JPH10160981A - Optical waveguide module - Google Patents

Optical waveguide module

Info

Publication number
JPH10160981A
JPH10160981A JP32052796A JP32052796A JPH10160981A JP H10160981 A JPH10160981 A JP H10160981A JP 32052796 A JP32052796 A JP 32052796A JP 32052796 A JP32052796 A JP 32052796A JP H10160981 A JPH10160981 A JP H10160981A
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
substrate
base
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32052796A
Other languages
Japanese (ja)
Inventor
Koji Takemura
浩二 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP32052796A priority Critical patent/JPH10160981A/en
Publication of JPH10160981A publication Critical patent/JPH10160981A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PROBLEM TO BE SOLVED: To package an optical semiconductor element and an optical waveguide varying in working polarization planes without alignment by disposing an optical element in the upper step part of a base plate formed with a difference in level, fixing the flank of an optical waveguide substrate formed with the optical waveguide on one main surface to the lower step part and optically coupling the optical element and the optical waveguide of the optical waveguide substrate. SOLUTION: The difference in level is formed on the base plate 1. An electrode pattern 4 is mounted at its upper step part and the optical element 2 is mounted on this electrode pattern 4. The lower step part is formed as a groove 6 formed to a straight shape from the light emitting section of the optical element 2 toward the light emitting direction. The optical waveguide substrate 3 formed with the optical waveguide 3a on its one main surface is fixed with its flank 3b faced downward to the groove 6 via an adhesive 5, such as epoxy resin, by which the optical element 2 and the optical waveguide 3a of the optical waveguide substrate 3 are exactly optically coupled. In such a case, the electrode pattern 4 is positioned to the flank 6a of the groove 6 extending to the straight shape with relatively high accuracy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光通信や光情報処理
分野に用いられる光導波路モジュールに関し、特に、基
台上に、発光素子や受光素子等の光素子と、SHG素子
等の光導波路素子とを一体的に実装させた光素子一体型
の光導波路モジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide module used in the field of optical communication and optical information processing, and more particularly to an optical element such as a light emitting element or a light receiving element and an optical waveguide element such as an SHG element on a base. The present invention relates to an optical waveguide module integrated with an optical element, in which are integratedly mounted.

【0002】また、特に動作偏光方向が互いに90度異
なる光半導体素子と光導波路素子を基台上に簡便に実装
することができる、光半導体素子一体型の光導波路モジ
ュールに関する。
[0002] The present invention also relates to an optical waveguide module integrated with an optical semiconductor element, in which an optical semiconductor element and an optical waveguide element whose operating polarization directions are different from each other by 90 degrees can be easily mounted on a base.

【0003】[0003]

【従来の技術】従来より、半導体レーザ等の発光素子や
受光素子などの光半導体素子と、光導波路素子との接続
は、それぞれ別々に構成したモジュールどうしをレンズ
系を介して接続されるものであった。
2. Description of the Related Art Conventionally, an optical semiconductor element such as a light emitting element or a light receiving element such as a semiconductor laser and an optical waveguide element are connected to each other through a lens system by connecting separately constructed modules. there were.

【0004】また、この接続には、実際に光半導体素子
を発光させて、レンズ系で光導波路素子の導波路一端に
結合させ、導波路他端からの出力光をモニターしながら
調芯を行う方式(アクティブアライメント法)が取られ
てきた。
For this connection, the optical semiconductor element is actually made to emit light, coupled to one end of the waveguide of the optical waveguide element by a lens system, and the alignment is performed while monitoring the output light from the other end of the waveguide. A method (active alignment method) has been adopted.

【0005】これに対し、同一基板上に光半導体素子と
光導波路素子とをその位置決め用マーカーやストッパー
等を基準にして、ハイブリッド実装を行う方法が提案さ
れている(例えば、特開平6−214129号公報を参
照)。
On the other hand, there has been proposed a method of hybrid mounting an optical semiconductor element and an optical waveguide element on the same substrate with reference to positioning markers, stoppers and the like (for example, Japanese Patent Laid-Open No. 6-214129). Reference).

