JPH10163283A - Method for aligning lsi image - Google Patents

Method for aligning lsi image

Info

Publication number
JPH10163283A
JPH10163283A JP8316145A JP31614596A JPH10163283A JP H10163283 A JPH10163283 A JP H10163283A JP 8316145 A JP8316145 A JP 8316145A JP 31614596 A JP31614596 A JP 31614596A JP H10163283 A JPH10163283 A JP H10163283A
Authority
JP
Japan
Prior art keywords
wiring
closed region
extracted
lsi
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8316145A
Other languages
Japanese (ja)
Other versions
JP2910706B2 (en
Inventor
Shinichi Wada
慎一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8316145A priority Critical patent/JP2910706B2/en
Publication of JPH10163283A publication Critical patent/JPH10163283A/en
Application granted granted Critical
Publication of JP2910706B2 publication Critical patent/JP2910706B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aligning method by which an LSI observing/measuring device, such as the electron beam tester, can align an observed image required for automatic operation, etc., with a low error probability. SOLUTION: Wiring contours 13 and 23 are extracted against an observed picture 11 showing a two-dimensional shape obtained by controlling the position of an LSI observing/measuring device to a prescribed spot of an LSI and the layout data 21 of the LSI. Then, two-dimensional closed areas 15 and 25 formed of the wiring contours 13 and 23 are extracted, and the closed area extracted from the observed picture is compared with that extracted from the layout data. For combinations which are discriminated to have possibilities of coincidence between both closed areas, the degree of coincidence between whole wirings in both areas is evaluated in a positional relation 37 where the wirings in both areas lie upon another, the combination having the highest degree of coincidence is found, and the positional relation corresponding to the combination is used as the optimum positional relation 39 between obtained observed pictures.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子ビームテスタ
等のLSI観測/測定用装置での、自動操作等のために
必要となるLSIの2次元形状を表わす観測画像の位置
合わせ方法に関し、特にこれを低い誤り可能性で行う位
置合わせ方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for aligning an observation image representing a two-dimensional shape of an LSI required for an automatic operation or the like in an LSI observation / measurement apparatus such as an electron beam tester, and in particular, It relates to an alignment method that does this with low error probability.

【0002】[0002]

【従来の技術】電子ビームテスタ等のLSI観測/測定
用装置において、指定の箇所に撮像位置を制御して観測
画像を取得した場合、正確に指定の位置に合った画像が
得られる保証はなく、一般には多少位置のずれた画像が
得られる。このために指定の箇所に正確に位置合わせを
するためには、観測画像とLSIの指定位置のレイアウ
トデータとを比較して、どのような位置関係にあるかを
把握する必要がある。一般にLSIの2次元形状を観察
した画像は、ノイズやゆがみ、ぼけ等の画質劣化が加わ
ったものであるため、観測画像とレイアウトデータとを
全体的、総合的に比較して最も一致度の高くなるような
相互の位置関係を把握する手法が必要とされる。
2. Description of the Related Art In an LSI observation / measurement device such as an electron beam tester, when an observation image is obtained by controlling an imaging position at a specified position, there is no guarantee that an image exactly matching the specified position can be obtained. Generally, an image having a slightly shifted position is obtained. For this reason, in order to accurately align the position with the designated portion, it is necessary to compare the observed image with the layout data of the designated position of the LSI to grasp the positional relationship. In general, an image obtained by observing a two-dimensional shape of an LSI has image quality deterioration such as noise, distortion, and blur. Therefore, the observed image and the layout data are compared overall and comprehensively to obtain the highest matching degree. There is a need for a method for grasping such mutual positional relationships.

【0003】この目的に合った初歩的な方法としては、
2つの画像の関係位置を少しずつずらしながら全体の一
致度を評価していき、一致度が最大となった場合のずれ
の量を必要な位置修正量として求めるという方法もある
が、2次元空間を少しずつずらしていくために、位置ず
れの起こり得る範囲が大きい場合には非常に大きな処理
時間がかかってしまう。
[0003] As a rudimentary method for this purpose,
There is a method in which the overall degree of coincidence is evaluated while shifting the relative position of the two images little by little, and the amount of deviation when the degree of coincidence is maximized is determined as a necessary position correction amount. Is shifted little by little, so that a very large processing time is required when the range in which the positional shift can occur is large.

【0004】このような位置合わせに関連し、LSIの
電子ビームテスタ画像とLSIマスク図の位置合わせを
高速に行うための手法が文献(大窪他、“EBテスタに
おけるLSI配線へのEB自動位置決め方式の検討”,
学術振興会132委員会第117回研究会資料,pp.
153−158)に提案されている。その方法は、電子
ビームテスタ画像における配線等の輪郭線を方向別に調
ベ、X軸,Y軸に対しそれと垂直方向の輪郭線の分布量
を投影し、各軸毎に2つの画像に対する投影量を比較す
ることにより位置ずれ量等を算出する方法である。この
方法は、配線等の輪郭線の分布をX,Yの各軸に方向別
に分解して1次元で位置ずれの算出を行うため、2次元
空間内で少しずつ位置をずらしながら一致度を調ベる方
法よりも高速に行うことができる。
In connection with such alignment, a method for aligning an electron beam tester image of an LSI with an LSI mask diagram at high speed is disclosed in a literature (Okubo et al., "EB Automatic Positioning Method for LSI Wiring in EB Tester". Consideration ”,
Materials for the 117th meeting of the JSPS 132 Committee, pp.
153-158). According to the method, contours of wiring and the like in an electron beam tester image are adjusted for each direction, and the distribution of contours in the direction perpendicular to the X-axis and the Y-axis is projected, and the projection amount for two images for each axis is projected. Are compared to calculate a displacement amount or the like. According to this method, the distribution of contour lines such as wiring is decomposed in each of the X and Y axes for each direction to calculate a one-dimensional displacement, and thus the degree of coincidence is adjusted while shifting the position little by little in a two-dimensional space. It can be done faster than the method.

【0005】[0005]

【発明が解決しようとする課題】前記の方法では、観測
画像が指定箇所から大きくずれた場合には誤った位置ず
れ量を導くことがある。前記の方法では配線等の輪郭を
方向別にX軸、Y軸に投影した量を利用している。しか
し、集積回路素子の種類あるいはその中での観測箇所に
よっては、X軸あるいはY軸方向の配線が異なっている
にもかかわらず座標ではほぼ似通った分布量を示す場合
がある。観測画像が配線1〜2本程度の場合には問題な
いが、数本分以上ずれた場合には誤った位置ずれ量を算
出してしまう可能性があり、その一例を示す。
In the above method, when the observed image is largely shifted from the designated position, an erroneous positional shift may be introduced. In the above-described method, the amounts of the contours of the wiring and the like projected on the X axis and the Y axis for each direction are used. However, depending on the type of the integrated circuit element or the observation location therein, the distribution amount may be substantially similar in coordinates even though the wiring in the X-axis or Y-axis direction is different. Although there is no problem when the number of observed images is about one or two wirings, there is a possibility that an erroneous positional shift amount may be calculated when the observed image is shifted by several wires or more, an example of which is shown.

