JPH10158459A - Composite clay material - Google Patents

Composite clay material

Info

Publication number
JPH10158459A
JPH10158459A JP33152196A JP33152196A JPH10158459A JP H10158459 A JPH10158459 A JP H10158459A JP 33152196 A JP33152196 A JP 33152196A JP 33152196 A JP33152196 A JP 33152196A JP H10158459 A JPH10158459 A JP H10158459A
Authority
JP
Japan
Prior art keywords
clay mineral
organic
clay
mineral
organic onium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33152196A
Other languages
Japanese (ja)
Inventor
Arimitsu Usuki
有光 臼杵
Osamu Hiruta
修 蛭田
Akane Okada
茜 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP33152196A priority Critical patent/JPH10158459A/en
Publication of JPH10158459A publication Critical patent/JPH10158459A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a composite clay material which can be uniformly dispersed in a vinyl polymeric material and has improved properties by making a clay mineral organic by treatment with an agent comprising a specified mol% hydroxy organic onium ions and mixing the mineral made organic with a vinyl alcohol copolymer. SOLUTION: An agent used for making organic and comprising an organic onium ions having 10-80mol% hydroxyl groups is added to a clay mineral. It is desirable that the organic onium ions used are derived from an acrylic oligomer having a number-average molecular weight of 1,000-15,000. The organic onium ions intercalated between the layers of the mineral are ionically bonded to the mineral to expand the interstice between them. The clay mineral chiefly used are layered clay minerals (layered phyllosilicates, smectite layered clay minerals such as montmorillonite or saponite, vermiculite, halloysite, and swellable mica).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,ビニル系高分子材料の中に粘土
鉱物を均一に分散させることができる,粘土複合材料の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a clay composite material in which a clay mineral can be uniformly dispersed in a vinyl polymer material.

【0002】[0002]

【従来技術】従来より,有機高分子材料の機械的特性を
改良するために,粘土鉱物を添加することが行われてい
る。しかし,粘土鉱物は,有機高分子との間の結合が非
常に弱いため,脆化等多くの問題がある。そのため,有
機高分子材料中への粘土鉱物の添加量にも限界がある。
2. Description of the Related Art Conventionally, clay minerals have been added to improve mechanical properties of organic polymer materials. However, clay minerals have many problems, such as embrittlement, because the bond with organic polymers is very weak. Therefore, the amount of clay mineral added to the organic polymer material is limited.

【0003】そこで,かかる問題を解決するべく,従
来,例えば,特公平7−30252号公報には,末端に
ビニル基を有するオニウムイオンにより粘土鉱物をイオ
ン交換し,イオン交換した粘土鉱物とビニル系高分子化
合物のモノマーとを混合し,該モノマーを重合させる方
法が提案されている。
In order to solve such a problem, for example, Japanese Patent Publication No. 7-30252 discloses a method in which a clay mineral is ion-exchanged with an onium ion having a vinyl group at a terminal, and the clay mineral having been ion-exchanged and a vinyl-based clay mineral. There has been proposed a method of mixing a polymer compound monomer and polymerizing the monomer.

【0004】また,特開平5−39392号には,ビニ
ル系高分子材料と水膨潤性の粘土鉱物とを水により分散
させて混合する方法が提案されている。
Japanese Patent Application Laid-Open No. 5-39392 proposes a method in which a vinyl polymer material and a water-swellable clay mineral are dispersed in water and mixed.

【0005】[0005]

【解決しようとする課題】しかしながら,上記従来の粘
土複合材料の製造方法においては,いずれも依然として
ビニル系高分子と粘土鉱物とを均一に分散させることが
できず,また機械的特性も実用上に耐え得るものではな
い。
However, in the above-mentioned conventional methods for producing a clay composite material, none of them can still uniformly disperse the vinyl polymer and the clay mineral, and the mechanical properties are not practical. Not endurable.

【0006】そこで本発明はかかる従来の問題点に鑑
み,ビニル系高分子材料に粘土鉱物を均一に分散させる
ことができる,粘土複合材料の製造方法を提供しようと
するものである。
Accordingly, the present invention has been made in view of the above-mentioned conventional problems, and has as its object to provide a method for producing a clay composite material which can uniformly disperse a clay mineral in a vinyl polymer material.