【0006】この方法は、光半導体素子を発光させずに
光半導体素子と光導波路素子との調芯を行うことから、
パッシブアライメントと呼ばれており、上記アクティブ
アライメント法に対し、基板上への位置決め用のマーカ
ーやストッパーを高精度にパターンニングするだけで、
非常に簡便に光半導体素子と光導波路の接続ができるた
め、量産性に優れ、光通信用光送受信モジュールや、民
生品であるSHGブルーレーザモジュール等のローコス
ト化技術として注目されている。
According to this method, the optical semiconductor element and the optical waveguide element are aligned without causing the optical semiconductor element to emit light.
This method is called passive alignment, and only requires high-precision patterning of positioning markers and stoppers on the substrate, compared to the active alignment method described above.
Since the connection between the optical semiconductor element and the optical waveguide can be performed very easily, it is excellent in mass productivity, and is attracting attention as a low cost technology for an optical transmission / reception module for optical communication and a commercial SHG blue laser module.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、光導波
路素子に動作偏光依存性がある場合、単に光半導体素子
と調芯を行うだけではなく、光半導体素子と光導波路素
子との偏光面を一致させることが必要になる。特に、光
導波路デバイスがTMモード動作の場合、一般に半導体
レーザ等の光半導体素子がTEモード動作であるため、
両者を同一平面状で結合させることができない。また、
1/2波長板等を用いて偏光面を90度回転させて結合
させる方法もあるが、部品点数の増加や、波長板に厚み
があることから一般には直接接続では損失が大きくなっ
てしまう。このためレンズ系を用いる必要が生じるが、
部品点数がさらに増加するだけでなく、構成が複雑にな
る等の問題があった。
However, when the optical waveguide element has an operation polarization dependence, not only the optical semiconductor element is aligned with the optical semiconductor element but also the polarization planes of the optical semiconductor element and the optical waveguide element are made to coincide with each other. It becomes necessary. In particular, when the optical waveguide device operates in the TM mode, the optical semiconductor element such as a semiconductor laser generally operates in the TE mode.
Both cannot be combined on the same plane. Also,
There is also a method of coupling by rotating the polarization plane by 90 degrees using a half-wave plate or the like. However, in general, direct connection results in a large loss due to an increase in the number of components and the thickness of the wave plate. This necessitates the use of a lens system,
There are problems that not only the number of parts further increases but also the configuration becomes complicated.

【0008】そこで、本発明では上述の諸問題を解消
し、動作偏光面の異なる、光半導体素子と光導波路とを
無調芯で実装できる光導波路モジュールを提供すること
を目的とする。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide an optical waveguide module in which an optical semiconductor element and an optical waveguide having different operation polarization planes can be mounted without adjustment.

【0009】[0009]

【課題を解決するための手段】上記課題を解決する光導
波路モジュールは、段差が形成された基台の上段部に発
光及び/又は受光する光素子を配設するとともに、前記
基台の下段部に一主面に光導波路が形成された光導波路
基板の側面を固定して、前記光素子と光導波路基板の光
導波路とを光結合させたことを特徴とする。
According to an optical waveguide module for solving the above-mentioned problems, an optical element for emitting and / or receiving light is disposed on an upper portion of a base having a step, and a lower portion of the base is provided. Wherein the side face of an optical waveguide substrate having an optical waveguide formed on one principal surface is fixed, and the optical element is optically coupled to the optical waveguide of the optical waveguide substrate.

【0010】また、基台の上面が(110)面のシリコ
ン基板であるとともに、基台の段差を異方性エッチング
により形成したことを特徴とする。この場合、基台は複
数枚の基板を重ね合わせるように構成してもよい。
[0010] Further, the upper surface of the base is a (110) silicon substrate, and the steps of the base are formed by anisotropic etching. In this case, the base may be configured so that a plurality of substrates are stacked.

【0011】これにより、基台上の一部に、光導波路を
基板に対して垂直に搭載するための段部が形成され、該
段部の端面に対して高精度に位置決め作製された電極上
に光半導体素子が実装され、段部の端面に沿って光導波
路が実装されることにより自動的に前記光半導体素子と
前記光導波路の位置決め及び、偏光面合わせが行える構
成とした。
Thus, a step for mounting the optical waveguide perpendicular to the substrate is formed in a part of the base, and the electrode is positioned and manufactured with high precision with respect to the end face of the step. The optical semiconductor element is mounted on the optical waveguide, and the optical waveguide is mounted along the end face of the stepped portion, so that the optical semiconductor element and the optical waveguide can be automatically positioned and the polarization plane can be aligned.

【0012】[0012]

【発明の実施の形態】以下に、本発明に係わる光半導体
素子一体型の光導波路モジュールの一形態について図面
に基づき説明する。図1に示す光導波路モジュールS
は、基台1に単結晶のシリコン基板を、光素子2として
光半導体素子である半導体レーザを、光導波路基板3に
は光導波路素子である周期状の分極反転構造を有するQ
PM−SHG(擬似位相整合第二高調波発生素子)素子
を、それぞれ用いて成る、いわゆるSHGブルーレーザ
モジュールを構成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of an optical waveguide module integrated with an optical semiconductor device according to the present invention will be described below with reference to the drawings. Optical waveguide module S shown in FIG.
Is a substrate having a single crystal silicon substrate, a semiconductor laser as an optical semiconductor element as the optical element 2, and an optical waveguide substrate 3 having a periodic polarization inversion structure as an optical waveguide element.
A so-called SHG blue laser module is configured using each of the PM-SHG (quasi phase matching second harmonic generation element) elements.