【0006】図8は従来例の観測画像と輪郭線の分布を
示す模式図であり、(a)はLSIの配線画像の模式
図、(b)は(a)の配線のY軸方向輪郭線の分布図で
ある。
FIGS. 8A and 8B are schematic diagrams showing a distribution of observed images and contour lines in a conventional example, wherein FIG. 8A is a schematic diagram of a wiring image of an LSI, and FIG. FIG.

【0007】図8では、上述の従来例の方法では、誤っ
た位置ずれ量を導いてしまう対象画像の例が示されてい
る。実際にLSIを観察して得られる画像では画質劣化
があるがこの例ではそれは表現されず模式的に表現され
ている。図8(a)で示されているようにこの観測画像
では、上下方向に向う配線が中央より右側および左側に
それぞれ2本存在しており、これに対応して右側および
左側に各4本のY軸方向の輪郭線が存在する。図8
(b)には、図8(a)の対象画像内のY軸方向の輪郭
線のX軸への投影量が示されているが、ここで図8
(a)の右側および左側のY軸方向の各4本の輪郭線に
対応する分布がとちらも似た分布になっており、図8
(b)に基づいた判断ではX軸方向の位置ずれを誤まっ
て把握する可能性がある。
FIG. 8 shows an example of a target image which leads to an erroneous displacement amount in the above-described conventional method. Although an image obtained by actually observing an LSI has image quality degradation, it is not represented in this example but is represented schematically. As shown in FIG. 8 (a), in this observation image, there are two vertical wirings on the right and left sides from the center, respectively, and correspondingly, four wirings on the right and left sides respectively. There is a contour line in the Y-axis direction. FIG.
FIG. 8B shows the amount of projection of the contour in the Y-axis direction on the X-axis in the target image in FIG.
The distribution corresponding to each of the four contour lines in the Y-axis direction on the right and left sides of (a) is similar to that shown in FIG.
In the determination based on (b), there is a possibility that the displacement in the X-axis direction is erroneously grasped.

【0008】本発明の目的は、電子ビームテスタ等のL
SI観測/測定用装置での、自動操作等のために必要な
観測画像の位置合わせが、低い誤り可能性で行うことの
できる位置合わせ方法を提供することにある。
An object of the present invention is to provide an L-beam tester such as an electron beam tester.
It is an object of the present invention to provide a positioning method in which a positioning of an observation image required for an automatic operation or the like in an SI observation / measurement apparatus can be performed with low possibility of error.

【0009】[0009]

【課題を解決するための手段】本発明のLSI画像の位
置合わせ方法は、LSI上の所望の観測箇所に撮像位置
を移動させてLSIの2次元形状を表わす観測画像を得
て、得られた観測画像およびLSIのレイアウトデータ
から、対応するそれぞれの配線輪郭を抽出し、抽出され
た配線輪郭によって形成される2次元の閉領域を抽出
し、観測画像から抽出された閉領域およびレイアウトデ
ータから抽出された閉領域の間で形状の一致可能性を判
定し、一致可能性があると判定された閉領域の組み合わ
せに対しては、両者が重なり合う位置関係で、観測画像
の配線全体とレイアウトデータの配線全体とを重ね合わ
せた場合の一致度を評価し、配線全体の一致度が最も高
くなる位置関係を得る。
According to the method of aligning an LSI image of the present invention, an imaging image is moved to a desired observation point on an LSI to obtain an observation image representing a two-dimensional shape of the LSI. A corresponding wiring outline is extracted from the observed image and the layout data of the LSI, a two-dimensional closed region formed by the extracted wiring outline is extracted, and an extracted from the closed region and the layout data extracted from the observed image. The possibility of shape matching between the determined closed areas is determined, and for the combination of closed areas determined to be likely to match, the entire wiring of the observed image and the layout data The degree of coincidence when the entire wiring is superimposed is evaluated, and a positional relationship that maximizes the degree of coincidence of the entire wiring is obtained.

【0010】観測画像からの配線輪郭の抽出の過程で、
2次元の配線輪郭の形状を所定の方法に従い線分の組み
合せにより近似させ、該線分を配線輪郭とみなして抽出
を行なってもよく、閉領域の抽出において、所定の大き
さ以上の閉領域のみを抽出し、抽出された閉領域を対象
に、形状の一致可能性の判定を行ってもよく、所定の大
きさ以上の閉領域のみを抽出する方法として、配線輪郭
の中で少なくとも一方の側において所定の長さ以上にわ
たって配線輪郭の交差や配線輪郭の折れ曲げのない配線
輪郭を求め、該当する配線輪郭を含む閉領域を抽出して
もよい。
In the process of extracting the wiring outline from the observation image,
The shape of the two-dimensional wiring outline may be approximated by a combination of line segments according to a predetermined method, and the line segment may be extracted as the wiring outline, and the extraction may be performed. Only the extracted closed region may be extracted, and the possibility of shape matching may be determined for the extracted closed region. As a method of extracting only the closed region having a predetermined size or more, at least one of the wiring contours is extracted. On the side, a wiring contour having no intersection of the wiring contour or bent of the wiring contour over a predetermined length or more may be obtained, and a closed region including the corresponding wiring contour may be extracted.

【0011】また、観測画像の閉領域とレイアウトデー
タの閉領域との間の形状の一致可能性の判定において、
それぞれの閉領域の縦寸法、横寸法および頂点の数のう
ち、少なくともいずれか一つを含む特徴量の対比によっ
て両者の形状の一致可能性を判定してもよく、それぞれ
の閉領域の縦寸法、横寸法および頂点の数のうち、少な
くともいずれか一つを含む特徴量の対比が所定の設定値
を満たすかを判定し、これを満たす組み合わせのみに対
して詳細に両者の形状の一致可能性を判定してもよく、
観測画像での位置ずれとして起こり得る範囲内に、それ
ぞれの位置の相違が含まれる閉領域の組み合わせについ
てのみ、閉領域の形状の一致可能性の判定やそれ以後の
操作を行ってもよい。
In the determination of the possibility of matching of the shape between the closed region of the observation image and the closed region of the layout data,
The possibility of matching the shapes of the closed regions may be determined by comparing feature values including at least one of the vertical size, the horizontal size, and the number of vertices of each closed region. , It is determined whether the comparison of the feature quantity including at least one of the horizontal dimension and the number of vertices satisfies a predetermined set value, and only the combinations satisfying the criterion can be matched in detail. May be determined,
The determination of the possibility of matching the shapes of the closed regions and the subsequent operations may be performed only on the combinations of the closed regions including the differences in the respective positions within the range that can occur as the positional deviation in the observation image.

