the nitrification treatment of the biological reaction tank 16 is surely converted to nitrogen gas by the denitrification treatment in the anaerobic tank 54 and removed. be able to. In addition, the anaerobic tank 54
The BOD component remaining in the biological reaction tank 16 is also reduced by the denitrification treatment in the above.

【0028】次に、図3に従って本発明の担体膨張相廃
水処理装置10の第3の実施の形態を説明する。尚、第
1及び第2の実施の形態で説明した装置、部材には同符
号を付すと共に、その説明は省略する。第3の実施の形
態は、生物反応槽16の横に生物反応槽16と同じ深さ
の深槽式の嫌気槽54を設け、生物反応槽16の静止水
相48から取水した被処理液を嫌気槽54に送水すると
共に、嫌気槽54内の液を曝気装置18にエアを供給す
るエア配管38に設けられたエジェクター68に送水す
るようにしたものである。即ち、嫌気槽54の底部に
は、周面全体に被処理液の吹出スリット70Aを有し、
上面に液の取水口70Bを有する水中攪拌器70が設け
られる。そして、生物反応槽16の静止水相48の領域
に取水口72Aが配設され、水中攪拌器70の取水口7
0B近傍に排出口が配設された第1の送水管72が設け
られる。従って、水中攪拌器70が作動して取水口70
Bから液が吸い込まれると、第1の送水管72内には生
物反応槽16から嫌気槽54への流れが形成される。こ
れにより、溶存酸素の減少した静止水相48の液を嫌気
槽54に送水することができるので、嫌気槽54での嫌
気性雰囲気を維持することができる。
Next, a third embodiment of the carrier expansion phase wastewater treatment apparatus 10 of the present invention will be described with reference to FIG. The devices and members described in the first and second embodiments are denoted by the same reference numerals, and description thereof is omitted. In the third embodiment, a deep tank type anaerobic tank 54 having the same depth as the biological reaction tank 16 is provided beside the biological reaction tank 16, and the liquid to be treated taken from the stationary aqueous phase 48 of the biological reaction tank 16 is provided. Water is supplied to the anaerobic tank 54 and the liquid in the anaerobic tank 54 is supplied to an ejector 68 provided in an air pipe 38 for supplying air to the aeration device 18. In other words, the bottom of the anaerobic tank 54 has a discharge slit 70A for the liquid to be treated on the entire peripheral surface,
An underwater stirrer 70 having a liquid intake port 70B on the upper surface is provided. An intake 72A is provided in the region of the stationary aqueous phase 48 of the biological reaction tank 16, and the intake 7 of the underwater agitator 70 is provided.
A first water supply pipe 72 provided with a discharge port near 0B is provided. Therefore, the underwater stirrer 70 is activated and the water intake 70
When the liquid is sucked from B, a flow from the biological reaction tank 16 to the anaerobic tank 54 is formed in the first water supply pipe 72. This allows the liquid in the stationary aqueous phase 48 with reduced dissolved oxygen to be sent to the anaerobic tank 54, so that the anaerobic atmosphere in the anaerobic tank 54 can be maintained.

【0029】また、曝気装置18にエアを供給するエア
配管38の途中にエジェクター68が設けられると供
に、嫌気槽54内に取水口を有し、排出口がエジェクタ
ー68に連通される第2の送水管74が設けられる。こ
れにより、嫌気槽54から生物反応槽16へ液を戻すた
めの動力として曝気装置18のエアを利用することがで
きると供に嫌気槽54で嫌気性雰囲気にある液にエジェ
クター68でエアを溶解してから生物反応槽16に送水
するので、生物反応槽16の好気性雰囲気を維持するこ
とができる。この場合、散気管36のエアノズルはエア
を噴出するというよりもエアが溶解した液を吐出する形
になるので、エアノズルの詰まりを考慮して吐出孔を大
きめにすると良い。
When an ejector 68 is provided in the middle of an air pipe 38 for supplying air to the aeration device 18, a second water intake port is provided in the anaerobic tank 54, and a discharge port is communicated with the ejector 68. Is provided. Accordingly, when the air of the aeration device 18 can be used as power for returning the liquid from the anaerobic tank 54 to the biological reaction tank 16, the air is dissolved in the liquid in the anaerobic atmosphere in the anaerobic tank 54 by the ejector 68. After that, the water is sent to the biological reaction tank 16, so that the aerobic atmosphere of the biological reaction tank 16 can be maintained. In this case, since the air nozzle of the air diffuser 36 discharges the liquid in which the air is dissolved, rather than blowing out the air, it is preferable to increase the size of the discharge hole in consideration of the clogging of the air nozzle.

【0030】また、第3の実施の形態では、処理水の越
流するトラフを設けずに、連通管26の途中に処理水の
抜出し配管76を接続させて処理水を抜き出すようにし
た。本発明の第3の実施の形態によれば、本発明の第2
の実施の形態と同様の効果を得ることができると共に、
生物反応槽16と嫌気槽54との間で液を循環させて
も、生物反応槽16の好気性雰囲気及び嫌気槽54の嫌
気性雰囲気を維持することができる。
In the third embodiment, the treated water is extracted by connecting the treated water extraction pipe 76 in the middle of the communication pipe 26 without providing a trough through which the treated water overflows. According to the third embodiment of the present invention, the second embodiment of the present invention
The same effect as that of the embodiment can be obtained,
Even if the liquid is circulated between the biological reaction tank 16 and the anaerobic tank 54, the aerobic atmosphere of the biological reaction tank 16 and the anaerobic atmosphere of the anaerobic tank 54 can be maintained.

【0031】次に、図4に従って本発明の担体膨張相廃
水処理装置10の第4の実施の形態を説明する。第4の
実施の形態は、第1の実施の形態の変形例であり、生物
反応槽16全体を好気性雰囲気にする場合である。尚、
第1の実施の形態で説明した装置、部材には同符号を付
すと共にその説明は省略する。第4の実施の形態は、生
物反応槽16の曝気相48に設けた曝気装置を省略する
代わりに、連通管26の途中に加圧式のエア溶解装置7
8を配設し、原水供給管12を先ずエア溶解装置78に
供給することによりエアが十分に溶解された廃水を生物
反応槽16の底部に送水するようにした。
Next, a fourth embodiment of the carrier expansion phase wastewater treatment apparatus 10 of the present invention will be described with reference to FIG. The fourth embodiment is a modification of the first embodiment, in which the entire biological reaction tank 16 is set to an aerobic atmosphere. still,
The same reference numerals are given to the devices and members described in the first embodiment, and description thereof will be omitted. In the fourth embodiment, instead of omitting the aeration device provided in the aeration gas phase 48 of the biological reaction tank 16, a pressurized air dissolving device 7 is provided in the communication pipe 26.
8 was provided, and the raw water supply pipe 12 was first supplied to the air dissolving device 78 so that the wastewater in which the air was sufficiently dissolved was sent to the bottom of the biological reaction tank 16.