【0013】ここで、基台1は段差が形成されており、
その上段部1aに電極パターン4とその電極パターン4
上に光素子2が搭載されている。また、下段部は光素子
2の発光部から発光方向へ直線状に形成された溝6にな
っており、一主面に光導波路3aが形成された光導波路
基板3が、その側面3bを下にして溝6にエポキシ樹脂
等の接着剤5を介して固定されて、光素子2と光導波路
基板3の光導波路3aとが正確に光結合されている。
Here, the base 1 is formed with a step,
The electrode pattern 4 and the electrode pattern 4 are provided on the upper portion 1a.
The optical element 2 is mounted thereon. The lower part is a groove 6 formed linearly from the light emitting part of the optical element 2 in the light emitting direction, and the optical waveguide substrate 3 having the optical waveguide 3a formed on one main surface is disposed on the side surface 3b. The optical element 2 and the optical waveguide 3a of the optical waveguide substrate 3 are accurately optically coupled to each other by being fixed to the groove 6 via an adhesive 5 such as an epoxy resin.

【0014】すなわち、電極パターン4は直線状に延び
た溝6の側面6aと相対的に高精度に位置決めされてお
り、この電極パターン4上に光素子2が載置されてお
り、一方、光導波路基板3は溝の底部6cに接着剤5を
介して密着する状態で固定されている。水平(X)方向
の位置決めについては、溝6の側面6aと電極パターン
4の位置精度で行い、高さ(Y)方向には溝6の深さの
制御(後記するエッチング度合いの制御)により、光導
波路基板3の角部と溝6の角部6bとを一致させて、光
素子2の発光部と光導波路基板3の光導波路3aの端部
とのパッシブアライメントを容易にかつ精度良く実現す
るものである。
That is, the electrode pattern 4 is positioned with high precision relative to the side surface 6a of the linearly extending groove 6, and the optical element 2 is mounted on the electrode pattern 4, while The waveguide substrate 3 is fixed to the bottom 6c of the groove with an adhesive 5 in close contact therewith. The positioning in the horizontal (X) direction is performed with the positional accuracy between the side surface 6a of the groove 6 and the electrode pattern 4, and in the height (Y) direction, the depth of the groove 6 is controlled (the degree of etching described later). By making the corners of the optical waveguide substrate 3 coincide with the corners 6b of the groove 6, passive alignment between the light emitting portion of the optical element 2 and the end of the optical waveguide 3a of the optical waveguide substrate 3 is easily and accurately realized. Things.

【0015】次に、この基台1の具体的な作製方法につ
いて説明する。まず、基台1を構成する材料として、基
台1の主面が(110)面の単結晶のシリコン基板を用
意する。そして、このシリコン基板の表面に熱酸化(約
1050℃の酸素雰囲気中にて熱処理)により約1μm
程度の熱酸化膜を形成する。
Next, a specific method of manufacturing the base 1 will be described. First, as a material for forming the base 1, a single crystal silicon substrate having a (110) main surface of the base 1 is prepared. The surface of the silicon substrate is thermally oxidized (heat-treated in an oxygen atmosphere at about 1050 ° C.) to about 1 μm.
A thermal oxide film of a degree is formed.

【0016】さらに、基台1に対して所定形状の段差
(凹形状等を含む)を設けるために、光素子2の搭載部
を除いて所定形状の開口部が形成されるように、公知の
フォトリソグラフィ技術と異方性エッチングを用いてパ
ターニングする。この際に、溝6の壁面6aに(11
1)面がくるようにパターニングすることが重要であ
る。ただし、光素子2側の端面と、溝6の底面6cは一
般に(111)面と等価な結晶面が露出するため平坦に
はならない。このため、光素子2の搭載部近傍ついて
は、ダイシング装置等により結晶面を切削により除去し
て、溝7を形成している。
Furthermore, in order to provide a step (including a concave shape, etc.) of a predetermined shape with respect to the base 1, a known opening is formed so that an opening of a predetermined shape is formed except for a mounting portion of the optical element 2. Patterning is performed using photolithography and anisotropic etching. At this time, (11)
1) It is important to pattern so that the surface comes. However, the end face on the optical element 2 side and the bottom face 6c of the groove 6 are not flat because a crystal plane equivalent to the (111) plane is generally exposed. For this reason, in the vicinity of the mounting portion of the optical element 2, the crystal face is removed by cutting with a dicing device or the like to form the groove 7.