【0012】さらに、配線全体の一致度が最も高くなる
位置関係を得る方法として、閉領域の形状の一致可能性
が判定された複数の組み合わせに対し、観測画像の閉領
域とレイアウトデータの閉領域とが重なり合う位置関係
として、各々の組み合わせから得られる複数の位置関係
の中から共通するものを優先して、各位置関係の下での
配線全体の位置関係の一致度を評価し、これを基に最も
一致度の高い位置関係を得てもよい。
Further, as a method of obtaining a positional relationship in which the degree of coincidence of the entire wiring is the highest, a plurality of combinations in which the possibility of coincidence of the shape of the closed region is determined are compared with the closed region of the observed image and the closed region of the layout data. As a positional relationship with overlapping, priority is given to a common one among a plurality of positional relationships obtained from each combination, and the degree of coincidence of the overall wiring positional relationship under each positional relationship is evaluated. May be obtained with the highest degree of matching.

【0013】[0013]

【発明の実施の形態】本発明の実施の形態について詳細
に説明する。図1は、本発明のLSIの位置合わせ方法
の実施の形態を説明するための流れ図であり、図中符号
11は観測画像、12は観測画像の配線輪郭の抽出過
程、13は抽出された配線輪郭、14は閉領域の抽出過
程、15は抽出された閉領域、21はレイアウトデー
タ、22はレイアウトデータの配線輪郭の抽出過程、2
3は抽出された配線輪郭、24は閉領域の抽出過程、2
5は抽出された閉領域、36は閉領域の形状の一致可能
性判定過程、37は判定された位置関係、38は配線全
体の一致度評価過程、39は評価された最適な位置関係
を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail. FIG. 1 is a flowchart for explaining an embodiment of an LSI positioning method according to the present invention. In the figure, reference numeral 11 denotes an observed image, 12 denotes a process of extracting a wiring outline of the observed image, and 13 denotes an extracted wiring. Contour, 14 is a closed region extraction process, 15 is an extracted closed region, 21 is layout data, 22 is a wiring data extraction process of layout data, 2
3 is an extracted wiring outline, 24 is a process of extracting a closed area, 2
5 is an extracted closed region, 36 is a process of determining the possibility of matching the shape of the closed region, 37 is a determined positional relationship, 38 is a process of evaluating the degree of matching of the entire wiring, and 39 is an optimal positional relationship evaluated. .

【0014】先ず、得られた観測画像11から配線輪郭
の抽出12を行なう。観測画像11は、電子ビームテス
タ等の解析装置によって得られるLSIの2次元形状の
画像であり、図2は本発明の実施の形態におけるLSI
の配線の観測画像の一例の電子顕微鏡写真(SEM写
真)である。画像の比較の対象となる配線輪郭の抽出
は、対象範囲内の各点の輝度の値のデータの解析に基づ
いて行なわれる。図3は本発明の画像データの解析方法
を示す模式図であり、(a)は画像の区分された各部分
の輝度を0(黒)から255(白)の範囲で表わした一
部の模式的な分布図であり、(b)は(a)で区分され
た各部分の輝度を所定の基準で周辺と比較した輝度解析
値の分布図である。
First, a wiring contour extraction 12 is performed from the obtained observation image 11. The observation image 11 is an image of a two-dimensional shape of an LSI obtained by an analysis device such as an electron beam tester, and FIG. 2 shows an LSI image according to an embodiment of the present invention.
5 is an electron micrograph (SEM photograph) of an example of an observed image of the wiring of FIG. The extraction of the wiring outline to be compared with the image is performed based on the analysis of the data of the luminance value of each point in the target range. 3A and 3B are schematic diagrams showing a method for analyzing image data according to the present invention. FIG. 3A is a schematic diagram showing a part of the brightness of each section of an image expressed in a range from 0 (black) to 255 (white). FIG. 4B is a distribution diagram of a luminance analysis value obtained by comparing the luminance of each part divided in FIG.

【0015】配線輪郭の抽出12では、観測画像11か
らの配線輪郭の抽出を行う。電子ビームテスタの観測画
像の場合、図2に見られるように配線輪郭では輝度が近
傍の他の部分より相対的に高い。図3(a)に示すよう
に観測画像を所定の大きさで区分し各区分の輝度を計測
する。LSIではほとんどの配線が縦方向または横方向
のものであることも踏まえて、X軸方向およびY軸方向
別に輝度が他の前後の座標値の点より高く、かつその中
で極大の輝度を持つ点を抽出していくことにより、それ
ぞれ縦および横方向の配線に対する配線輪郭を表わす点
を抽出できる。輝度が他より相対的に高いか否か等につ
いては適宜閾値を設定して操作していけばよい。
In the wiring contour extraction 12, a wiring contour is extracted from the observation image 11. In the case of the observation image of the electron beam tester, as shown in FIG. 2, the luminance is relatively higher at the wiring contour than at other parts in the vicinity. As shown in FIG. 3A, the observation image is divided into predetermined sizes, and the luminance of each division is measured. Considering that most wiring in the LSI is vertical or horizontal, the luminance in the X-axis direction and the Y-axis direction is higher than the other coordinate values before and after, and has the maximum luminance among them. By extracting points, it is possible to extract points representing the wiring contours for the wiring in the vertical and horizontal directions, respectively. Whether or not the luminance is relatively higher than the others may be set and operated as appropriate.

【0016】例えば、図3(a)のような観測画像(一
部)から抽出された輝度分布に対して、X軸方向に配線
輪郭を抽出していく場合について説明する。輝度の値が
他の前後の区画より30以上高く、かつその中で最大の
輝度を持つ区画をX軸方向に抽出し、抽出された区画を
1、それ以外の区画を0と表示すると、図3(b)のよ
うに抽出された区画が1として表示される。
For example, a description will be given of a case where a wiring contour is extracted in the X-axis direction with respect to a luminance distribution extracted from an observation image (part) as shown in FIG. When the value of the luminance is higher than the other preceding and succeeding sections by 30 or more and the section having the maximum luminance is extracted in the X-axis direction, and the extracted section is displayed as 1 and the other sections are displayed as 0, The extracted section as shown in FIG. 3B is displayed as 1.

【0017】なお、配線輪郭のデータは図3(b)のよ
うに2次元のビットマップにより表わすことができる
が、それ以後の配線輪郭に関連する操作をより高速化す
るため、各配線輪郭を所定の方法で1本ないし複数の線
分により近似して表わし、それ以後の操作でではこの線
分を輪郭とみなして用いるとよい。即ち、線分は始点と
終点の座標のみで表わされるため、これを用いることに
よりデータ量を少なくし、種々の操作を高速に行うこと
ができる。
The data of the wiring contour can be represented by a two-dimensional bit map as shown in FIG. 3B. It may be approximated by one or more line segments by a predetermined method, and in subsequent operations, the line segments may be regarded as contours and used. That is, since the line segment is represented only by the coordinates of the start point and the end point, the use of the line segment makes it possible to reduce the amount of data and perform various operations at high speed.