【0032】エア溶解装置78は密閉した加圧容器80
で形成されると共に、加圧容器80には圧縮エア供給管
82と原水供給管12が連通される。そして、加圧容器
80内の廃水中に圧縮エアがバブリングされることによ
り加圧容器80内の内圧が大きくなり、廃水に溶解され
る酸素量が増加する。また、生物反応槽16の底部近傍
には、担体14が通過しないメッシュのスクリーン84
が生物反応槽16を横断する方向に配設され、生物反応
槽16の底部に原水の分配領域86を形成する。加圧容
器80内で酸素が十分に溶解された原水は、分配領域8
6に流入され、スクリーン84で生物反応槽16の横断
面全体に分配された上向流となって上昇する。
The air dissolving device 78 is a closed pressurized container 80
The compressed air supply pipe 82 and the raw water supply pipe 12 communicate with the pressurized container 80. When the compressed air is bubbled into the wastewater in the pressurized container 80, the internal pressure in the pressurized container 80 increases, and the amount of oxygen dissolved in the wastewater increases. A mesh screen 84 through which the carrier 14 does not pass is provided near the bottom of the biological reaction tank 16.
Are disposed in a direction transverse to the biological reaction tank 16, and form a distribution region 86 of raw water at the bottom of the biological reaction tank 16. The raw water in which oxygen is sufficiently dissolved in the pressurized container 80 is supplied to the distribution area 8
6 and rises as an upward flow distributed over the entire cross section of the biological reaction tank 16 by the screen 84.

【0033】また、生物反応槽16の静止水相48に
は、断面菱形をした複数の整流部材88が生物反応槽1
6の横方向に複数段配設される。これにより、気泡等が
付着して軽くなった担体14が上向流に乗って担体膨張
相46から静止水相48に上昇してきても、担体14
は、静止水相48での上向流の線速度の低下と、整流部
材88に当たって気泡が剥離し上昇の勢いが弱められ
る。これにより、担体14を担体膨張相46の領域まで
確実に自然沈降させることができる。
A plurality of flow regulating members 88 having a rhombic cross section are provided in the stationary aqueous phase 48 of the biological reaction tank 16.
6 are arranged in a plurality of stages in the horizontal direction. Thereby, even if the carrier 14 which has become light due to the attachment of bubbles and the like rises from the carrier expansion phase 46 to the stationary aqueous phase 48 in the upward flow, the carrier 14
In this case, the linear velocity of the upward flow in the stationary aqueous phase 48 is reduced, and the bubbles are separated from the flow straightening member 88, so that the rising force is reduced. Accordingly, the carrier 14 can be surely spontaneously settled to the region of the carrier expansion phase 46.

【0034】また、処理水を越流させるトラフ90は生
物反応槽16の中央部横方向に配設される。トラフ90
は、底部が開口91した外枠92と、外枠92内に設け
られ上下端が解放された内枠94とで構成されると共
に、内枠94に処理水配管96が連通される。また、ト
ラフ90底部の開口91の下方近傍には、断面菱形をし
た阻流部材96が開口91に沿って配設される。これに
より、生物反応槽16内を上昇する上向流は阻流部材9
6より左右に別れるのでトラフ90底部の開口91から
の流入を阻止する。従って、トラフ90内に越流した液
がトラフ90底部の開口91から流れ出る流れが形成さ
れるので、仮に担体14がトラフ90に越流してもトラ
フ90底部の開口91から生物反応槽内に戻すことがで
きる。
A trough 90 for flowing the treated water is provided in the center of the biological reaction tank 16 in the lateral direction. Trough 90
Is formed of an outer frame 92 having an opening 91 at the bottom and an inner frame 94 provided in the outer frame 92 and having upper and lower ends opened, and a treated water pipe 96 is communicated with the inner frame 94. Near the bottom of the opening 91 at the bottom of the trough 90, a baffle member 96 having a rhombic cross section is disposed along the opening 91. As a result, the upward flow rising in the biological reaction tank 16 is prevented by the baffle member 9.
Since it separates to the left and right from 6, the inflow from the opening 91 at the bottom of the trough 90 is prevented. Therefore, a flow is formed in which the liquid flowing into the trough 90 flows out from the opening 91 at the bottom of the trough 90. Even if the carrier 14 flows into the trough 90, the liquid is returned from the opening 91 at the bottom of the trough 90 into the biological reaction tank. be able to.

【0035】本発明の第4の実施の形態によれば、廃水
中へのエアの溶解を加圧状態で行うことにより担体膨張
相46でのDO濃度を第1の実施の形態よりも高めるこ
とができるので、特にBOD成分の濃度が小さくアンモ
ニア性窒素の濃度が大きな廃水に効果的である。次に、
図5に従って本発明の第5の実施の形態について説明す
る。
According to the fourth embodiment of the present invention, the DO concentration in the carrier expansion phase 46 is made higher than in the first embodiment by dissolving the air in the wastewater in a pressurized state. This is particularly effective for wastewater having a low BOD component concentration and a large ammonia nitrogen concentration. next,
A fifth embodiment of the present invention will be described with reference to FIG.

【0036】第5の実施の形態は、生物反応槽16内に
形成される酸素量の少ない静止水相48を積極的に嫌気
性にして脱窒処理に活用するようにしたものである。こ
の為に、原水供給管12を連通管26に連通させて静止
水相に酸素量の少ない原水を供給すると良い。即ち、生
物反応槽16の静止水相48には、断面がくの字形状に
形成される共に、脱窒細菌を含む微生物、例えば活性汚
泥が付着された複数の固定担体部材100が、生物反応
槽16内の横方向に並列配置される。また、固定担体部
材100の下側には、脱窒細菌の栄養源である炭素源、
例えばメタノール等を供給する炭素源供給管102が配
設される。この場合、廃水中のBOD成分の濃度が大き
い場合には、図中点線で示したように、廃水の一部を炭
素源供給管102に連結するバイパス管104を配設し
て、廃水中のBOD成分を脱窒細菌の栄養源としても良
い。これにより、担体膨張相46でのアンモニア性窒素
の硝化処理により生成された硝酸態窒素は、静止水相4
8で脱窒処理されて窒素ガスに変換され、廃水中から除
去される。静止水相48に固定担体部材100を配設す
ることにより、前述した整流部材と同様に担体14の沈
降を促進させることもできる。
In the fifth embodiment, the stationary aqueous phase 48 with a small amount of oxygen formed in the biological reaction tank 16 is made anaerobic and utilized for denitrification. For this purpose, it is preferable to connect the raw water supply pipe 12 to the communication pipe 26 to supply raw water having a small amount of oxygen to the stationary aqueous phase. That is, in the stationary aqueous phase 48 of the biological reaction tank 16, a plurality of fixed carrier members 100 each having a cross section formed in a U-shape and having microorganisms containing denitrifying bacteria, for example, activated sludge attached thereto, 16 are arranged side by side in the horizontal direction. On the lower side of the fixed carrier member 100, a carbon source which is a nutrient source of the denitrifying bacteria,
For example, a carbon source supply pipe 102 for supplying methanol or the like is provided. In this case, when the concentration of the BOD component in the wastewater is large, as shown by a dotted line in the figure, a bypass pipe 104 connecting a part of the wastewater to the carbon source supply pipe 102 is provided, and The BOD component may be used as a nutrient source for denitrifying bacteria. As a result, the nitrate nitrogen generated by the nitrification treatment of the ammoniacal nitrogen in the carrier expansion phase 46 is transferred to the stationary aqueous phase 4.
At 8, it is denitrified and converted into nitrogen gas and removed from wastewater. By disposing the fixed carrier member 100 in the stationary aqueous phase 48, the sedimentation of the carrier 14 can be promoted in the same manner as in the above-described rectifying member.