【0017】なお、基台1は単結晶のシリコン以外であ
ってもよく、微細加工に適するように、所望の硬度,靱
性,もしくはへき開性を有するものが望ましい。
The base 1 may be made of a material other than single crystal silicon, and desirably has a desired hardness, toughness, or cleavage so as to be suitable for microfabrication.

【0018】次に、この基台の別の製造方法について説
明する。図2(a)に示すように、まず、パターニング
用の(110)面を主面とするシリコン基板11と、こ
れと同様なベース基板12とを用意する。そして、図2
(b)に示すように、公知の表面活性化接合法によりシ
リコン基板11とベース基板12とを接合させる。これ
により、接合部13において非晶質層が形成される。次
いで、シリコン基板11の主面の一部領域に光導波路基
板の搭載用の溝を形成させるために、開口部15を有し
後記するエッチング液に耐性を有するマスクパターン1
4を形成する。しかる後に、水酸化カリウム(KO
H)、水酸化ナトリウム(NaOH)、EPW(エチレ
ンジアミン+ピロカテロール+水)、ヒドラジン、TM
AH(水酸化テトラメチルアンモニウム)等のエッチン
グ液に浸漬することにより、マスクパターン14が無い
開口部15がエッチングされ、所定角度を成す(11
1)面の内側傾斜面11aを有する溝部16が形成され
る。このとき、接合部13がエッチングストッパとな
り、平坦な段差底部を得ることができる。
Next, another method of manufacturing the base will be described. As shown in FIG. 2A, first, a silicon substrate 11 whose main surface is a (110) plane for patterning and a base substrate 12 similar to this are prepared. And FIG.
As shown in (b), the silicon substrate 11 and the base substrate 12 are bonded by a known surface activated bonding method. Thereby, an amorphous layer is formed at the joint 13. Next, in order to form a groove for mounting the optical waveguide substrate in a partial region of the main surface of the silicon substrate 11, a mask pattern 1 having an opening 15 and having resistance to an etching solution described later.
4 is formed. Thereafter, potassium hydroxide (KO)
H), sodium hydroxide (NaOH), EPW (ethylenediamine + pyrocaterol + water), hydrazine, TM
By dipping in an etchant such as AH (tetramethylammonium hydroxide), the opening 15 without the mask pattern 14 is etched to form a predetermined angle (11).
1) A groove 16 having an inner inclined surface 11a is formed. At this time, the joint 13 serves as an etching stopper, and a flat step bottom can be obtained.

【0019】なお、ベース基板12は、ニオブ酸リチウ
ム,タンタル酸リチウム,四ホウ酸リチウム等の単結晶
材料や、BK7(ホーヤ株式会社製商品名),石英等の
ガラス材料、シリコンやガリウム砒素等の半導体材料な
どを好適に使用することができるが、特にシリコン基板
11と接合性が良好で、熱膨張係数がシリコンに近い材
料であれば好適に使用することができる。
The base substrate 12 is made of a single crystal material such as lithium niobate, lithium tantalate, lithium tetraborate or the like, a glass material such as BK7 (trade name of Hoya Corporation), quartz, silicon, gallium arsenide, etc. The semiconductor material described above can be suitably used, but any material having good bonding properties with the silicon substrate 11 and a thermal expansion coefficient close to that of silicon can be suitably used.

【0020】なおまた、上記例において、光素子として
発光素子を用いた例を示したが、受光素子でもよく、光
導波路基板もSHG素子に限定されるものではなく、要
旨を逸脱しない範囲内で適宜変更し実施が可能である。
In the above example, a light emitting element is used as an optical element. However, a light receiving element may be used, and the optical waveguide substrate is not limited to the SHG element. It can be changed as appropriate and implemented.

【0021】[0021]

【発明の効果】本発明の光導波路モジュールによれば、
従来のように、1/2波長板やレンズ等を用いることな
く、しかもパッシブアライメントで簡便に光素子と光導
波路基板との調芯及び偏光面合わせが行える、生産性の
非常に優れた光導波路モジュールを提供することができ
る。
According to the optical waveguide module of the present invention,
Extremely productive optical waveguides that can easily align the optical element and optical waveguide substrate and align the polarization plane without the use of a half-wave plate or lens as in the past and with passive alignment. Modules can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る光導波路モジュールの一実施形態
を説明するための図であり、(a)は平面図、(b)は
正面図、(c)は側面図。
FIG. 1 is a view for explaining an embodiment of an optical waveguide module according to the present invention, wherein (a) is a plan view, (b) is a front view, and (c) is a side view.

【図2】(a)〜(d)は、それぞれ本発明に係る光導
波路モジュールの基台の作製方法を説明するための断面
工程図である。
FIGS. 2A to 2D are cross-sectional process diagrams illustrating a method of manufacturing a base of an optical waveguide module according to the present invention.

【符号の説明】[Explanation of symbols]

1:基台 2:光素子 3:光導波路基板 4:電極パターン 5:接着剤 6:溝 11:シリコン基板 12:ベース基板 S:光導波路モジュール 1: Base 2: Optical element 3: Optical waveguide substrate 4: Electrode pattern 5: Adhesive 6: Groove 11: Silicon substrate 12: Base substrate S: Optical waveguide module

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 段差が形成された基台の上段部に発光及
び/又は受光する光素子を配設するとともに、前記基台
の下段部に、一主面に光導波路が形成された光導波路基
板の側面を固定し、前記光素子と光導波路基板の光導波
路とを光結合させたことを特徴とする光導波路モジュー
ル。
An optical waveguide in which an optical element for emitting and / or receiving light is disposed on an upper portion of a base having a step, and an optical waveguide is formed on one main surface of a lower portion of the base. An optical waveguide module, wherein a side surface of a substrate is fixed, and the optical element and the optical waveguide of the optical waveguide substrate are optically coupled.
【請求項2】 前記基台の上面が(110)面のシリコ
ン基板であるとともに、前記基台の段差を異方性エッチ
ングにより形成したことを特徴とする請求項1に記載の
光導波路モジュール。
2. The optical waveguide module according to claim 1, wherein an upper surface of the base is a silicon substrate having a (110) plane, and a step of the base is formed by anisotropic etching.
JP32052796A 1996-11-29 1996-11-29 Optical waveguide module Pending JPH10160981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32052796A JPH10160981A (en) 1996-11-29 1996-11-29 Optical waveguide module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32052796A JPH10160981A (en) 1996-11-29 1996-11-29 Optical waveguide module

Publications (1)

Publication Number Publication Date
JPH10160981A true JPH10160981A (en) 1998-06-19

Family

ID=18122437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32052796A Pending JPH10160981A (en) 1996-11-29 1996-11-29 Optical waveguide module

Country Status (1)

Country Link
JP (1) JPH10160981A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347083A (en) * 1999-03-31 2000-12-15 Ngk Insulators Ltd Adhered structure of optical parts and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347083A (en) * 1999-03-31 2000-12-15 Ngk Insulators Ltd Adhered structure of optical parts and its production

Similar Documents

Publication Publication Date Title
JP3484543B2 (en) Method of manufacturing optical coupling member and optical device
JP3792358B2 (en) Optical connection component and manufacturing method thereof
US20030219208A1 (en) Optical coupling module with self-aligned etched grooves and method for fabricating the same
US6256437B1 (en) Optical device and its production method
JPH06347665A (en) Production of optical device
JP2000338360A (en) Method for attaching integrated optical circuit onto surface of mother board for connecting optical fiber for forming small sized optical part
JPH10144998A (en) Mounting structure for optical element
JPH05304306A (en) Electrooptic module and manufacture thereof
JP2550890B2 (en) Optical waveguide connection structure and manufacturing method thereof
JPH1114860A (en) Optical coupling structure
US5297218A (en) Optical semiconductor laser and optical waveguide alignment device
JP2002277661A (en) Method for cutting out optical waveguide device
JPH1090577A (en) Method for mounting optical element
JPH0875950A (en) Method for coupling optical fiber array and lens array, as well as optical fiber holding member, and optical signal transmission and reception module
JP3457829B2 (en) Optical transmission module package and optical transmission module
JPH11326662A (en) Optical planar circuit
US5379359A (en) Laser diode coupling to waveguide and method of making same using substrate etching
JPH10160981A (en) Optical waveguide module
CN214375658U (en) Optical waveguide element, optical modulation device using the same, and optical transmission device
JP2004341147A (en) Optical waveguide device and traveling waveform optical modulator
WO2023162259A1 (en) Optical waveguide element, and optical modulation device and optical transmission apparatus using same
JPH06160676A (en) Manufacture of semiconductor laser module
JPH1184181A (en) Optical coupler
WO2022210852A1 (en) Optical waveguide element, optical modulation device using optical waveguide element, and optical transmission device using optical waveguide element
JP2001242349A (en) Substrate for packaging optical parts and optical module using the same