【0018】また、観測画像ではノイズや配線輪郭の途
切れが生じるため、一定の長さ以下の配線輪郭を除去し
たり、一定の長さ以下の配線輪郭の途切れを繋ぐ等の操
作も有効である。このようにして図2の画像に対して配
線輪郭を抽出し、さらに線分により近似したものを2次
元の像として表わした例が図4であり、図4は本発明の
図2の電子顕微鏡観測画像から配線輪郭を抽出して加工
しディスプレー上に表示した配線輪郭の中間調画像であ
り、図では配線輪郭部分が白く、他は黒く表わされてい
る。
In addition, since noise and a break in the wiring contour occur in the observed image, it is effective to remove a wiring contour having a length equal to or less than a certain length or to connect a break in the wiring contour having a certain length or less. . FIG. 4 shows an example in which the wiring outline is extracted from the image of FIG. 2 and further approximated by a line segment as a two-dimensional image. FIG. 4 shows the electron microscope of FIG. This is a halftone image of the wiring contour displayed on the display after extracting and processing the wiring contour from the observed image. In the figure, the wiring contour portion is white and the others are black.

【0019】なお、図4のように縦方向および横方向の
配線輪郭の向きが直交線より多少傾いている場合には、
それらの平均的な傾きを基にして、その向きがより正確
に縦、横方向になるように補正することができる。図5
は図4の配線輪郭の縦方向と横方向とが直交するように
修正をおこなった後のディスプレー上に表示した配線輪
郭の中間調画像である。
When the directions of the wiring contours in the vertical and horizontal directions are slightly inclined from the orthogonal lines as shown in FIG.
Based on those average inclinations, it is possible to correct the orientation so that the orientation is more accurate in the vertical and horizontal directions. FIG.
Is a halftone image of the wiring outline displayed on the display after correction is made so that the vertical and horizontal directions of the wiring outline in FIG. 4 are orthogonal to each other.

【0020】一方、比較の対象となるレイアウトデータ
21からの配線輪郭の抽出22も行なわれる。レイアウ
トデータ21はLSIに対するレイアウト設計のデータ
であり、データ内に各配線の形状が表わされている。レ
イアウトデータに対してはLSIの観測画像に現れる上
の層に限定してデータから配線の輪郭を抽出すればよ
く、また、LSIの観測画像を取得する際に指定した位
置と位置ずれの起こる可能性のある最大の範囲を基にし
て、重なり合う可能性のある範囲を求め、その範囲内の
配線輪郭を抽出すると良い。
On the other hand, extraction 22 of the wiring outline from the layout data 21 to be compared is also performed. The layout data 21 is data of a layout design for the LSI, and the data represents the shape of each wiring. For layout data, it is sufficient to extract the outline of the wiring from the data limited to the upper layer appearing in the observed image of the LSI, and there is a possibility that the position may deviate from the position specified when acquiring the observed image of the LSI. Based on the largest possible range, it is preferable to determine a range where there is a possibility of overlapping, and to extract a wiring contour within the range.

【0021】次の閉領域の抽出14、24では、配線輪
郭13、23により囲まれた区間を抽出する。本来観測
画像11またはレイアウトデータ21には非常に多くの
閉領域が含まれるが、抽出する数を抑えるためにある大
きさ以上の閉領域のみを抽出することが望ましい。縦、
横方向の寸法の最小値、平均値、積等によりある大きさ
以上のものに限定して抽出するとよい。
In the next extraction of closed regions 14 and 24, sections surrounded by the wiring contours 13 and 23 are extracted. Originally, the observation image 11 or the layout data 21 contains a very large number of closed regions, but it is desirable to extract only the closed regions having a certain size or more in order to reduce the number of extracted regions. Vertical,
It is preferable to extract only those having a certain size or more based on the minimum value, average value, product, and the like of the horizontal dimension.

【0022】さらに、そのようなある大きさ以上の閉領
域のみを抽出するための方法として、配線輪郭の中でど
ちらかの側においてある長さ以上交差や折り曲げのない
部分を探し、該当する部分を含む閉領域を抽出すると良
い。概ねLSIの中で大きな閉領域は、それを構成する
配線輪郭に長い直線区間を含むことが多い。そのような
部分はどちらかの側においてある長さ以上交差や折れ曲
げのない配線輪郭の部分として検出できる。そして検出
されたそのような配線輪郭の部分を起点として配線輪郭
を辿ることにより抽出される閉領域のみを得ることによ
り、ある大きさ以上の閉領域が得られる。図5の配線輪
郭に対してある大きさ以上の閉領域を抽出した例を図6
に示す。図6は図5の配線輪郭の縦方向と横方向とが直
交するように修正をおこなった後の配線輪郭から所定の
方法で抽出した閉領域をディスプレー上に表示した閉領
域を構成する配線輪郭の中間調画像である。
Further, as a method for extracting only such a closed region having a certain size or more, a portion of the wiring contour which does not cross or bend over a certain length on either side is searched. Is preferably extracted. In general, a large closed area in an LSI often includes a long straight section in a wiring contour constituting the closed area. Such a portion can be detected as a portion of the wiring contour having no intersection or bend over a certain length on either side. Then, by obtaining only a closed region extracted by tracing the wiring contour with the detected portion of the wiring contour as a starting point, a closed region having a certain size or more can be obtained. FIG. 6 shows an example of extracting a closed area having a size equal to or larger than the wiring contour of FIG.
Shown in FIG. 6 is a diagram showing a closed area which is displayed on a display and shows a closed area extracted by a predetermined method from the wiring outline after correcting the wiring outline of FIG. 5 so that the vertical direction and the horizontal direction are orthogonal to each other. Are halftone images.

【0023】次の閉領域の形状の一致可能性判定36で
は、観測画像から抽出された閉領域15とレイアウトデ
ータから抽出された閉領域16の間で形状が一致する可
能性があるか否かを判定する。基本的には2つの閉領域
の間でその位置を合わせ、両者を重ね合わせた場合の各
配線輪郭の重なり具合を評価し、評価値により判定すれ
ばよい。
In the next possibility of matching the shape of the closed region 36, it is determined whether there is a possibility that the closed region 15 extracted from the observed image and the closed region 16 extracted from the layout data have the same shape. Is determined. Basically, the positions may be adjusted between the two closed regions, the degree of overlap of the wiring contours when the two regions are overlapped is evaluated, and the determination may be made based on the evaluation value.

【0024】位置の合わせ方としては、両者の最左端と
最右端の一方または両方および、最上端と最下端の一方
または両方の座標の相違を基に位置の相違を算出し、補
正すればよい。両者の最左端と最右端の一方、最上端と
最下端の一方の座標の相違を利用すれば両者の座標のず
れを補正でき、両者の最左端と最右端の両方および、最
上端と最下端の両方の座標の相違を利用すれば、座標の
ずれとともに、両者の形状が一致するとした場合のX座
標、Y座標の倍率の相違も補正できる。
The position can be adjusted by calculating the position difference based on the difference between the coordinates of one or both of the leftmost end and the rightmost end of the two, and the coordinates of one or both of the uppermost end and the lowermost end. . By using the difference between the coordinates of one of the leftmost and rightmost ends of the two, and the coordinates of one of the uppermost and lowermost ends, the deviation of the coordinates of both can be corrected, both the leftmost and rightmost ends of the two, and the uppermost and lowermost ends By using the difference between the two coordinates, it is possible to correct not only the difference in the coordinates but also the difference in the magnification of the X coordinate and the Y coordinate when the shapes of the two coincide with each other.