【0037】また、生物反応槽16の水面近傍に設けら
れたトラフ28と曝気相42とは担体流出防止部材10
6により仕切られる。この担体流出防止部材106は、
トラフ28を囲むと共にその下端に開口108を有する
囲い枠110と、囲い枠110とトラフ28との間に立
設された下降流形成板112により形成される下降水路
114とで構成される。また、囲い枠110下端の開口
108の下方近傍には、断面三角形をした阻流部材11
6が開口108に沿って配設される。これにより、生物
反応槽16内を上昇する上向流は阻流部材116より図
中右方向に流れを変えるので囲い枠110下端の開口1
08からの流入を阻止する。これにより、生物反応槽1
6内で処理された処理水は、囲い枠110を越流して下
降流路114に流入し、下降流路114を下降流となっ
て下降して開口108から流れ出る流れを形成するの
で、仮に担体14が囲い枠110内に越流しても囲い枠
110下端の開口108から生物反応槽16内に戻すこ
とができる。
The trough 28 and the exposed gas 42 provided near the water surface of the biological reaction tank 16 are separated from the carrier outflow preventing member 10.
6. Partitioned by 6. This carrier outflow prevention member 106 is
It comprises an enclosure 110 surrounding the trough 28 and having an opening 108 at its lower end, and a descending water passage 114 formed by a descending flow forming plate 112 erected between the enclosure 110 and the trough 28. In the vicinity of the lower end of the opening 108 at the lower end of the surrounding frame 110, a baffle member 11 having a triangular cross section is provided.
6 are arranged along the opening 108. As a result, the upward flow rising in the biological reaction tank 16 changes its flow from the baffle member 116 to the right in the drawing, so that the opening 1 at the lower end of the surrounding frame 110 is changed.
08. Thereby, the biological reaction tank 1
The treated water treated in 6 overflows the surrounding frame 110 and flows into the descending flow path 114, and descends as the descending flow path 114 to form a flow that flows out of the opening 108. Even if 14 flows into the enclosure 110, it can be returned into the biological reaction tank 16 through the opening 108 at the lower end of the enclosure 110.

【0038】本発明の第5の実施の形態によれば、第1
の実施の形態と同様の効果を得ることができると共に、
静止水相48を脱窒処理セクションとして有効活用する
ことができる。
According to the fifth embodiment of the present invention, the first
The same effect as that of the embodiment can be obtained,
The stationary aqueous phase 48 can be effectively used as a denitrification treatment section.

【0039】[0039]

【実施例】以下の本発明の担体膨張相廃水処理装置の実
施例について説明する。 (実施例1)実施例1は、図1に示した担体膨張相廃水
処理装置を用いて行った実施例である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The following describes an embodiment of a carrier expansion phase wastewater treatment apparatus of the present invention. (Embodiment 1) Embodiment 1 is an embodiment carried out using the carrier expansion phase wastewater treatment apparatus shown in FIG.

【0040】廃水の原水として下水2次処理水を用い、
深さl0mの生物反応槽で処理した。原水のアンモニア
性窒素(NH4 ‐N)濃度は、8〜12mg/l であり、
生物反応槽における滞留時間を2時間とした。硝化細菌
を固定化した担体は、ポリエチレングリコ−ルを主成分
とする材料を用いて作成したものである。担体は、大き
さ3mm角のサイコロ状で、比重が1.08のものを使
用した。添加する担体の容積は、生物反応槽の容積の1
0%とした。このとき、生物反応槽内に液の流れがない
静止状態では、担体膨張相の高さは1.5mとなる。生
物反応槽へのエアの供給は、水面から深さ5mの位置に
配設した曝気装置からのみ行い、曝気相でエアを溶解し
た液の一部を生物反応槽の底部に循環し、生物反応槽内
に上向流を形成するようにした。この時の担体膨張相を
通過する上向流の線速度を0.2〜3cm/秒の間で変化
させたときの処理水のNH4 ‐N濃度、及び担体膨張相
の最上部におけるDO濃度をそれぞれ図6、図7に示
す。尚、曝気相のDO濃度は6.5mg/l になるように
した。
Secondary sewage water is used as raw water for wastewater,
Treated in a 10 m deep biological reactor. The ammonia nitrogen (NH 4 -N) concentration of the raw water is 8 to 12 mg / l,
The residence time in the biological reactor was 2 hours. The carrier on which the nitrifying bacteria were immobilized was prepared using a material containing polyethylene glycol as a main component. The carrier used was a 3 mm square die having a specific gravity of 1.08. The volume of the carrier to be added is one of the volume of the biological reaction tank.
0%. At this time, in a stationary state where there is no liquid flow in the biological reaction tank, the height of the carrier expansion phase is 1.5 m. The supply of air to the biological reaction tank is performed only from the aerator installed at a depth of 5 m from the surface of the water, and a part of the liquid in which the air is dissolved in the aerated gas phase is circulated to the bottom of the biological reaction tank, and the biological reaction is performed. An upward flow was formed in the tank. At this time, the NH 4 —N concentration of the treated water when the linear velocity of the upward flow passing through the carrier expansion phase was changed between 0.2 and 3 cm / sec, and the DO concentration at the top of the carrier expansion phase Are shown in FIGS. 6 and 7, respectively. The DO concentration of the exposed gas was adjusted to 6.5 mg / l.

【0041】図6及び図7から分かるように、担体膨張
相を通過する処理水の線速度を0.5cm/sec以上、好ま
しくはlcm/秒以上とすることにより、担体膨張相へD
O濃度の高い液を供給することが可能であり、これによ
りNH4 ‐N濃度の低い、即ち硝化処理が十分進行した
処理水を得ることができた。図8の線Aは、前述した比
重1.08、大きさ3mm角の担体を使用して担体膨張
相を通過する上向流の線速度と担体膨張相の膨張高さと
の関係を調べた結果である。
As can be seen from FIGS. 6 and 7, by setting the linear velocity of the treated water passing through the expanded carrier phase to 0.5 cm / sec or more, preferably 1 cm / sec or more, D
It was possible to supply a liquid having a high O concentration, thereby obtaining treated water having a low NH 4 —N concentration, that is, treated water having sufficiently advanced nitrification treatment. The line A in FIG. 8 is a result of examining the relationship between the linear velocity of the upward flow passing through the carrier expansion phase and the expansion height of the carrier expansion phase using the above-described carrier having a specific gravity of 1.08 and a size of 3 mm square. It is.