【0007】[0007]

【課題の解決手段】請求項1の発明は,10〜80モル
%の水酸基を有する有機オニウムイオンからなる有機化
剤を,粘土鉱物に添加して,該粘土鉱物を有機化し,次
いで,上記有機化された粘土鉱物をビニルアルコール共
重合体と混合することを特徴とする粘土複合材料の製造
方法である。
According to the first aspect of the present invention, an organic agent comprising an organic onium ion having 10 to 80 mol% of a hydroxyl group is added to a clay mineral, and the clay mineral is organically treated. A method for producing a clay composite material, which comprises mixing a converted clay mineral with a vinyl alcohol copolymer.

【0008】粘土鉱物としては,主として,層状粘土鉱
物を用いる。層状粘土鉱物とは,いわゆる層状フィロ珪
酸塩をいう。例えば,モンモリロナイト,サポナイト,
ヘクトライト,バイデライト,スティブンサイト,ノン
トロナイト等のスメクタイト系の層状粘土鉱物や,バー
ミキュライト,ハロイサイト,膨潤性マイカ等を例示で
きる。これらは,天然のものでも,合成されたものでも
使用することができる。
As the clay mineral, a layered clay mineral is mainly used. The layered clay mineral is a so-called layered phyllosilicate. For example, montmorillonite, saponite,
Examples include smectite-based layered clay minerals such as hectorite, beidellite, stevensite, and nontronite, vermiculite, halloysite, and swellable mica. These can be used either naturally or synthetically.

【0009】層状粘土鉱物の種類の選択に当たり,ポリ
オレフィン系オリゴマーとの接触面積が大きいものを用
いると,層状粘土鉱物の層間を大きく膨潤させ易いの
で,好ましい。層状粘土鉱物の陽イオン交換容量は,5
0〜200ミリ当量/100gであることが望ましい。
陽イオン交換容量が50ミリ当量/100g未満の場合
には,有機オニウムイオンのイオン交換による有機化が
不十分となり易いために,結果的に層状粘土鉱物の膨潤
が困難になる場合がある。陽イオン交換容量が200ミ
リ当量/100gを超える場合には,層状粘土鉱物の層
間結合力が強固であるために有機オニウムイオンのイオ
ン交換による層間への介入が困難になり,結果的に層状
粘土鉱物の膨潤が不十分になる場合がある。
In selecting the type of the layered clay mineral, it is preferable to use a layered clay mineral having a large contact area with the polyolefin-based oligomer, since the interlayer between the layered clay mineral is easily swelled greatly. The cation exchange capacity of the layered clay mineral is 5
It is desirably 0 to 200 meq / 100 g.
If the cation exchange capacity is less than 50 meq / 100 g, the organic onium ions are likely to be insufficiently organized by ion exchange, and as a result, the swelling of the layered clay mineral may be difficult. When the cation exchange capacity exceeds 200 meq / 100 g, the interlayer bonding force of the layered clay mineral is so strong that it is difficult to intervene between the layers by ion exchange of organic onium ions, and as a result, the layered clay mineral becomes difficult. The swelling of the mineral may be insufficient.

【0010】本発明においては,有機化剤として,10
〜80モル%の水酸基を有する有機オニウムイオンを用
いる。「10〜80モル%の水酸基」とは,有機オニウ
ムイオンが,該有機オニウムイオンの中に10〜80モ
ル%の水酸基を有することを意味する。上記のごとく水
酸基を有する有機オニウムイオンにより粘土鉱物を有機
化すると,粘土鉱物はビニルアルコール共重合体との相
溶性が高くなる。それ故,ビニルアルコール共重合体の
中に粘土鉱物を均一に分散させることができる。
In the present invention, as an organic agent, 10
An organic onium ion having a hydroxyl group of 基 80 mol% is used. “10 to 80 mol% of hydroxyl groups” means that the organic onium ion has 10 to 80 mol% of hydroxyl groups in the organic onium ion. When the clay mineral is made organic by the organic onium ion having a hydroxyl group as described above, the clay mineral becomes highly compatible with the vinyl alcohol copolymer. Therefore, the clay mineral can be uniformly dispersed in the vinyl alcohol copolymer.