【0025】図7は観測画像とレイアウトデータから抽
出された閉領域の模式図であり、(a)は観測画像から
抽出された閉領域の模式図、(b)はレイアウトデータ
から抽出された(a)に対応する閉領域の模式図、
(c)はレイアウトデータから抽出された類似の閉領域
の模式図である。
FIGS. 7A and 7B are schematic diagrams of a closed region extracted from the observed image and the layout data. FIG. 7A is a schematic diagram of the closed region extracted from the observed image, and FIG. 7B is a schematic diagram of the closed region extracted from the layout data. schematic diagram of a closed region corresponding to a),
(C) is a schematic diagram of a similar closed region extracted from layout data.

【0026】例えば図7(a)のような観測画像からの
閉領域と、図7(b)のようなレイアウトデータからの
閉領域に対しての形状の一致可能性の判定36と相互の
位置関係37の把握を行う場合には、観測画像からの閉
領域の最左端のX座標値57とレイアウトデータからの
閉領域の最左端のX座標値−400、および観測画像か
らの閉領域の最右端のX座標値67とレイアウトデータ
からの閉領域の最左端のX座標値−300が一致するも
のとして扱えば、各々の(最右端のX座標値)―(最左
端のX座標値)の値が、10および100となることか
ら、その比からX座標の倍率の相違は0.1倍であるこ
とが判り、両者が一致する場合の位置関係は次のように
なることが判る。
For example, determination 36 of the possibility of shape matching with a closed region from an observation image as shown in FIG. 7A and a closed region from layout data as shown in FIG. When the relationship 37 is grasped, the leftmost X coordinate value 57 of the closed region from the observed image, the X coordinate value -400 of the leftmost position of the closed region from the layout data, and the leftmost X coordinate value of the closed region from the observed image are obtained. If the rightmost X-coordinate value 67 and the leftmost X-coordinate value -300 of the closed area from the layout data are treated as coincident, each (rightmost X-coordinate value)-(leftmost X-coordinate value) Since the values are 10 and 100, it can be seen from the ratio that the difference in the magnification of the X coordinate is 0.1, and the positional relationship when the two coincide with each other is as follows.

【0027】(観測画像側のX座標)=0.1×(レイ
アウト側のX座標)+97 同様にY座標に関しては次のようになることが判る。
(X coordinate on observation image side) = 0.1 × (X coordinate on layout side) +97 Similarly, it can be seen that the Y coordinate is as follows.

【0028】(観測画像側のY座標)=0.1×(レイ
アウト側のY座標)+89 このようにして閉領域同士の位置を合わせることができ
る。
(Y coordinate on observation image side) = 0.1 × (Y coordinate on layout side) +89 In this manner, the positions of the closed regions can be matched.

【0029】閉領域を構成する配線輪郭の重なり具合の
評価の方法としては次のいずれかもしくは組み合わせに
よって総合することにより評価値を導くことができる。 (a)観測画像からの配線輪郭に対し、対応する位置付
近にレイアウトデータからの配線輪郭が存在するか否か
で正か負の評価を与える。 (b)レイアウトデータからの配線輪郭が存在するのに
対して観測画像からの配線輪郭が対応する位置付近に存
在するか否かに応じて正か負の評価を与える。
As a method of evaluating the degree of overlap of the wiring outlines constituting the closed region, an evaluation value can be derived by integrating the results by any one or a combination of the following. (A) A positive or negative evaluation is given to a wiring contour from an observation image depending on whether or not a wiring contour from layout data exists near a corresponding position. (B) Positive or negative evaluation is given depending on whether or not the wiring outline from the observed image exists near the corresponding position while the wiring outline from the layout data exists.

【0030】これらにより得られる評価値を、設定した
閾値により判定すれば、一致可能性を判定できる。
By judging the evaluation values obtained by these using a set threshold value, it is possible to judge the possibility of matching.

【0031】例えば、図7(a)と図7(b)の閉領域
に対しては、観測画像からの配線輪郭に対し、対応する
位置付近にレイアウトデータからの配線輪郭が存在し、
かつ、観測画像からの配線輪郭に対してすべて対応する
位置付近にレイアウトデータからの配線輪郭が存在して
いるため、高い評価値を導くことができる。また、図7
(a)と図7(c)の閉領域に対しては、右下の部分
で、観測画像からの配線輪郭とレイアウトデータからの
配線輪郭の位置が異なるため、互いに対応する位置には
配線が存在せず、このために負の評価が与えられ、前者
の場合よりも低い評価値を導くことができる。
For example, for the closed regions in FIGS. 7A and 7B, a wiring outline from layout data exists near a corresponding position with respect to a wiring outline from an observed image.
Further, since the wiring outline from the layout data exists near the position corresponding to all the wiring outlines from the observation image, a high evaluation value can be derived. FIG.
In the closed area of FIG. 7A and FIG. 7C, the position of the wiring outline from the observation image and the position of the wiring outline from the layout data are different in the lower right part. Absent, this gives a negative rating and can lead to a lower rating than in the former case.

【0032】このような閉領域を構成する配線輪郭の重
なり具合を評価し、判定するためには多少の時間を要す
る。このため、閉領域の縦横の寸法、または頂点の数な
どの特徴量により閉領域の形状が一致する可能性を持つ
か否かを判定してもよい。これにより、一致可能性の判
定を短い時間で行える。また、最初に閉領域の縦横の寸
法、または頂点の数などの特徴量により閉領域の形状が
一致する可能性を持つか否かを判定し、一致可能性が判
定された閉領域の組み合わせに対してのみ、閉領域を構
成する配線輪郭の重なり具合を評価し、判定する方法を
とってもよい。
It takes some time to evaluate and determine the degree of overlap of the wiring contours constituting such a closed region. For this reason, it may be determined whether or not there is a possibility that the shape of the closed region matches according to the vertical and horizontal dimensions of the closed region or the feature amount such as the number of vertices. As a result, the possibility of matching can be determined in a short time. In addition, first, it is determined whether or not the shape of the closed region has a possibility of matching based on the vertical and horizontal dimensions of the closed region, or the feature amount such as the number of vertices, and a combination of the closed regions for which the matching possibility is determined is determined. A method may be adopted in which the degree of overlap between the wiring contours constituting the closed region is evaluated and determined only for this.

【0033】なお、形状の一致可能性を評価する閉領域
の組み合わせとして、観測画像での位置ずれとして起こ
り得る範囲に基づいて、両者の位置の相違がその範囲内
に含まれるような閉領域の組み合わせに限定し、そのよ
うな組み合わせについてのみ閉領域同士の形状の一致可
能性の比較を行うとよい。これにより一致可能性を評価
する閉領域の組の数を減らすことができる。
As a combination of the closed regions for evaluating the possibility of matching of the shapes, based on a range that can occur as a positional shift in the observed image, a closed region whose difference in position is included in the range is included. It is preferable to limit the number of combinations to the combinations and compare the possibility of matching of the shapes of the closed regions only for such combinations. This can reduce the number of sets of closed regions for which the possibility of matching is evaluated.