【0042】図8から分かるように、線Aで示される担
体の場合、線速度が0.3cm/秒以上になると、膨張高
さは静止状態での高さ1.5m(図8の点線で示した高
さ)から増加しはじめ、線速度が3cm/secのときの膨張
高さが約4mに達した。この時点では、曝気相へ上昇す
る担体は認められなかった。ここで、担体の比重と大き
さを変えた場合の線速度と担体膨張相の膨張高さの関係
について調べた結果を図8の線B、線C、線Dに示す。
線Bは比重が1.02で3mm角の担体の場合、線Cは
比重が1.05で0.5mm角の担体の場合、線Dは比
重が1.2で3mm角の担体の場合である。担体の比重
は、活性汚泥と同時に固定化する比重調整剤の比重及び
濃度を変化させて調整した。また、形状はすべて角型
(サイコロ状)である。
As can be seen from FIG. 8, in the case of the carrier shown by the line A, when the linear velocity becomes 0.3 cm / sec or more, the expansion height becomes 1.5 m in the stationary state (as indicated by the dotted line in FIG. 8). (Indicated height), and the expansion height at a linear velocity of 3 cm / sec reached about 4 m. At this time, no carrier rising into the exposed gas phase was observed. Here, the results obtained by examining the relationship between the linear velocity and the expansion height of the support expansion phase when the specific gravity and size of the support are changed are shown in lines B, C and D in FIG.
Line B is for a carrier having a specific gravity of 1.02 and 3 mm square, line C is for a carrier having a specific gravity of 1.05 and 0.5 mm square, and line D is for a carrier having a specific gravity of 1.2 and 3 mm square. is there. The specific gravity of the carrier was adjusted by changing the specific gravity and the concentration of the specific gravity adjusting agent immobilized simultaneously with the activated sludge. In addition, the shapes are all square (dice-like).

【0043】図8から分かるように、線B及び線Cで示
される担体は、上向流の線速度の増加に伴って担体膨張
相の膨張高さが急カーブで大きくなる。このことは、線
速度を大きくして処理水のNH4 ‐N濃度を下げる場合
に担体膨張相から曝気相へ移行する担体が多くなること
を意味する。従って、処理水のNH4 ‐N濃度の低減と
担体膨張相から曝気相への担体の移行防止という観点か
ら担体の比重と大きさを決定する場合、担体の比重が
1.02の場合には大きさを3mm以上、比重が1.0
5の場合には大きさを0.5mm以上とすることが必要
である。そして、上記の如く比重と大きさで形成された
担体は、処理水のNH4 ‐N濃度を満足できる程度まで
低減するのに最低限必要な線速度0.5cm/秒におい
て膨張高さが2.5m以下に維持され、曝気相へ移行す
る担体も認められなかった。
As can be seen from FIG. 8, in the carrier shown by the lines B and C, the expansion height of the carrier expansion phase increases in a sharp curve as the linear velocity of the upward flow increases. This means that when the linear velocity is increased to decrease the NH 4 —N concentration of the treated water, the amount of the carrier that moves from the carrier expanded phase to the exposed gas phase increases. Therefore, when determining the specific gravity and size of the carrier from the viewpoint of reducing the NH 4 —N concentration of the treated water and preventing the transfer of the carrier from the carrier expanded phase to the exposed gas phase, when the specific gravity of the carrier is 1.02, Size is 3mm or more, specific gravity is 1.0
In the case of 5, the size needs to be 0.5 mm or more. The carrier formed with the specific gravity and the size as described above has an expansion height of 2 at a linear velocity of 0.5 cm / sec which is the minimum necessary to reduce the NH 4 —N concentration of the treated water to a satisfactory level. The carrier was maintained at 0.5 m or less, and no carrier was transferred to the exposed gas phase.

【0044】ところで、一般に担体の硝化速度に対し
て、担体表面積が大きな影響を示し、担体が小さいほど
単位体積当りの表面積が大きくなり、高い硝化速度が得
られることから担体の大きさは最大でも5mmが限度で
ある。一方、担体の成形の点からみると、比重が1.2
を越え、大きさが0.5mm未満の担体、及び、比重が
1.02未満の坦体は、製造上の難点がある上に、図8
の線B、Cから分かるように、担体膨張相から曝気相へ
上昇する担体を完全になくすことが困難である。
In general, the surface area of the carrier has a large effect on the nitrification rate of the carrier. The smaller the carrier, the larger the surface area per unit volume, and the higher the nitrification rate, the larger the size of the carrier. 5 mm is the limit. On the other hand, from the viewpoint of the molding of the carrier, the specific gravity is 1.2
And the carrier having a size of less than 0.5 mm and the carrier having a specific gravity of less than 1.02 have a difficulty in production,
As can be seen from the lines B and C, it is difficult to completely eliminate the carrier rising from the carrier expanded phase to the exposed gas phase.

【0045】また、線Dのように担体の比重1.2、大
きさ3mmにして線速度を大きくしても膨張高さが大き
くなりにくい場合でも、線速度が8cm/secを越え
ると膨張高さが4mを越えて担体膨張相から曝気相へ移
行する担体が認められた。即ち、水深が10mの生物反
応槽の場合には担体膨張相の膨張高さは6m以下、好ま
しくは4m以下にすることが必要である。このことは、
膨張高さが6mを越えると、担体膨張相と曝気相との間
に殆ど静止水相の領域を形成できなくなり、担体が担体
膨張相から曝気相に移行すると生物反応槽から流出して
しまう可能性が大きくなるからである。このことから、
担体膨張相の高さは生物反応槽の水深の60%以下、好
ましくは40%以下が良い。この担体膨張相の膨張高さ
の上限を上向流の線速度で見た場合、線速度の上限は安
全を考慮して7cm/秒であることが良く、好ましくは
6cm/秒が良い。
Further, even if the specific gravity of the carrier is 1.2 and the size is 3 mm, as in the case of the line D, the expansion height is not likely to increase even if the linear speed is increased, the expansion height is higher than 8 cm / sec. Carriers that migrated from the carrier expanded phase to the exposed gas phase with a diameter exceeding 4 m were observed. That is, in the case of a biological reaction tank having a water depth of 10 m, the expansion height of the carrier expansion phase needs to be 6 m or less, preferably 4 m or less. This means
If the expansion height exceeds 6 m, a region of the stationary aqueous phase can hardly be formed between the carrier expansion phase and the exposure gas phase, and the carrier may flow out of the biological reaction tank when the carrier moves from the carrier expansion phase to the exposure gas phase. This is because the property is increased. From this,
The height of the carrier expansion phase is 60% or less, preferably 40% or less of the water depth of the biological reaction tank. When the upper limit of the expansion height of the carrier expansion phase is viewed at the linear velocity of the upward flow, the upper limit of the linear velocity is preferably 7 cm / sec in consideration of safety, and more preferably 6 cm / sec.

【0046】従って、以上の結果を踏まえると、担体
は、比重が1.02〜1.2、大きさが0.5〜5mm
とすることが必要である。また、上向流の線速度は、処
理水の水質向上と担体膨張相から担体の移行防止の観点
から0.5〜7cm/秒、好ましくはl〜6cm/秒が良
い。 (実施例2)実施例2は、図1に示した担体膨張相廃水
処理装置を用いてアンモニア性窒素濃度の高い廃水につ
いて行った実施例である。
Therefore, based on the above results, the carrier has a specific gravity of 1.02 to 1.2 and a size of 0.5 to 5 mm.
It is necessary to The linear velocity of the upward flow is 0.5 to 7 cm / sec, preferably 1 to 6 cm / sec, from the viewpoint of improving the quality of the treated water and preventing the transfer of the carrier from the carrier expansion phase. (Example 2) Example 2 is an example in which wastewater having a high ammonia nitrogen concentration was used using the carrier expansion phase wastewater treatment apparatus shown in FIG.