【0011】一方,水酸基が10モル%未満の場合に
は,ビニルアルコール共重合体と粘土鉱物の相溶性が低
下し,両者を混合したときに相分離する場合がある。ま
た,80モル%を越える場合には,水酸基同士の相互作
用が増大し,粘土鉱物の層間が狭くなるために,粘土鉱
物の膨潤が困難となる。この結果,粘土鉱物の分散が不
十分となる。
On the other hand, when the hydroxyl group content is less than 10 mol%, the compatibility between the vinyl alcohol copolymer and the clay mineral is reduced, and phase separation may occur when both are mixed. On the other hand, if it exceeds 80 mol%, the interaction between hydroxyl groups increases, and the interlayer of the clay mineral becomes narrow, so that the swelling of the clay mineral becomes difficult. As a result, the dispersion of the clay mineral becomes insufficient.

【0012】次に,本発明の作用及び効果について説明
する。まず,上記の範囲内の水酸基を有する有機オニウ
ムイオンを,粘土鉱物に添加する。すると,有機オニウ
ムイオンからなる有機化剤は,粘土鉱物の層間に入り込
む。層間に入り込んだ有機オニウムイオンは,そのオニ
ウムイオンによって,粘土鉱物とイオン結合して,粘土
鉱物の層間を膨潤させる。
Next, the operation and effect of the present invention will be described. First, an organic onium ion having a hydroxyl group within the above range is added to a clay mineral. Then, the organic agent composed of the organic onium ions enters between the layers of the clay mineral. The organic onium ions entering the layers are ionically bonded to the clay mineral by the onium ions and swell between the layers of the clay mineral.

【0013】次いで,層間が膨潤した粘土鉱物を,ビニ
ルアルコール共重合体と混合する。粘土鉱物にイオン結
合している有機オニウムイオンは,その水酸基によっ
て,ビニルアルコール共重合体のビニル基と親和性が高
い。そのため,ビニルアルコール共重合体は,有機オニ
ウムイオンとの親和力によって,粘土鉱物の層間に入り
込み,層間を更に膨潤させて,無限膨潤状態とする。従
って,本発明によれば,ビニルアルコール共重合体の中
に,粘土鉱物を分子レベルで均一に分散させることがで
きる。
Next, the clay mineral swelled between the layers is mixed with the vinyl alcohol copolymer. The organic onium ion ionically bonded to the clay mineral has a high affinity for the vinyl group of the vinyl alcohol copolymer due to its hydroxyl group. Therefore, the vinyl alcohol copolymer penetrates between the layers of the clay mineral due to the affinity with the organic onium ion, and further swells between the layers to form an infinite swelling state. Therefore, according to the present invention, the clay mineral can be uniformly dispersed at the molecular level in the vinyl alcohol copolymer.

【0014】また,粘土鉱物とイオン結合している有機
オニウムイオンは,ビニルアルコール共重合体と複雑に
絡み合う。そのため,ビニルアルコール共重合体マトリ
ックスの中での粘土鉱物の挙動が制限される。それ故,
粘土複合材料からなる部材の機械的強度,ガス遮断性等
が高くなる。
The organic onium ion that is ionically bonded to the clay mineral is intricately entangled with the vinyl alcohol copolymer. This limits the behavior of the clay mineral in the vinyl alcohol copolymer matrix. Therefore,
The mechanical strength, gas barrier properties, and the like of the member made of the clay composite material are increased.

【0015】次に,上記有機オニウムイオンとしては,
数平均分子量が1000〜15000のオリゴマーを用
いることが好ましい。これにより,粘土鉱物の層間をよ
り広く膨潤させることができる。一方,分子量が100
0未満の場合には,粘土鉱物の層間の膨潤が不足し,層
間にビニルアルコール共重合体を入り込ませることが困
難となるおそれがある。また,15000を越える場合
には,有機オニウムイオンが難水溶性となり,粘土鉱物
の処理が困難となるおそれがある。
Next, as the organic onium ion,
It is preferable to use an oligomer having a number average molecular weight of 1,000 to 15,000. This allows the clay mineral layers to swell more widely. On the other hand, when the molecular weight is 100
If it is less than 0, the swelling between the layers of the clay mineral will be insufficient, and it may be difficult for the vinyl alcohol copolymer to enter between the layers. On the other hand, when it exceeds 15,000, the organic onium ion becomes poorly water-soluble, and it may be difficult to treat the clay mineral.

【0016】また,上記有機オニウムイオンとしては,
アクリル系重合体を用いることが好ましい。これによ
り,粘土鉱物の有機化を効率よく行うことができる。具
体的には,上記アクリル系重合体としては,そのモノマ
ーから規定すると,水酸基含有モノマーとしてアクリル
酸2−ヒドロキシエチル,メタクリル酸2−ヒドロキシ
エチル,アクリル酸2−ヒドロキシプロピル等があり,
オニウムイオンを形成するモノマーとしてはアクリル酸
2−(ジメチルアミノ)エチル,メタクリル酸2−(ジ
メチルアミノ)エチル,アクリルアミド,メタクリルア
ミド等があり,その他のモノマーとしてアクリル酸メチ
ル,アクリル酸エチル,メタクリル酸メチル等を用いる
ことができる。
The above-mentioned organic onium ions include:
It is preferable to use an acrylic polymer. This makes it possible to efficiently organize the clay mineral. Specifically, as the acrylic polymer, when defined from the monomers, there are 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, and the like as hydroxyl-containing monomers.
Examples of monomers forming onium ions include 2- (dimethylamino) ethyl acrylate, 2- (dimethylamino) ethyl methacrylate, acrylamide, and methacrylamide, and other monomers include methyl acrylate, ethyl acrylate, and methacrylic acid. Methyl and the like can be used.

【0017】次に,上記ビニルアルコール共重合体と
は,主鎖の一部にビニルアルコール骨格を有する重合体
をいう。ビニルアルコール骨格は,ビニルアルコール共
重合体の中に10モル%以上含まれていることが好まし
い。これにより,ビニルアルコール共重合体と有機化さ
れた粘土鉱物との相溶性が更に高くなる。また,ビニル
アルコール共重合体と有機化剤との絡み合い度も高くな
り,粘土複合材料の機械的特性が更に向上する。
Next, the above-mentioned vinyl alcohol copolymer is a polymer having a vinyl alcohol skeleton in a part of the main chain. The vinyl alcohol skeleton is preferably contained in the vinyl alcohol copolymer in an amount of 10 mol% or more. This further increases the compatibility between the vinyl alcohol copolymer and the organized clay mineral. In addition, the degree of entanglement between the vinyl alcohol copolymer and the organic agent is increased, and the mechanical properties of the clay composite are further improved.

【0018】更に,上記ビニルアルコール骨格は,上記
ビニルアルコール共重合体の中に35〜80モル%含ま
れていることが好ましい。これにより,有機化剤の機械
的特性をより一層向上させることができる。
Further, the vinyl alcohol skeleton is preferably contained in the vinyl alcohol copolymer in an amount of 35 to 80 mol%. Thereby, the mechanical properties of the organic agent can be further improved.

【0019】また,上記ビニルアルコール共重合体の分
子量は,10000〜1000000であることが好ま
しい。これにより,粘土鉱物の層間を更に膨潤させるこ
とができる。10000未満の場合には,層間の膨潤が
不十分となるおそれがある。また,1000000を越
える場合には,溶融時の粘性が高くなり,成形が困難と
なるおそれがある。
The vinyl alcohol copolymer preferably has a molecular weight of 10,000 to 1,000,000. Thereby, the interlayer of the clay mineral can be further swollen. If it is less than 10,000, swelling between layers may be insufficient. On the other hand, if it exceeds 1,000,000, the viscosity at the time of melting increases, and molding may be difficult.

【0020】上記粘土鉱物は,ビニルアルコール共重合
体と混合することにより,粘土複合材料に機械的特性及
び耐熱性を付与する。粘土鉱物としては,例えば,厚み
が7〜12Åの珪酸マグネシウム層又は珪酸アルミニウ
ム層より形成される層状フイロ珪酸鉱物がある。これら
の粘土鉱物は,負に帯電している。粘土鉱物は,負電荷
の密度や分布等により特性は異なるが,本発明では負電
荷一価当たりの層表面の占有面積が25〜200Å2
層状粘土鉱物であることが好ましい。
The above clay mineral imparts mechanical properties and heat resistance to the clay composite material by mixing with the vinyl alcohol copolymer. Examples of the clay mineral include a layered phyllosilicate mineral formed of a magnesium silicate layer or an aluminum silicate layer having a thickness of 7 to 12 mm. These clay minerals are negatively charged. The properties of the clay mineral vary depending on the density and distribution of the negative charges, but in the present invention, it is preferable that the occupied area of the layer surface per monovalent of the negative charge is 25 to 200 square meters.

【0021】上記粘土鉱物に上記有機化剤を結合するに
当たっては,例えば,粘土鉱物を有機化剤とイオン交換
する方法,有機化剤を吸着させる方法などがある。上記
粘土鉱物をビニルアルコール共重合体と混合する方法と
しては,例えば,混練機により混練する方法,オートク
レーブで加熱混合する方法等がある。
The method for binding the organic agent to the clay mineral includes, for example, a method of ion-exchanging the clay mineral with the organic agent and a method of adsorbing the organic agent. Examples of the method of mixing the clay mineral with the vinyl alcohol copolymer include a method of kneading with a kneader, a method of heating and mixing in an autoclave, and the like.

【0022】[0022]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態例1 本例においては,種々の粘土複合材料を成形して,その
成形体のガス遮断性について評価した。まず,粘土複合
材料の製造方法の概要について説明すると,まず,図1
に示すごとく,水酸基10を有する有機オニウムイオン
1からなる有機化剤を,粘土鉱物2と結合させることに
より,粘土鉱物2の層間を膨潤させた。次いで,有機化
された粘土鉱物2をビニルアルコール共重合体3と混合
して,粘土複合材料5を得た。
Embodiment Example 1 In this example, various clay composite materials were molded, and the gas barrier properties of the molded bodies were evaluated. First, an outline of a method for manufacturing a clay composite material will be described.
As shown in (1), an organic agent comprising an organic onium ion 1 having a hydroxyl group 10 was bonded to a clay mineral 2 to swell between layers of the clay mineral 2. Next, the organic clay mineral 2 was mixed with the vinyl alcohol copolymer 3 to obtain a clay composite material 5.

【0023】次に,上記粘土複合材料の製造方法につい
て説明する。まず,アクリル・モノマーとして,アクリ
ル酸メチル,アクリル酸2−ヒドロキシエチル,アクリ
ル酸2−(ジメチルアミノ)エチルを,重合体が有する
水酸基が0〜90モル%の範囲になるように適宜混合
し,これらを重合させた。重合は,ラジカル重合で行っ
た。
Next, a method for producing the above-mentioned clay composite material will be described. First, methyl acrylate, 2-hydroxyethyl acrylate, and 2- (dimethylamino) ethyl acrylate are appropriately mixed as acrylic monomers so that the hydroxyl group of the polymer is in the range of 0 to 90 mol%. These were polymerized. The polymerization was performed by radical polymerization.

【0024】次いで,モンモリロナイトの陽イオン交換
容量の1.2倍のモル数のアミノ基量としたこれらの重
合体を酢酸で中和して,5種類の有機オニウムイオンを
得た。これらを有機オニウムイオンA,B,C,D,E
とした。次いで,それぞれの有機オニウムイオンの1重
量%水溶液を調製した。
Next, these polymers having an amino group content of 1.2 times the cation exchange capacity of montmorillonite were neutralized with acetic acid to obtain five kinds of organic onium ions. These are converted to organic onium ions A, B, C, D, E
And Next, 1% by weight aqueous solutions of the respective organic onium ions were prepared.

【0025】次に,粘土鉱物としてモンモリロナイト
(クニミネ工業製クニピアF)を準備した。次いで,モ
ンモリロナイトの1重量%水溶液と,上記有機オニウム
イオンの1重量%水溶液とを,約80℃で,混合し,攪
拌した。次いで,濾過により余剰の有機オニウムイオン
を除去した後,48時間以上の凍結乾燥を行った。これ
により,表1に示すごとく,5種類の有機化したモンモ
リロナイトを得た。
Next, montmorillonite (Kunipia F, manufactured by Kunimine Kogyo Co., Ltd.) was prepared as a clay mineral. Next, a 1% by weight aqueous solution of montmorillonite and the 1% by weight aqueous solution of the organic onium ion were mixed and stirred at about 80 ° C. Next, after removing excess organic onium ions by filtration, freeze-drying was performed for 48 hours or more. As a result, as shown in Table 1, five types of organic montmorillonite were obtained.

【0026】また,ビニルアルコール共重合体として,
ポリエチレンビニルアルコール(以下,EVAとい
う。)を準備した。このEVAに,上記の有機化したモ
ンモリロナイトを無機含量として5重量%添加し,混練
した。混練は,220℃で二軸混練機により行った。次
いで,混練物を厚み0.5mmのシート状に成形した。
得られた成形体を,試料1〜3,C1,C2とした。モ
ンモリロナイトを添加しないものを試料C3とした。
Further, as a vinyl alcohol copolymer,
Polyethylene vinyl alcohol (hereinafter referred to as EVA) was prepared. To this EVA, 5% by weight of the above-organized montmorillonite as an inorganic content was added and kneaded. The kneading was performed at 220 ° C. using a twin-screw kneader. Next, the kneaded material was formed into a sheet having a thickness of 0.5 mm.
The obtained molded bodies were designated as Samples 1 to 3, C1 and C2. A sample to which no montmorillonite was added was designated as Sample C3.

【0027】次に,試料1〜3,C1,C2,C3の成
形体について,モンモリロナイトの層間距離及びガス透
過率を測定した。モンモリロナイトの層間距離は,X線
回折法により測定した。成形体のガス透過率の測定は,
シート状の成形体(厚み0.5mm)についての窒素ガ
スの透過率を測定することにより行った。これらの測定
結果を,表2に示した。
Next, with respect to the compacts of Samples 1 to 3, C1, C2 and C3, the interlayer distance of montmorillonite and gas permeability were measured. The interlayer distance of montmorillonite was measured by an X-ray diffraction method. The measurement of the gas permeability of the compact
The measurement was performed by measuring the nitrogen gas transmittance of a sheet-shaped molded body (thickness: 0.5 mm). Table 2 shows the results of these measurements.

【0028】表2より,試料1〜3の成形体(発明品)
のガス透過率は,試料C1,C2(比較例)の場合より
も小さかった。また,有機オニウムイオン中の水酸基の
濃度が高くなるにともなって,モンモリロナイトの層間
距離が短くなった。
From Table 2, it can be seen that the molded products of Samples 1 to 3 (inventive products)
Was lower than those of the samples C1 and C2 (Comparative Example). In addition, the interlayer distance of montmorillonite became shorter as the concentration of hydroxyl group in the organic onium ion became higher.

【0029】これらのことから,水酸基濃度が低すぎる
と,EVAとモンモリロナイトとの相溶性が低下し,ガ
ス遮断性が低下する。逆に,水酸基濃度が高くなるすぎ
ると,モンモリロナイトの層間が短くなりすぎ,成形体
のガス遮断性が低下する。以上より,有機オニウムイオ
ンの中に,20〜80モル%の水酸基を有する場合に,
優れたガス遮断性を発揮することがわかる。
From these facts, if the hydroxyl group concentration is too low, the compatibility between EVA and montmorillonite decreases, and the gas barrier properties decrease. Conversely, if the hydroxyl group concentration is too high, the interlayer of montmorillonite will be too short, and the gas barrier properties of the molded body will decrease. From the above, when the organic onium ion has 20 to 80 mol% of hydroxyl groups,
It can be seen that excellent gas barrier properties are exhibited.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【発明の効果】本発明によれば,ビニル系高分子材料に
粘土鉱物を均一に分散させることができる,粘土複合材
料の製造方法を提供することができる。
According to the present invention, it is possible to provide a method for producing a clay composite material in which a clay mineral can be uniformly dispersed in a vinyl polymer material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例における,粘土複合材料の説明図。FIG. 1 is an explanatory diagram of a clay composite material according to an embodiment.

【符号の説明】[Explanation of symbols]

1・・・有機オニウムイオン, 10・・・水酸基, 2・・・粘土鉱物, 3・・・ビニルアルコール共重合体, 5・・・粘土複合材料, DESCRIPTION OF SYMBOLS 1 ... Organic onium ion, 10 ... Hydroxyl group, 2 ... Clay mineral, 3 ... Vinyl alcohol copolymer, 5 ... Clay composite material,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 10〜80モル%の水酸基を有する有機
オニウムイオンからなる有機化剤を,粘土鉱物に添加し
て,該粘土鉱物を有機化し,次いで,上記有機化された
粘土鉱物をビニルアルコール共重合体と混合することを
特徴とする粘土複合材料の製造方法。
1. An organic agent comprising an organic onium ion having 10 to 80 mol% of hydroxyl groups is added to a clay mineral to make the clay mineral organic, and then the organic clay mineral is converted to vinyl alcohol. A method for producing a clay composite material, comprising mixing with a copolymer.
JP33152196A 1996-11-26 1996-11-26 Composite clay material Pending JPH10158459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33152196A JPH10158459A (en) 1996-11-26 1996-11-26 Composite clay material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33152196A JPH10158459A (en) 1996-11-26 1996-11-26 Composite clay material

Publications (1)

Publication Number Publication Date
JPH10158459A true JPH10158459A (en) 1998-06-16

Family

ID=18244588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33152196A Pending JPH10158459A (en) 1996-11-26 1996-11-26 Composite clay material

Country Status (1)

Country Link
JP (1) JPH10158459A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020010560A (en) * 2001-12-28 2002-02-04 (주) 나노텍 Manufacture for high strength composite product having with nano ceramic
JP2007204659A (en) * 2006-02-03 2007-08-16 Sumitomo Chemical Co Ltd Methacrylic resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020010560A (en) * 2001-12-28 2002-02-04 (주) 나노텍 Manufacture for high strength composite product having with nano ceramic
JP2007204659A (en) * 2006-02-03 2007-08-16 Sumitomo Chemical Co Ltd Methacrylic resin composition

Similar Documents

Publication Publication Date Title
EP1363956B1 (en) Comb-shaped copolymers based on acryloyldimethyl taurine acid
US6579927B1 (en) Nanocomposite material
Reddy et al. Self-healing polymers: Synthesis methods and applications
Salahuddin et al. Polymethylmethacrylate–montmorillonite composites: preparation, characterization and properties
EP1339790A1 (en) Grafted comb polymers based on acryloyldimethyl taurine acid
WO2002044229A1 (en) Cationically modified comb polymers based on acryloyldimethyl taurine acid
WO2002044269A1 (en) Acryoyldimethyltaurine acid-based grafted copolymers
Puig et al. Microstructured polyacrylamide hydrogels prepared via inverse microemulsion polymerization
KR102110885B1 (en) Temperature Responsive Soft Actuator and Method for Manufacturing the Same
EP2607404A1 (en) Composition and preparation of hydrogel nanocomposites with improved mechanical properties and use thereof.
Sh et al. Influence of concentration of filler on process gel formation in the composition on the basis of bentonites and acrylic copolymers
Kovačević et al. Morphology and failure in nanocomposites. Part I: Structural and mechanical properties
JPH10158459A (en) Composite clay material
JP5200213B2 (en) Polymer gel and method for producing the same
JP5285839B2 (en) Method for producing polymer composite gel
Skrtic et al. Effect of chemical structure and composition of the resin phase on mechanical strength and vinyl conversion of amorphous calcium phosphate‐based composites
Lee et al. Effect of intercalated hydrotalcite on swelling and mechanical behavior for poly (acrylic acid‐co‐N‐isopropylacrylamide)/hydrotalcite nanocomposite hydrogels
JP2011001482A (en) Polymer gel, polymer gel dispersion, polymer gel composite, and method for producing the same
Thévenot et al. Kinetic aspects, rheological properties and mechanoelectrical effects of hydrogels composed of polyacrylamide and polystyrene nanoparticles
US7514490B2 (en) Nanocomposite material
AU2001271125A1 (en) Reinforced filter material
JP3356027B2 (en) Resin composite
CA1232095A (en) Mouldable composition and shaped product produced therefrom
JP5501012B2 (en) ORGANIC-INORGANIC COMPOSITE GEL HAVING REPEATED CONCRETE PROFILE ON THE SURFACE AND METHOD FOR PRODUCING THE SAME
EP1956368A1 (en) Nano hybrid gels as polymer electrolytes