【0034】次の配線全体の一致度評価38では、一致
可能性を持つと判定された閉領域の組み合わせに対し
て、それらが重なり合うような位置関係の下で、配線全
体を重ね合わせ、一致度を評価する。
In the evaluation 38 of the degree of coincidence of the entire wiring, the combination of the closed areas determined to have the possibility of coincidence is superimposed on the entire wiring under a positional relationship such that they overlap with each other. To evaluate.

【0035】位置関係を合わせる方法としては、閉領域
の形状の一致可能性判定のための基本的な方法として説
明した位置の合わせ方と同じ方法、すなわち、両者の最
左端と最右端の一方または両方および、最上端と最下端
の一方または両方の座標の相違を基に位置の相違を算出
し、補正する方法でよく、同じ位置関係で配線全体を重
ね合わせればよい。さらに、閉領域の配線輪郭の重なり
具合を評価する際に微妙なずれを調ベておき、これを基
にさらに位置関係を補正した上で配線全体を重ね合わせ
てもよい。
The method of matching the positional relationship is the same as the method of matching the positions described as the basic method for determining the possibility of matching the shapes of the closed areas, that is, one of the leftmost and rightmost ends of the two. A method of calculating and correcting a difference in position based on a difference in coordinates of one or both of the uppermost end and the lowermost end may be used, and the entire wiring may be overlapped with the same positional relationship. Further, when evaluating the degree of overlap of the wiring contours in the closed area, a slight shift may be measured, and the positional relationship may be further corrected based on this, and then the entire wiring may be overlapped.

【0036】配線全体の重なり具合の評価としては、閉
領域の形状一致可能性判定のための各配線輪郭の重なり
具合の評価と同様に、次のいずれかもしくは組み合わせ
によって総合することにより評価値を導くことができ
る。 (a)観測画像からの配線輪郭に対し、対応する位置付
近にレイアウトデータからの配線輪郭が存在するか否か
で正か負の評価を与える。 (b)レイアウトデータからの配線輪郭が存在するのに
対して観測画像からの配線輪郭が対応する位置付近に存
在するか否かに応じて応じて正か負の評価を与える。
As for the evaluation of the degree of overlap of the entire wiring, as in the evaluation of the degree of overlap of the wiring outlines for determining the possibility of the shape match of the closed area, the evaluation value is obtained by integrating the following one or a combination of the evaluation values. I can guide you. (A) A positive or negative evaluation is given to a wiring contour from an observation image depending on whether or not a wiring contour from layout data exists near a corresponding position. (B) Positive or negative evaluation is given according to whether or not the wiring outline from the observed image exists near the corresponding position while the wiring outline from the layout data exists.

【0037】複数の閉領域の組み合わせに対してこのよ
うな一致度評価を行い、最も良い評価値を導くような組
み合わせに対する位置関係を得れば、これによって観測
画像とレイアウトデータとの最適の位置関係39が得ら
れたことになる。
Such a coincidence evaluation is performed for a combination of a plurality of closed regions, and if a positional relationship with respect to the combination that leads to the best evaluation value is obtained, an optimal position between the observed image and the layout data is obtained. The relationship 39 is obtained.

【0038】なお、2次元の閉領域の形状の一致可能性
が判定された組み合わせの1つ1つに対して、両者が重
なり合う位置関係の下で配線全体の一致度を評価してい
く必要はない。既に試みた位置関係と同じまたはそれに
近い位置関係については、配線全体の一致度の評価を省
略してよい。
It is necessary to evaluate the degree of coincidence of the entire wiring for each of the combinations for which the possibility of coincidence of the shapes of the two-dimensional closed regions has been determined under the positional relationship where the two overlap. Absent. For a positional relationship that is the same as or close to the positional relationship that has already been tried, the evaluation of the matching degree of the entire wiring may be omitted.

【0039】さらに、一致可能性が判定された複数の組
み合わせに対応する複数の位置関係のうち、最も共通す
る位置関係から優先してある数だけ各位置関係の下で配
線全体の一致度を許価し、これを基に最も一致度の高い
位置関係を得てもよい。このような方法をとることによ
り、さらに配線全体の一致度を評価する回数を減らし、
かつ誤り無く位置関係を導くことができる。
Further, of the plurality of positional relationships corresponding to the plurality of combinations determined to have the possibility of coincidence, the degree of coincidence of the entire wiring is allowed under each positional relationship by a priority number from the most common positional relationship. And the positional relationship with the highest degree of matching may be obtained based on this. By adopting such a method, the number of times of evaluating the matching degree of the entire wiring is further reduced,
The positional relationship can be derived without error.

【0040】以上のような方法により、低い誤り可能性
で観測画像とレイアウトデータの位置関係を導き出すこ
とができる。
With the above-described method, the positional relationship between the observed image and the layout data can be derived with a low possibility of error.

【0041】[0041]

【発明の効果】本発明の方法では、観測画像とレイアウ
トデータとから抽出されたそれぞれの配線輪郭から、さ
らに閉領域を抽出して、閉領域の形状の一致の可能性か
ら最適な位置関係を確定するので、観測画像が配線数本
分以上に位置ずれした場合でも、従来方法より低い誤り
の可能性で位置合わせを行うことができるという効果が
ある。
According to the method of the present invention, a closed region is further extracted from each of the wiring contours extracted from the observation image and the layout data, and an optimum positional relationship is determined from the possibility of matching the shape of the closed region. Since it is determined, even if the position of the observed image is shifted by more than several wires, there is an effect that the position can be adjusted with a lower possibility of error than the conventional method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のLSIの位置合わせ方法の実施の形態
を説明するための流れ図である。
FIG. 1 is a flowchart for explaining an embodiment of an LSI alignment method according to the present invention.

【図2】本発明の実施の形態におけるLSIの配線の観
測画像の一例の電子顕微鏡写真(SEM写真)である。
FIG. 2 is an electron microscope photograph (SEM photograph) of an example of an observed image of an LSI wiring according to an embodiment of the present invention.

【図3】本発明の画像データの解析方法を示す模式図で
ある。(a)は画像の区分された各部分の輝度を0
(黒)から255(白)の範囲で表わした一部の模式的
な分布図である。(b)は(a)で区分された各部分の
輝度を所定の基準で周辺と比較した輝度解析値の分布図
である。
FIG. 3 is a schematic diagram illustrating a method for analyzing image data according to the present invention. (A) shows that the brightness of each section of the image is 0.
FIG. 9 is a schematic distribution diagram of a part represented in a range from (black) to 255 (white). (B) is a distribution diagram of a brightness analysis value obtained by comparing the brightness of each part divided in (a) with the surroundings on a predetermined basis.

【図4】本発明の図2の電子顕微鏡観測画像から配線輪
郭を抽出して加工しディスプレー上に表示した配線輪郭
の中間調画像である。
FIG. 4 is a halftone image of a wiring contour extracted from the electron microscope observation image of FIG. 2 of the present invention, processed, and displayed on a display.

【図5】図4の配線輪郭の縦方向と横方向とが直交する
ように修正をおこなった後のディスプレー上に表示した
配線輪郭の中間調画像である。
5 is a halftone image of the wiring outline displayed on the display after the wiring outline of FIG. 4 has been corrected so that the vertical direction and the horizontal direction are orthogonal to each other.

【図6】図5の配線輪郭の縦方向と横方向とが直交する
ように修正をおこなった後の配線輪郭から所定の方法で
抽出した閉領域をディスプレー上に表示した閉領域を構
成する配線輪郭の中間調画像である。
FIG. 6 is a diagram showing a closed area extracted on a display from a wiring outline obtained by correcting the wiring outline of FIG. 5 so that the vertical direction and the horizontal direction are orthogonal to each other, and displaying the closed area on a display; It is a halftone image of a contour.

【図7】観測画像とレイアウトデータから抽出された閉
領域の模式図である。(a)は観測画像から抽出された
閉領域の模式図である。(b)はレイアウトデータから
抽出された(a)に対応する閉領域の模式図である。
(c)はレイアウトデータから抽出された類似の閉領域
の模式図である。
FIG. 7 is a schematic diagram of a closed region extracted from an observation image and layout data. (A) is a schematic diagram of a closed region extracted from an observation image. (B) is a schematic diagram of a closed region corresponding to (a) extracted from layout data.
(C) is a schematic diagram of a similar closed region extracted from layout data.

【図8】従来例の観測画像と輪郭線の分布を示す模式図
である。(a)はLSIの配線画像の模式図である。
(b)は(a)の配線のY軸方向輪郭線の分布図であ
る。
FIG. 8 is a schematic diagram showing a distribution of observed images and contour lines in a conventional example. (A) is a schematic diagram of a wiring image of an LSI.
(B) is a distribution diagram of a contour line in the Y-axis direction of the wiring of (a).

【符号の説明】[Explanation of symbols]

11 観測画像 12 観測画像の配線輪郭の抽出過程 13 抽出された配線輪郭 14 閉領域の抽出過程 15 抽出された閉領域 21 レイアウトデータ 22 レイアウトデータの配線輪郭の抽出過程 23 抽出された配線輪郭 24 閉領域の抽出過程 25 抽出された閉領域 36 閉領域の形状の一致可能性判定過程 37 判定された位置関係 38 配線全体の一致度評価過程 39 評価された最適な位置関係 REFERENCE SIGNS LIST 11 observation image 12 wiring outline extraction process of observation image 13 extracted wiring outline 14 closed area extraction process 15 extracted closed region 21 layout data 22 layout data wiring outline extraction process 23 extracted wiring outline 24 closed Region extraction process 25 Extracted closed region 36 Process of determining the possibility of matching the shape of the closed region 37 Determined positional relationship 38 Evaluation process of the degree of coincidence of the entire wiring 39 Optimal positional relationship evaluated

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 LSI上の所望の観測箇所に撮像位置を
移動させて前記LSIの2次元形状を表わす観測画像を
得て、 得られた前記観測画像および前記LSIのレイアウトデ
ータから、対応するそれぞれの配線輪郭を抽出し、 抽出された前記配線輪郭によって形成される2次元の閉
領域を抽出し、 前記観測画像から抽出された前記閉領域および前記レイ
アウトデータから抽出された前記閉領域の間で形状の一
致可能性を判定し、 一致可能性があると判定された前記閉領域の組み合わせ
に対しては、両者が重なり合う位置関係で、観測画像の
配線全体とレイアウトデータの配線全体とを重ね合わせ
た場合の一致度を評価し、 配線全体の一致度が最も高くなる位置関係を得る、こと
を特徴とするLSI画像の位置合わせ方法。
1. An imaging position is moved to a desired observation point on an LSI to obtain an observation image representing a two-dimensional shape of the LSI, and a corresponding one of the obtained observation image and the layout data of the LSI is obtained. Extracting a two-dimensional closed region formed by the extracted wiring outlines, and extracting a two-dimensional closed region between the closed region extracted from the observation image and the closed region extracted from the layout data. The possibility of shape matching is determined, and for the combination of the closed regions determined to be likely to match, the entire wiring of the observation image and the entire wiring of the layout data are superimposed in a positional relationship where the two overlap. A method for evaluating the degree of coincidence in a case where the degree of coincidence is obtained to obtain a positional relationship that maximizes the degree of coincidence of the entire wiring.
【請求項2】 前記観測画像からの前記配線輪郭の抽出
の過程で、2次元の前記配線輪郭の形状を所定の方法に
従い線分の組み合せにより近似させ、該線分を配線輪郭
とみなして抽出を行なう、請求項1に記載のLSI画像
の位置合わせ方法。
2. In the process of extracting the wiring outline from the observed image, the shape of the two-dimensional wiring outline is approximated by a combination of line segments according to a predetermined method, and the line segment is extracted as a wiring outline. 2. The method according to claim 1, wherein the step (a) is performed.
【請求項3】 前記閉領域の抽出において、所定の大き
さ以上の前記閉領域のみを抽出し、抽出された前記閉領
域を対象に、形状の一致可能性の前記判定を行う、請求
項1に記載のLSI画像の位置合わせ方法。
3. The method according to claim 1, wherein in the extraction of the closed region, only the closed region having a size equal to or larger than a predetermined size is extracted, and the determination of the possibility of shape matching is performed on the extracted closed region. 3. The method for positioning an LSI image according to 1.
【請求項4】 所定の大きさ以上の閉領域のみを抽出す
る方法として、前記配線輪郭の中で少なくとも一方の側
において所定の長さ以上にわたって配線輪郭の交差や配
線輪郭の折れ曲げのない配線輪郭を求め、該当する配線
輪郭を含む閉領域を抽出する、請求項3に記載のLSI
画像の位置合わせ方法。
4. A method for extracting only a closed area having a size equal to or greater than a predetermined size, wherein at least one side of the wiring outline does not cross the wiring outline or bend the wiring outline over a predetermined length. 4. The LSI according to claim 3, wherein an outline is obtained, and a closed region including the corresponding wiring outline is extracted.
Image alignment method.
【請求項5】 前記観測画像の前記閉領域と前記レイア
ウトデータの前記閉領域との間の形状の一致可能性の前
記判定において、それぞれの閉領域の縦寸法、横寸法お
よび頂点の数のうち、少なくともいずれか一つを含む特
徴量の対比によって両者の形状の一致可能性を判定す
る、請求項1に記載のLSI画像の位置合わせ方法。
5. The method according to claim 5, wherein in the determination of the possibility of matching of the shapes between the closed region of the observation image and the closed region of the layout data, the vertical size, the horizontal size, and the number of vertices of each closed region are selected. 2. The method according to claim 1, wherein the likelihood of matching of the two shapes is determined by comparing feature amounts including at least one of the two.
【請求項6】 前記観測画像の前記閉領域と前記レイア
ウトデータの前記閉領域との間の形状の一致可能性の前
記判定において、それぞれの閉領域の縦寸法、横寸法お
よび頂点の数のうち、少なくともいずれか一つを含む特
徴量の対比が所定の設定値を満たすかを判定し、これを
満たす組み合わせのみに対して詳細に両者の形状の一致
可能性を判定する、請求項5に記載のLSI画像の位置
合わせ方法。
6. The method according to claim 1, wherein in the determination of the possibility of matching of the shape between the closed region of the observation image and the closed region of the layout data, the vertical size, the horizontal size, and the number of vertices of each closed region are selected. 6. The method according to claim 5, wherein it is determined whether or not the comparison of the feature amounts including at least one of the predetermined values satisfies a predetermined set value, and the possibility of matching of the shapes of both combinations is determined in detail only for a combination satisfying the set value. LSI image alignment method.
【請求項7】 前記観測画像の前記閉領域と前記レイア
ウトデータの前記閉領域との間の形状の一致可能性の前
記判定において、前記観測画像での位置ずれとして起こ
り得る範囲内に、それぞれの位置の相違が含まれる前記
閉領域の組み合わせについてのみ、閉領域の形状の一致
可能性の前記判定やそれ以後の操作を行う、請求項1に
記載のLSI画像の位置合わせ方法。
7. The method according to claim 1, wherein the determination of the possibility of matching of the shape between the closed region of the observation image and the closed region of the layout data is performed within a range that can occur as a position shift in the observation image. The method according to claim 1, wherein the determination of the possibility of matching the shape of the closed region and the subsequent operation are performed only for the combination of the closed regions including a difference in position.
【請求項8】 配線全体の一致度が最も高くなる位置関
係を得る方法として、前記閉領域の形状の一致可能性が
判定された複数の組み合わせに対し、前記観測画像の前
記閉領域と前記レイアウトデータの前記閉領域とが重な
り合う位置関係として、各々の組み合わせから得られる
複数の位置関係の中から共通するものを優先して、各位
置関係の下での配線全体の位置関係の一致度を評価し、
これを基に最も一致度の高い位置関係を得る、請求項1
に記載のLSI画像の位置合わせ方法。
8. As a method of obtaining a positional relationship that maximizes the degree of coincidence of the entire wiring, a plurality of combinations in which the likelihood of the shape of the closed area is determined are determined by comparing the closed area and the layout of the observed image with each other. As a positional relationship where the closed region of the data overlaps, a common one among a plurality of positional relationships obtained from each combination is prioritized, and the degree of coincidence of the positional relationship of the entire wiring under each positional relationship is evaluated. And
2. The method according to claim 1, wherein a positional relationship having the highest matching degree is obtained based on the information.
3. The method for positioning an LSI image according to 1.
JP8316145A 1996-11-27 1996-11-27 LSI image alignment method Expired - Lifetime JP2910706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8316145A JP2910706B2 (en) 1996-11-27 1996-11-27 LSI image alignment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8316145A JP2910706B2 (en) 1996-11-27 1996-11-27 LSI image alignment method