【0047】使用した廃水の原水は、余剰汚泥の処理過
程で排出される汚泥処理液を用い、この原水は、BOD
濃度が100mg/l、NH4 ‐N濃度が20mg/l程度であ
る。生物反応槽における滞留時間を7時間とした。実施
例1と同様に、硝化細菌を固定化した担体は、ポリエチ
レングリコ−ルを主成分とする材料を用いて製作したも
のである。担体は、比重が1.2で大きさ3mmの角型
である。添加する担体の容積は、生物反応槽容積の15
%とした。このとき、静止状態では、担体膨張相の高さ
は2.2mとなった。生物反応槽への空気の供給は、水
面から深さ5mの位置に配設した曝気装置のみから行
い、曝気相でエアを溶解した液の一部を生物反応槽の底
部に循環し、生物反応槽内に上向流を形成するようにし
た。担体膨張相を通過する液の線速度を2〜8cm/秒で
変化させたときの処理水のNH4 ‐N濃度、及び担体膨
張相の最上部におけるDO濃度をそれぞれ図9、図10
に示す。尚、曝気相でのDO濃度は6.5mg/Lに保っ
た。
As raw water used for the wastewater, a sludge treatment liquid discharged in the process of treating excess sludge is used.
The concentration is 100 mg / l and the NH 4 -N concentration is about 20 mg / l. The residence time in the biological reactor was 7 hours. As in Example 1, the carrier on which the nitrifying bacteria were immobilized was manufactured using a material containing polyethylene glycol as a main component. The carrier is a square type having a specific gravity of 1.2 and a size of 3 mm. The volume of the carrier to be added is 15 times the volume of the biological reactor.
%. At this time, in the stationary state, the height of the carrier expansion phase was 2.2 m. The supply of air to the biological reaction tank is performed only from the aeration device arranged at a depth of 5 m from the water surface, and a part of the liquid in which the air is dissolved in the aerated gas phase is circulated to the bottom of the biological reaction tank, and the biological reaction is performed. An upward flow was formed in the tank. 9 and 10 show the NH 4 —N concentration of the treated water and the DO concentration at the top of the carrier expansion phase when the linear velocity of the liquid passing through the carrier expansion phase was changed at 2 to 8 cm / sec.
Shown in The DO concentration in the exposed gas phase was kept at 6.5 mg / L.

【0048】図9、図10から分かるように、担体膨張
相を通過する上向流の線速度を6cm/秒以上とすること
により、高濃度のアンモニア性窒素を硝化処理するのに
十分なDO濃度の液を担体膨張相へ供給することが可能
であり、これにより硝化処理が90%程度進行した処理
水を得ることができた。また、上向流の線速度を7cm/
秒以下にすれば、比重が1.2で大きさが3mmの担体
が担体膨張相から曝気相に移行する危険もない。 (実施例3)実施例3は、図3に示した担体膨張相廃水
処理装置を用いて下水中の窒素成分を硝化・脱窒処理し
た実施例である。
As can be seen from FIGS. 9 and 10, by setting the linear velocity of the upward flow passing through the carrier expansion phase to 6 cm / sec or more, sufficient DO for nitrifying high-concentration ammonia nitrogen can be obtained. It was possible to supply a liquid having a concentration to the expanded carrier phase, whereby it was possible to obtain treated water in which the nitrification treatment had progressed by about 90%. Moreover, the linear velocity of the upward flow is 7 cm /
If the time is not more than seconds, there is no danger that the carrier having a specific gravity of 1.2 and a size of 3 mm will shift from the carrier expanded phase to the exposed gas phase. (Embodiment 3) Embodiment 3 is an embodiment in which a nitrogen component in sewage is subjected to nitrification and denitrification treatment using the carrier expansion phase wastewater treatment apparatus shown in FIG.

【0049】嫌気槽と生物反応槽はいずれも深さ10m
である。嫌気槽には活性汚泥を投入し、滞留時間を3.
5時間とした。生物反応相には、比重1.08、大きさ
3mm角の担体を10%容積で充填し、曝気相で酸素を
溶解した液の一部を担体膨張相の下側に導いた。担体反
応相の滞留時間は2.5時間とした。担体膨張相を通過
する上向流の線速度は2cm/秒とし、静止水相の被処
理液を嫌気槽へ送水すると共に、その送水量が嫌気槽に
供給される廃水の原水量の3倍量になるようにした。ま
た、嫌気槽の液の一部は曝気装置のエア配管に設けられ
たエジェクターに送水されエアと共に曝気装置から生物
反応槽に戻されるようにした。曝気相から流出する液
は、図示しない固液分離槽に導かれ、活性汚泥を分離し
て処理水が得られる。沈殿した汚泥の一部は嫌気糟に返
送された。水温は15〜25℃の範囲で変動した。
Both the anaerobic tank and the biological reaction tank are 10 m deep
It is. 2. Activated sludge is charged into the anaerobic tank and the residence time is set to 3.
5 hours. The bioreaction phase was filled with a carrier having a specific gravity of 1.08 and a size of 3 mm square in a volume of 10%, and a part of the liquid in which oxygen was dissolved in the exposed gas phase was led to the lower side of the carrier expansion phase. The residence time of the carrier reaction phase was 2.5 hours. The linear velocity of the upward flow passing through the carrier expansion phase is 2 cm / sec, and the liquid to be treated in the stationary aqueous phase is supplied to the anaerobic tank, and the amount of the supplied water is three times the raw water amount of the wastewater supplied to the anaerobic tank. Amount. In addition, a part of the liquid in the anaerobic tank was sent to an ejector provided in an air pipe of the aerator, and returned from the aerator to the biological reaction tank together with the air. The liquid flowing out of the exposed gas phase is guided to a solid-liquid separation tank (not shown), and the activated sludge is separated to obtain treated water. Part of the settled sludge was returned to the anaerobic tank. Water temperature varied between 15 and 25 ° C.

【0050】図11に、窒素(T−N)負荷と処理水T
−N及び処理水のNH4 ‐N濃度との関係を示す。窒素
負荷は、嫌気槽と生物反応槽の合計容積当りで示した。
窒素負荷が0.15kg/m3 /日まで、処理水T‐N
が10mg/L 以下を満足する結果が得られた。尚、処
理水のNH4 ‐N濃度は常にlmg/L 以下を満足し、
生物反応槽での安定した硝化性能が確認された。 (実施例4)実施例4は、図5に示した担体膨張相廃水
処理装置を用いて下水2次処理水を硝化・脱窒処理した
実施例である。
FIG. 11 shows the nitrogen (TN) load and the treated water T
The relationship between -N and the NH 4 -N concentration of the treated water is shown. The nitrogen load was indicated per total volume of the anaerobic tank and the biological reaction tank.
Nitrogen load up to 0.15kg / m 3 / day, treated water TN
Was less than 10 mg / L. The NH 4 -N concentration of the treated water always satisfies 1 mg / L or less,
Stable nitrification performance in the biological reactor was confirmed. (Embodiment 4) Embodiment 4 is an embodiment in which sewage secondary treatment water is subjected to nitrification and denitrification treatment using the carrier expansion phase wastewater treatment apparatus shown in FIG.

【0051】廃水の原水のNH4 ‐N濃度は、8〜12
mg/L 程度であり、10mの生物反応槽で、滞留時間
を4時間とした。担体は、比重が1.05、大きさ3m
mの角型である。添加する担体の容積は、生物反応槽の
全容積当たり15%とし、後記する硝化処理セクション
当たりで約45%になるようにした。生物反応糟への空
気の供給は、水面から深さ3.3mの位置に設けた曝気
装置から行い、曝気相でエアを溶解した液の一部を担体
膨張相の下側に導いた。担体膨張相を通過する上向流の
線速度を0.5cm/秒とした。
The NH 4 —N concentration of the raw water of the wastewater is 8 to 12
mg / L, and the residence time was 4 hours in a 10 m biological reaction tank. The carrier has a specific gravity of 1.05 and a size of 3m
m is a square shape. The volume of the carrier to be added was 15% based on the total volume of the biological reactor, and was about 45% per the nitrification section described later. The supply of air to the biological reaction tank was performed from an aeration device provided at a depth of 3.3 m from the water surface, and a part of the liquid in which air was dissolved in the aerated gas phase was guided to the lower side of the carrier expansion phase. The linear velocity of the upward flow passing through the carrier expansion phase was 0.5 cm / sec.

【0052】また、静止水相に脱窒細菌を含む微生物が
付着した固定担体部材を配設すると共に、炭素源として
メタノールを、水面から6mの深さの位置に配設した炭
素源供給管から静止水相に供給した。固定担体部材に付
着した微生物濃度は、後記する脱窒処理セクションの容
積当たり約20000mg/L であり、生物反応槽の全
容積に対しては6600mg/L の濃度になるようにし
た。
In addition, a stationary carrier member having microorganisms containing denitrifying bacteria attached to the stationary aqueous phase is provided, and methanol as a carbon source is supplied from a carbon source supply pipe provided at a depth of 6 m from the water surface. Feed to the stationary aqueous phase. The concentration of microorganisms adhering to the fixed carrier member was about 20,000 mg / L per volume of the denitrification treatment section described later, and the concentration was 6600 mg / L with respect to the total volume of the biological reaction tank.

【0053】これにより、生物反応槽は、その底部から
担体膨張相の硝化処理セクション、静止水相の脱窒処理
セクション、曝気相の好気処理セクションで構成し、各
セクションの容積割合が1:1:1になるようにした。
図12にメタノール添加量(原水当たりの濃度)と処理
水の水質の関係を示す。図12から分かるように、メタ
ノ−ル添加量が25〜30mg/L のとき、NH4 ‐N
濃度及びNO3 −N濃度のいずれもlmg/L 以下を満
足する良い結果が得られた。 (実施例5)実施例5は、実施例4で説明した担体膨張
相廃水処理装置を用いて都市ゴミの埋め立て地から発生
する浸出水を処理したものである。浸出水のNH4 ‐N
濃度は500〜600mg/L と高濃度であるが、BO
D成分の濃度は200mg/L であり、BOD/N比が
0.2〜0.4と低いものを使用した。この為、炭素源
供給管からはメタノールを添加した。
Thus, the biological reaction tank is composed of a nitrification treatment section of the carrier expansion phase, a denitrification treatment section of the stationary aqueous phase, and an aerobic treatment section of the aerated gas phase from the bottom, and the volume ratio of each section is 1: It was set to 1: 1.
FIG. 12 shows the relationship between the amount of methanol added (concentration per raw water) and the quality of treated water. As can be seen from FIG. 12, when the amount of methanol added is 25 to 30 mg / L, NH 4 —N
Good results were obtained in which both the concentration and the NO 3 -N concentration were 1 mg / L or less. (Embodiment 5) In Embodiment 5, leachate generated from a landfill of municipal garbage is treated using the carrier expansion phase wastewater treatment apparatus described in Embodiment 4. Leachate NH 4 -N
Although the concentration is as high as 500-600 mg / L, BO
The concentration of the D component was 200 mg / L, and the BOD / N ratio used was as low as 0.2 to 0.4. For this reason, methanol was added from the carbon source supply pipe.

【0054】各セクションの窒素負荷をそれぞれ0.9
kg-N/m3 ・日、水温12°Cで運転した結果、処理
水のNH4 ‐N濃度を2mg/L 以下に、また総窒素濃
度(T−N)を50mg/L 以下にでき、90%以上の
高い窒素除去率を得ることができた。
The nitrogen load of each section was 0.9
kg-N / m 3 · day, a result of the operation at a water temperature of 12 ° C, can the NH 4 -N concentration in the treated water below 2 mg / L, also the total nitrogen concentration (T-N) below 50 mg / L, A high nitrogen removal rate of 90% or more could be obtained.

【0055】[0055]

【発明の効果】上記説明したように本発明の担体膨張相
廃水処理装置によれば、上記の如く構成したので以下の
効果を奏することができる。深槽式の生物反応槽であっ
ても好気的な生物処理を行うための容量を大きくとるこ
とができる。従って、処理水の水質を向上させることが
できる。
As described above, according to the carrier expansion phase wastewater treatment apparatus of the present invention, the following effects can be obtained because the apparatus is configured as described above. Even a deep-type biological reaction tank can have a large capacity for performing aerobic biological treatment. Therefore, the quality of the treated water can be improved.

【0056】また、低い吐出圧力の曝気装置を使用する
ことができ、消費電力の大幅な低減を図ることができ
る。また、生物反応槽の下部に担体膨張相を形成すると
共に、担体膨張相と曝気相の間に静止水相を形成したの
で、生物反応槽から担体の流出をせることなく担体膨張
相に保持することができる。従って、従来のように処理
水の排出口に担体の流出を防止するスクリーンを必要し
ない。
Further, an aeration device having a low discharge pressure can be used, and the power consumption can be greatly reduced. In addition, since the carrier expansion phase is formed at the lower part of the biological reaction tank, and a stationary aqueous phase is formed between the carrier expansion phase and the exposed gas phase, the carrier is maintained in the carrier expansion phase without flowing out of the carrier from the biological reaction tank. be able to. Therefore, there is no need for a screen for preventing the carrier from flowing out at the outlet of the treated water as in the prior art.

【0057】また、担体が生物反応槽内で激しく旋回し
ない担体膨張相を形成することにより、担体の寿命を長
くすることができる。
The life of the carrier can be prolonged by forming a carrier expansion phase in which the carrier does not violently swirl in the biological reaction tank.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の担体膨張相廃水処理装置の第1の実施
の形態を説明する断面図
FIG. 1 is a sectional view illustrating a first embodiment of a carrier expansion phase wastewater treatment apparatus of the present invention.

【図2】本発明の担体膨張相廃水処理装置の第2の実施
の形態を説明する断面図
FIG. 2 is a cross-sectional view for explaining a second embodiment of the carrier expansion phase wastewater treatment apparatus of the present invention.