Publications (2)

Publication Number Publication Date
JPH10163283A true JPH10163283A (en) 1998-06-19
JP2910706B2 JP2910706B2 (en) 1999-06-23

Family

ID=18073776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8316145A Expired - Lifetime JP2910706B2 (en) 1996-11-27 1996-11-27 LSI image alignment method

Country Status (1)

Country Link
JP (1) JP2910706B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100826A (en) * 2001-09-26 2003-04-04 Hitachi Ltd Inspecting data analyzing program and inspecting apparatus and inspecting system
JP2009014519A (en) * 2007-07-04 2009-01-22 Horon:Kk Area measuring method and area measuring program
DE102009026736A1 (en) 2008-06-11 2010-09-02 Nec Electronics Corp. A display method and display device for superimposing display of a design image and a photograph image and a storage medium storing a program for executing the display process
JP2011180136A (en) * 2005-04-14 2011-09-15 Shimadzu Corp Substrate inspection apparatus
JP2013037009A (en) * 2012-10-05 2013-02-21 Horon:Kk Contour line extraction method, contour line extraction program and area measuring method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100826A (en) * 2001-09-26 2003-04-04 Hitachi Ltd Inspecting data analyzing program and inspecting apparatus and inspecting system
JP2011180136A (en) * 2005-04-14 2011-09-15 Shimadzu Corp Substrate inspection apparatus
JP2009014519A (en) * 2007-07-04 2009-01-22 Horon:Kk Area measuring method and area measuring program
DE102009026736A1 (en) 2008-06-11 2010-09-02 Nec Electronics Corp. A display method and display device for superimposing display of a design image and a photograph image and a storage medium storing a program for executing the display process
US8057049B2 (en) 2008-06-11 2011-11-15 Renesas Electronics Corporation Display method and display device for displaying a design image and a pickup image in a superimposing manner, and storage medium storing a program for executing the display method
JP2013037009A (en) * 2012-10-05 2013-02-21 Horon:Kk Contour line extraction method, contour line extraction program and area measuring method

Also Published As

Publication number Publication date
JP2910706B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
CN111474184B (en) AOI character defect detection method and device based on industrial machine vision
JP4687518B2 (en) Image processing method, three-dimensional measurement method using the method, and image processing apparatus
JP4951496B2 (en) Image generation method and image generation apparatus
JP4521235B2 (en) Apparatus and method for extracting change of photographed image
JP2007047930A (en) Image processor and inspection device
JP2005258846A (en) Traffic lane boundary decision device
US6236746B1 (en) Method to extract circuit information
JPH0789063A (en) Printed matter inspecting system
US6987875B1 (en) Probe mark inspection method and apparatus
JP2910706B2 (en) LSI image alignment method
JPH09128547A (en) Device for inspecting mounted parts
JP2008116206A (en) Apparatus, method, and program for pattern size measurement
JP2002373334A (en) Device and method for extracting fingerprint characteristic and fingerprint extraction program
JP4097255B2 (en) Pattern matching apparatus, pattern matching method and program
JP2004240909A (en) Image processor and image processing method
JP2000124281A (en) Pattern search method and apparatus
JPH065545B2 (en) Figure recognition device
JP3106370B2 (en) Defect detection and type recognition of printed circuit boards using graph information
JPH0612249B2 (en) Pattern inspection device
JPH0786349A (en) Inspection device using electron beam
JP2010186485A (en) Method of processing color image and image processing apparatus
JPH11142117A (en) Object measuring method and its equipment and storage medium of control program for object measurement
JPH06259531A (en) Method for correcting inclination of dot pattern
JP2005352623A (en) Pattern collation device, image quality verification method, and image quality verification program
JPH05272931A (en) Method for ic visual inspection