【図3】本発明の担体膨張相廃水処理装置の第3の実施
の形態を説明する断面図
FIG. 3 is a cross-sectional view illustrating a third embodiment of the carrier expansion phase wastewater treatment apparatus of the present invention.

【図4】本発明の担体膨張相廃水処理装置の第4の実施
の形態を説明する断面図
FIG. 4 is a cross-sectional view illustrating a fourth embodiment of the carrier expansion phase wastewater treatment apparatus of the present invention.

【図5】本発明の担体膨張相廃水処理装置の第5の実施
の形態を説明する断面図
FIG. 5 is a sectional view for explaining a fifth embodiment of the carrier expansion phase wastewater treatment apparatus of the present invention.

【図6】上向流の線速度と処理水のアンモニア性窒素濃
度との関係を説明する説明図
FIG. 6 is an explanatory diagram illustrating the relationship between the linear velocity of upward flow and the concentration of ammonia nitrogen in treated water.

【図7】上向流の線速度と処理水の担体膨張相の上部に
おける溶存酸素(DO)濃度の関係を説明する説明図
FIG. 7 is an explanatory diagram for explaining a relationship between a linear velocity of an upward flow and a dissolved oxygen (DO) concentration in an upper part of a carrier expansion phase of treated water.

【図8】担体の比重と大きさを変えた場合の上向流の線
速度と担体膨張相の膨張高さとの関係を説明する説明図
FIG. 8 is an explanatory diagram for explaining the relationship between the linear velocity of the upward flow and the expansion height of the carrier expansion phase when the specific gravity and size of the carrier are changed.

【図9】高濃度のアンモニア性窒素濃度が廃水を処理し
た場合の上向流の線速度と処理水のアンモニア性窒素濃
度との関係を説明する説明図
FIG. 9 is an explanatory diagram for explaining the relationship between the linear velocity of upward flow and the ammonia nitrogen concentration of treated water when a high concentration of ammonia nitrogen is treating wastewater.

【図10】高濃度のアンモニア性窒素濃度が廃水を処理
した場合の上向流の線速度と処理水の担体膨張相の上部
における溶存酸素濃度の関係を説明する説明図
FIG. 10 is an explanatory diagram for explaining the relationship between the linear velocity of upward flow and the concentration of dissolved oxygen in the upper part of the carrier expansion phase of treated water when a high concentration of ammonia nitrogen is treating wastewater.

【図11】窒素負荷と処理水の総窒素濃度及びアンモニ
ア性窒素濃度の関係を説明する説明図
FIG. 11 is an explanatory diagram for explaining the relationship between the nitrogen load, the total nitrogen concentration and the ammonia nitrogen concentration of the treated water.

【図12】本発明の担体膨張相廃水処理装置で硝化・脱
窒処理を行った時の、メタノール添加量と処理水の総窒
素濃度との関係を説明する説明図
FIG. 12 is an explanatory diagram illustrating the relationship between the amount of methanol added and the total nitrogen concentration of treated water when nitrification and denitrification treatment is performed by the carrier expansion phase wastewater treatment device of the present invention.

【符号の説明】[Explanation of symbols]

10…担体膨張相廃水処理装置 12…原水供給管 14…担体 16…生物反応槽 18…曝気装置 20…循環装置 26…連通管 28、90…トラフ 40…気泡 42…曝気相 44…循環ポンプ 46…担体膨張相 48…静止水相 54…嫌気槽 56、60、70…水中攪拌器 68…エジェクター 88…整流部材 96、116…阻流部材 100…固定担体部材 106…担体流出防止部材 DESCRIPTION OF SYMBOLS 10 ... Carrier expansion phase wastewater treatment apparatus 12 ... Raw water supply pipe 14 ... Carrier 16 ... Biological reaction tank 18 ... Aeration apparatus 20 ... Circulation apparatus 26 ... Communication pipe 28, 90 ... Trough 40 ... Bubbles 42 ... Exposure gas phase 44 ... Circulation pump 46 ... carrier expansion phase 48 ... stationary aqueous phase 54 ... anaerobic tank 56, 60, 70 ... underwater stirrer 68 ... ejector 88 ... rectifying member 96, 116 ... baffle member 100 ... fixed carrier member 106 ... carrier outflow prevention member

フロントページの続き (72)発明者 中村 裕紀 東京都千代田区内神田1丁目1番14号 日 立プラント建設株式会社内 (72)発明者 河西 正隆 東京都千代田区内神田1丁目1番14号 日 立プラント建設株式会社内Continuation of the front page (72) Inventor Yuki Nakamura 1-1-1 Uchikanda, Chiyoda-ku, Tokyo Inside the Hitachi Plant Construction Co., Ltd. (72) Inventor Masataka Kasai 1-11-1 Uchikanda, Chiyoda-ku, Tokyo Sun Standing Plant Construction Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】廃水の流入口と被処理液の排出口とを備え
た深槽型の生物反応槽と、 前記生物反応槽内の上部に空気の曝気相を形成する曝気
手段と、 前記曝気相と前記生物反応槽の底部とを連通する連通管
を介して前記曝気相で酸素を含有した液を生物反応槽の
底部に送給し、前記生物反応槽内の底部から所定の線速
度を有する上向流を発生させることによって生物反応槽
の下部に微生物を担持した担体がわずかに浮上する担体
膨張相を形成し、前記担体膨張相と前記曝気相との間
に、担体膨張相を通過した後の上向流の線速度が担体の
自然沈降速度よりも遅い静止水相を形成する循環手段
と、 を備えたことを特徴とする担体膨張相廃水処理装置。
A deep-water type biological reaction tank having an inlet for wastewater and an outlet for liquid to be treated; aeration means for forming an aeration phase of air in an upper part of the biological reaction tank; A liquid containing oxygen in the exposed gas phase is fed to the bottom of the biological reaction tank through a communication pipe that communicates the phase with the bottom of the biological reaction tank, and a predetermined linear velocity is supplied from the bottom in the biological reaction tank. By generating an upward flow having, a carrier expansion phase in which the carrier carrying the microorganisms slightly floats at the lower part of the biological reaction tank, and passes through the carrier expansion phase between the carrier expansion phase and the exposed gas phase. And a circulating means for forming a stationary aqueous phase in which the linear velocity of the upward flow after the separation is lower than the natural sedimentation velocity of the carrier.
【請求項2】前記生物反応槽に隣接させて活性汚泥を有
する嫌気槽を設け、前記生物反応槽と前記嫌気槽との間
で液を循環するようにしたことを特徴とする請求項1の
担体膨張相廃水処理装置。
2. An anaerobic tank having activated sludge is provided adjacent to the biological reaction tank, and a liquid is circulated between the biological reaction tank and the anaerobic tank. Carrier expansion phase wastewater treatment equipment.
【請求項3】前記生物反応槽に隣接させて活性汚泥を有
する嫌気槽を設け、前記生物反応槽の静止水相から取水
した液を前記嫌気槽に送水すると共に、前記嫌気槽から
の液を前記曝気手段にエアを供給するエア配管に設けら
れたエジェクターに送水することを特徴とする請求項1
の担体膨張相廃水処理装置。
3. An anaerobic tank having activated sludge is provided adjacent to the biological reaction tank, a liquid taken from a stationary aqueous phase of the biological reaction tank is supplied to the anaerobic tank, and a liquid from the anaerobic tank is supplied to the anaerobic tank. The water is supplied to an ejector provided in an air pipe for supplying air to the aeration unit.
Expansion phase wastewater treatment equipment.
【請求項4】前記生物反応槽内の静止水相に、脱窒細菌
を含む微生物が付着した固定担体部材を設けると供に前
記脱窒細菌に炭素源を供給する供給手段を設けたことを
特徴とする請求項1の担体膨張相廃水処理装置。
4. A supply means for supplying a carbon source to said denitrifying bacteria in addition to providing a fixed carrier member to which microorganisms containing denitrifying bacteria are attached in a stationary aqueous phase in said biological reaction tank. The carrier expansion phase wastewater treatment apparatus according to claim 1, wherein
【請求項5】前記上向流の所定の線速度は、前記担体膨
張エリアを通過する時の線速度において0.5〜7cm
/秒になるようにすることを特徴とする請求項1、2、
3又は4の担体膨張相廃水処理装置。
5. The predetermined linear velocity of the upward flow is 0.5 to 7 cm at a linear velocity when passing through the carrier expansion area.
/ Sec.
3 or 4 carrier expansion phase wastewater treatment apparatus.
【請求項6】前記担体は、比重が1.02〜1.2、粒
径が0.5〜5mmであることを特徴とする請求項1、
2、3、4又は5の担体膨張相廃水処理装置。
6. The carrier according to claim 1, wherein the specific gravity is 1.02 to 1.2 and the particle size is 0.5 to 5 mm.
2, 3, 4 or 5 carrier expansion phase wastewater treatment equipment.
【請求項7】前記生物反応槽の深さは7〜15mであ
り、担体膨張相の深さは前記生物反応槽の水深の60%
以下であることを特徴とする請求項1、2、3、4、5
又は6の担体膨張相廃水処理装置。
7. The depth of the biological reaction tank is 7 to 15 m, and the depth of the carrier expansion phase is 60% of the water depth of the biological reaction tank.
Claims 1, 2, 3, 4, 5 characterized in that:
Or the carrier expansion phase wastewater treatment apparatus of 6.
【請求項8】前記連通管の下端部には、前記連通管内の
液を吸込んで周囲に吹き出す水中攪拌器が設けられてい
ることを特徴とする請求項1、2、3、4、5、6又は
7の担体膨張相廃水処理装置。
8. An underwater stirrer for sucking a liquid in the communication pipe and blowing it out around the lower end of the communication pipe is provided. 6. The carrier expansion phase wastewater treatment apparatus according to 6 or 7.
JP32877596A 1996-12-09 1996-12-09 Carrier expansion phase wastewater treatment equipment Expired - Fee Related JP3331887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32877596A JP3331887B2 (en) 1996-12-09 1996-12-09 Carrier expansion phase wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32877596A JP3331887B2 (en) 1996-12-09 1996-12-09 Carrier expansion phase wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JPH10165975A true JPH10165975A (en) 1998-06-23
JP3331887B2 JP3331887B2 (en) 2002-10-07

Family

ID=18214002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32877596A Expired - Fee Related JP3331887B2 (en) 1996-12-09 1996-12-09 Carrier expansion phase wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP3331887B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004216348A (en) * 2003-01-17 2004-08-05 Suehiro System Kk Supply method and apparatus for gel-like particle
JP2007083108A (en) * 2005-09-20 2007-04-05 Sharp Corp Method and apparatus for treating liquid
JP2009039700A (en) * 2007-08-13 2009-02-26 Kurita Water Ind Ltd Method for biological waste water treatment
CN107381808A (en) * 2017-07-12 2017-11-24 北京化工大学 The integrated high-efficiency nitrogen rejection facility and method of a kind of sewage automatic cycle
CN114873726A (en) * 2022-06-20 2022-08-09 咸宁职业技术学院 Multistage anaerobic sludge bed reactor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004216348A (en) * 2003-01-17 2004-08-05 Suehiro System Kk Supply method and apparatus for gel-like particle
JP2007083108A (en) * 2005-09-20 2007-04-05 Sharp Corp Method and apparatus for treating liquid
JP2009039700A (en) * 2007-08-13 2009-02-26 Kurita Water Ind Ltd Method for biological waste water treatment
CN107381808A (en) * 2017-07-12 2017-11-24 北京化工大学 The integrated high-efficiency nitrogen rejection facility and method of a kind of sewage automatic cycle
CN107381808B (en) * 2017-07-12 2020-09-22 北京工业大学 Integrated efficient denitrification device and method for automatic sewage circulation
CN114873726A (en) * 2022-06-20 2022-08-09 咸宁职业技术学院 Multistage anaerobic sludge bed reactor
CN114873726B (en) * 2022-06-20 2023-02-24 咸宁职业技术学院 Multistage anaerobic sludge bed reactor

Also Published As

Publication number Publication date
JP3331887B2 (en) 2002-10-07

Similar Documents

Publication Publication Date Title
US6413427B2 (en) Nitrogen reduction wastewater treatment system
US6592762B2 (en) Process for treating BOD-containing wastewater
AU2002301606B2 (en) Batch Style Wastewater Treatment Apparatus Using Biological Filtering Process and Wastewater Treatment Method Using The Same
CZ311694A3 (en) Process and apparatus for treatment of waste water or sewage containing nitrogenous compounds
US6787035B2 (en) Bioreactor for treating wastewater
KR100273913B1 (en) Apparatus and method of biological wastewater treatment
CA1081378A (en) Continuous fermentation process and apparatus
US20070205152A1 (en) Process for biological purification of waste water with simultaneous decomposition of organic and nitrogen-containing compounds
US6214228B1 (en) Liquid effluent treatment plant and process
JP3331887B2 (en) Carrier expansion phase wastewater treatment equipment
JP3731806B2 (en) Organic wastewater treatment method and apparatus
US5961826A (en) Biological waste water treatment system having a sedimentation tank vertically combined with an aeration tank therein
JP4581211B2 (en) Biological denitrification equipment
JPH0839100A (en) Simultaneous treatment of kitchen waste water and garbage
JPH10296283A (en) Carrier separating method for biological reaction tank using carrier combinedly
KR20020075046A (en) The treating method of high concentration organic waste water
RU2136614C1 (en) Device for biological elimination of organic substances, nitrogen and phosphorus compounds from sewage waters
JP2002143889A (en) Waste water treatment equipment
KR102638000B1 (en) Apparatus for sewage and wastewater treatment capable of degassing and sludge thickening using denitrification nitrogen gas
JP2003033795A (en) Biological denitration equipment and biological denitration method
JPS6218232B2 (en)
JP4524897B2 (en) Biological denitrification equipment
JP2000279993A (en) Waste water treatment and apparatus therefor
KR100636293B1 (en) Nitrogen and phosphorus removal apparatus with zero power consumption inner recycle and method thereby
JP2000279992A (en) Waste water treatment and apparatus therefor

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees