JPH10157447A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH10157447A
JPH10157447A JP31615896A JP31615896A JPH10157447A JP H10157447 A JPH10157447 A JP H10157447A JP 31615896 A JP31615896 A JP 31615896A JP 31615896 A JP31615896 A JP 31615896A JP H10157447 A JPH10157447 A JP H10157447A
Authority
JP
Japan
Prior art keywords
tank
heat exchanger
inlet pipe
partition member
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31615896A
Other languages
Japanese (ja)
Inventor
Hiroshi Ito
伊藤  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Corp filed Critical Calsonic Corp
Priority to JP31615896A priority Critical patent/JPH10157447A/en
Publication of JPH10157447A publication Critical patent/JPH10157447A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/035Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions

Abstract

PROBLEM TO BE SOLVED: To enhance the efficiency of heat exchange by making the flow rate of a heat-exchanging fluid in a heat exchanger uniform as a whole, to reduce the number of part items, and to enhance time rigidity of a tank. SOLUTION: A tank part 16 in a heat exchanger 11 is partitioned into a front tank part 16f, a rear tank 16r, and a straightening chamber S with which an inlet pipe 20 communicates, by partitioning the inside of a cylindrical member by a partition member 18 in the direction perpendicular to the flow direction of air, the cylindrical member being closed at both ends; a fluid passing part whose opening area gets smaller from the side near the outlet of the inlet pipe 20 to the far side is formed in the partition member 18 separating the straightening chamber S from the front tank part 16.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車用空気調和
装置に用いられる熱交換器、主としてエバポレータの改
良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger used in an air conditioner for a vehicle, and more particularly to an improvement of an evaporator.

【0002】[0002]

【従来の技術】一般に、自動車あるいは自動車用空気調
和装置に用いられる熱交換器には、ラジエータ、コンデ
ンサ、エバポレータ等があるが、例えば、従来のエバポ
レータとしては、図10に示されているものがある。こ
のエバポレータ1は、中央部に設けられた仕切壁3によ
って内部にUターン通路が形成された偏平な液管エレメ
ントを伝熱フィン(図示せず)を介して多数積層してな
るエバポレータ本体2を有し、空気は、この液管エレメ
ントの偏平な面に沿って流れ(A方向)、冷媒は、この
空気の流れ方向Aと対向流となるように液管エレメント
内をUターンして流れるようになっている。また、エバ
ポレータ本体2の下部には空気の流れ方向Aに沿って、
前方タンク4と後方タンク5が設けられ、前方タンク4
には、出口管6が、後方タンク5には、入口管7が同一
側面でそれぞれ接続されている。
2. Description of the Related Art Generally, a heat exchanger used for a vehicle or an air conditioner for a vehicle includes a radiator, a condenser, an evaporator, and the like. For example, a conventional evaporator shown in FIG. is there. The evaporator 1 includes an evaporator main body 2 formed by laminating a large number of flat liquid tube elements having a U-turn passage formed therein by a partition wall 3 provided at a central portion via heat transfer fins (not shown). The air flows along the flat surface of the liquid pipe element (A direction), and the refrigerant flows in the liquid pipe element in a U-turn so as to flow in a direction opposite to the flow direction A of the air. It has become. In the lower part of the evaporator body 2, along the air flow direction A,
A front tank 4 and a rear tank 5 are provided.
The outlet pipe 6 is connected to the rear tank 5 and the inlet pipe 7 is connected to the rear tank 5 on the same side.

【0003】したがって、エバポレータ1内の冷媒の流
れは、入口管7→後方タンク5→冷媒の上流側である後
方蒸発部9→冷媒の下流側である前方蒸発部8→前方タ
ンク4を経て出口管6に至ることになる。
Therefore, the flow of the refrigerant in the evaporator 1 flows through the inlet pipe 7 → the rear tank 5 → the rear evaporator 9 which is the upstream side of the refrigerant → the front evaporator 8 which is the downstream side of the refrigerant → the outlet via the front tank 4. It will lead to tube 6.

【0004】このエバポレータ1では、それぞれのタン
ク4,5がエバポレータ本体2の前後方向を2分割した
左右方向に長い矩形状に形成されているために、後方タ
ンク5に流入した冷媒が矩形状の長手方向に一様に分配
されず、冷媒が流入するタンク部分の手前と先方とで、
冷媒量が不均等になる虞れがある。
In the evaporator 1, since the tanks 4 and 5 are each formed in a rectangular shape which is long in the left-right direction obtained by dividing the front-rear direction of the evaporator body 2 into two parts, the refrigerant flowing into the rear tank 5 has a rectangular shape. It is not uniformly distributed in the longitudinal direction, and in front of and behind the tank part where the refrigerant flows,
There is a possibility that the refrigerant amounts may be uneven.

【0005】このため、従来からエバポレータ全体に冷
媒が均一に分散して流れるようにするために、いわゆる
チューニングが行なわれている。
For this reason, conventionally, so-called tuning has been performed in order to make the refrigerant uniformly dispersed and flow throughout the evaporator.

【0006】チューニング方法としては、前方タンク4
や後方タンク5内にデバイドと称される仕切り板を設
け、冷媒が前後左右に複雑に蛇行して流れるようにし、
冷媒と空気とを熱交換する方法(実公平7−49240
号公報)や、多数の液管が連設されたヘッダーに入口管
と液管が直接連通しないように仕切りを設け、当該仕切
りに入口管から流入した液体が液管に均等に入るように
多孔板としたもの(実開平5−96784号公報)など
がある。
[0006] As a tuning method, the front tank 4
And a partition plate called a divide is provided in the rear tank 5 so that the refrigerant flows meandering in a complicated manner from front to back, left and right,
A method of exchanging heat between a refrigerant and air (Japanese Utility Model No. 7-49240)
And a header provided with a large number of liquid tubes connected to each other so that the inlet tube and the liquid tubes do not directly communicate with each other. And the like (Japanese Utility Model Laid-Open No. 5-96784).

【0007】[0007]

【発明が解決しようとする課題】ところが、前者の方法
は、デバイドを取り付けなければならないので、部品点
数が増大し、コストの高いものとなる。また、後者の方
法は、単なる多孔板では入口管からの冷媒が液管に偏流
することを完全に防止することは難しい。さらにこの多
孔板の口径を変更して偏流を防止するもの(実開昭62
−172958号公報)もあるが、単に板に口径の相違
する孔を設けても、チューニングには良好な結果が得ら
れても、強度的に不十分になったり、製造が面倒になる
という不具合もある。
However, in the former method, since a divide must be attached, the number of parts is increased and the cost is high. In the latter method, it is difficult to completely prevent the refrigerant flowing from the inlet pipe from flowing into the liquid pipe with a mere perforated plate. In addition, the diameter of this perforated plate is changed to prevent drifting (see Shokai 62
However, there is a problem that even if a hole having a different diameter is simply provided in the plate, even if a good result is obtained for tuning, the strength becomes insufficient or the production becomes troublesome. There is also.

【0008】本発明は、上記従来技術の課題を解決する
もので、熱交換器本体のタンク部を改良して熱交換流体
の偏流を防止して熱交換効率を向上させるとともに、部
品点数を削減し、タンクの剛性、ひいては熱交換器の強
度を飛躍的に向上させることを目的とする。
The present invention solves the above-mentioned problems of the prior art, and improves the heat exchange efficiency by improving the tank portion of the heat exchanger body to prevent the drift of the heat exchange fluid, thereby reducing the number of parts. It is another object of the present invention to dramatically improve the rigidity of the tank and the strength of the heat exchanger.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する請求
項1に記載の発明は、仕切壁によって内部にUターン通
路が形成された偏平な液管エレメントを伝熱フィンを介
して多数積層してなる熱交換器本体と、この液管エレメ
ントの偏平な面に沿って流れる空気の流れ方向前方下部
に設けられた前方タンク部及び同方向後方下部に設けら
れた後方タンク部を備えたタンク部と、当該タンク部に
熱交換流体の出口管及び入口管をそれぞれ同一側面に連
設し、当該入口管から流入した熱交換流体を後方タンク
部より前記Uターン通路を通って前方タンク部に導き、
出口管より流出させるようにした熱交換器において、タ
ンク部を、両端が閉鎖された1本の筒状部材の内部を仕
切部材により前記空気の流れ方向に直交する方向に沿っ
て仕切ることにより前記前方タンク部、後方タンク及び
前記入口管が連通する整流室としたものにより構成し、
当該整流室と前記後方タンク部とを仕切る前記仕切部材
に前記入口管の流出口に近い側から遠い側に向かって次
第に開口面積が小さくなる流体通過部を形成したことを
特徴とする。
According to the first aspect of the present invention, a flat liquid pipe element having a U-turn passage formed therein by a partition wall is laminated via heat transfer fins. Comprising a heat exchanger body comprising: a front tank portion provided at a lower front portion in a flow direction of air flowing along a flat surface of the liquid pipe element; and a rear tank portion provided at a lower rear portion in the same direction. And an outlet pipe and an inlet pipe for the heat exchange fluid are connected to the same side of the tank, and the heat exchange fluid flowing from the inlet pipe is guided from the rear tank to the front tank through the U-turn passage. ,
In the heat exchanger configured to flow out from the outlet pipe, the tank portion is partitioned by a partition member along a direction orthogonal to the air flow direction with a partition member inside a single cylindrical member having both ends closed. A front tank, a rear tank and a rectifying chamber communicating with the inlet pipe.
A fluid passage portion having an opening area gradually reduced from a side closer to the outlet of the inlet pipe to a side farther from the outlet of the inlet pipe is formed in the partition member that partitions the rectifying chamber and the rear tank portion.

【0010】このようにすれば、入口管から整流室に入
った熱交換流体は、整流室から流体通過部を通って後方
タンクに入るとき、概して整流室の手前では少なく奥で
は多くなる傾向を呈するが、当該整流室と後方タンク部
とを仕切る仕切部材に入口管の流出口に近い側から遠い
側に向かって次第に開口面積が大きくなる流体通過部を
形成すれば、前記傾向が修正され、整流室から後方タン
クに流量が均等化される。しかも、この整流された熱交
換流体は、後方タンク部内で相互に混じり合い、これに
よっても均等な流れとなって後方タンクに入り、均一に
各液管エレメントに流入する。したがって、デバイドに
より熱交換器内の流れを複雑に流さなくても、全体的に
均等に分散され、熱交換効率が高められる。
In this way, when the heat exchange fluid that has entered the rectifying chamber from the inlet pipe passes through the fluid passage from the rectifying chamber and enters the rear tank, the heat exchange fluid generally tends to be small in front of the rectifying chamber and large in the back. However, if the partition member for partitioning the rectifying chamber and the rear tank portion is formed with a fluid passage portion in which the opening area gradually increases from the side closer to the outlet of the inlet pipe to the side farther from the outlet, the tendency is corrected. The flow is equalized from the straightening chamber to the rear tank. In addition, the rectified heat exchange fluids are mixed with each other in the rear tank portion, thereby also forming a uniform flow, entering the rear tank, and uniformly flowing into each liquid pipe element. Therefore, even if the flow in the heat exchanger is not complicatedly flowed by the divide, the flow is uniformly distributed as a whole, and the heat exchange efficiency is improved.

【0011】また、両端が閉鎖された1本の筒状部材の
内部を仕切部材により仕切り、前方タンク、後方タンク
及び整流室を形成しているので、タンク制作における部
品点数が削減され、タンク自体の剛性も向上し、しかも
このタンクに取り付けられている熱交換器本体の剛性も
向上する。
Further, since the inside of one cylindrical member having both ends closed is partitioned by a partition member to form a front tank, a rear tank and a rectifying chamber, the number of parts in tank production is reduced, and the tank itself is reduced. The rigidity of the heat exchanger body attached to the tank is also improved.

【0012】請求項2に記載の発明は、仕切部材を軸直
角断面がほぼU字状をしたものにより構成したことを特
徴とする。
The invention according to claim 2 is characterized in that the partition member is formed by a member whose cross section perpendicular to the axis is substantially U-shaped.

【0013】このようにすれば、部品点数が削減され制
作が容易となるのみでなく、仕切部材自体の剛性も向上
し、これによりタンクの剛性も向上する。
In this case, not only the number of parts is reduced and production is facilitated, but also the rigidity of the partition member itself is improved, thereby improving the rigidity of the tank.

【0014】請求項3に記載の発明は、仕切部材を軸直
角断面が筒状をしたものにより構成したことを特徴とす
る。
The invention according to a third aspect is characterized in that the partition member is formed of a cylindrical cross section perpendicular to the axis.

【0015】このようにすれば、仕切部材自体の剛性が
さらに向上し、これによりタンクの剛性も向上する。
[0015] By doing so, the rigidity of the partition member itself is further improved, and thereby the rigidity of the tank is also improved.

【0016】[0016]

【発明の実施の形態】以下に、本発明を図示実施の形態
につきを説明する。図1は本発明に係る熱交換器の実施
の形態を略示する積層型エバポレータの分解斜視図、図
2は液管エレメントと伝熱フィンを示す分解斜視図、図
3は前記積層型エバポレータのタンク部分を示す断面
図、図4は前記積層型エバポレータの仕切部材の一方を
示す正面図、図5は整流室内における流入冷媒の流量分
布図、図6は前記仕切部材の他の実施の形態を示す正面
図、図7は前記積層型エバポレータの冷媒の流れ状態を
示す概略斜視図、図8,9は前記積層型エバポレータの
仕切部材のさらに他の実施の形態を示すタンク部分を示
す断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the illustrated embodiments. FIG. 1 is an exploded perspective view of a laminated evaporator schematically showing an embodiment of a heat exchanger according to the present invention, FIG. 2 is an exploded perspective view showing a liquid tube element and heat transfer fins, and FIG. FIG. 4 is a cross-sectional view showing a tank portion, FIG. 4 is a front view showing one of the partitioning members of the laminated evaporator, FIG. 5 is a flow distribution diagram of the refrigerant flowing into the rectifying chamber, and FIG. 6 shows another embodiment of the partitioning member. FIG. 7 is a schematic perspective view showing a flow state of a refrigerant in the laminated evaporator, and FIGS. 8 and 9 are cross-sectional views showing a tank part showing still another embodiment of a partition member of the laminated evaporator. is there.

【0017】本実施の形態の積層型エバポレータ11
は、図1に示すように、熱交換器本体12、タンク部1
6、出口管19及び入口管20からなり、入口管20か
ら流入し熱交換器本体12を通って出口管19から流出
する冷媒と空気(白抜き矢印)を熱交換させるようにし
たものである。
The laminated evaporator 11 of the present embodiment
As shown in FIG. 1, the heat exchanger body 12, the tank 1
6, an outlet pipe 19 and an inlet pipe 20, wherein the refrigerant and the air (open arrows) flowing in from the inlet pipe 20 and flowing out of the outlet pipe 19 through the heat exchanger body 12 are heat-exchanged. .

【0018】熱交換器本体12は、図2に示すように、
偏平な液管エレメントeを伝熱フィンfを介して多数積
層することにより構成したものである。この液管エレメ
ントeは、一対のプレートp1 ,p2 を最中合わせする
ことにより内部にUターン通路tが形成されているが、
各プレートp1 又はp2 には、中央に仕切壁13を形成
するためのビードbが形成され、下端に冷媒出入口形成
用の折り曲げ部cが形成されている。
The heat exchanger body 12 is, as shown in FIG.
It is constructed by laminating a number of flat liquid tube elements e via heat transfer fins f. In this liquid pipe element e, a U-turn passage t is formed internally by aligning a pair of plates p1 and p2.
Each plate p1 or p2 has a bead b for forming a partition wall 13 at the center and a bent portion c for forming a refrigerant inlet / outlet at the lower end.

【0019】タンク部16は、上面に多数の通孔が開設
された両端閉鎖の1本の筒状部材17から構成され、当
該通孔に液管エレメントeの冷媒出入口部分が嵌合さ
れ、ロー付けにより固着されるようになっている。ま
た、筒状部材17の内部には、仕切部材18が前記空気
の流れ方向Aに直交する方向に沿うように設けられ、当
該筒状部材17の内部を3つの室に仕切っている。これ
ら各室は、図3に示すように、前方から前方タンク16
f、整流室S及び後方タンク16rとなっており、整流
室Sには冷媒が流入する入口管20が、前方タンク16
fには出口管19がそれぞれ筒状部材17の同一側面に
連通されている。この整流室Sと後方タンク16rとを
仕切る仕切部材18の一方には、図4に示すように、入
口管20の流出口に近い側から遠い側に向かって次第に
開口面積が小さくなる流体通過部Oが形成され、入口管
20から流入した冷媒が整流室Sより流体通過部Oを通
って後方タンク16rに流入するように構成している。
The tank portion 16 is composed of a single cylindrical member 17 having a large number of through holes formed on the upper surface and closed at both ends. The refrigerant inlet / outlet portion of the liquid pipe element e is fitted into the through hole. It is fixed by attaching. A partition member 18 is provided inside the tubular member 17 so as to extend along a direction orthogonal to the air flow direction A, and partitions the inside of the tubular member 17 into three chambers. As shown in FIG. 3, each of these chambers is provided with a front tank 16 from the front.
f, a rectifying chamber S and a rear tank 16r. The inlet pipe 20 through which the refrigerant flows into the rectifying chamber S is
The outlet pipes 19 communicate with the same side of the tubular member 17 at f. As shown in FIG. 4, one of the partition members 18 that separates the rectifying chamber S from the rear tank 16r has a fluid passage portion whose opening area gradually decreases from a side closer to the outlet of the inlet pipe 20 to a side farther from the outlet. O is formed, and the refrigerant flowing from the inlet pipe 20 is configured to flow from the rectifying chamber S through the fluid passage portion O to the rear tank 16r.

【0020】ここに、仕切部材18に流体通過部Oを形
成した場合の、整流室S側から後方タンク16rに流入
する冷媒の流量は、図5に示すように、入口側付近では
比較的少なく、奥側で多くなっている。したがって、こ
の冷媒通過部Oの開口面積、つまり口径は、整流室S内
を流れる冷媒が後方タンク16rに均等に流入するよう
に、整流室S内の冷媒が後方タンク16rに流入やすい
遠い側は小さくし、入口管20の流出口近傍は大きくし
ている。これにより入口管20から流出し、方向変換し
て後方タンク16rに流入する冷媒は、整流され、後方
タンク16rにほぼ均等に流入する。なお、冷媒通過部
Oを開設するに当たっては、必ずしも口径を変えるのみ
でなく、均一な口径のものの孔ピッチを調整しても良
く、開設数を調節しても良い。また、図6に示すように
矩形状の冷媒通過部Oとし、その開口面積を変えるよう
にしても良い。
Here, when the fluid passage portion O is formed in the partition member 18, the flow rate of the refrigerant flowing into the rear tank 16r from the rectifying chamber S side is relatively small near the inlet side as shown in FIG. , More on the back side. Therefore, the opening area of the refrigerant passage portion O, that is, the diameter, is such that the refrigerant in the rectification chamber S is more likely to flow into the rear tank 16r so that the refrigerant flowing in the rectification chamber S flows evenly into the rear tank 16r. It is made small and the vicinity of the outlet of the inlet pipe 20 is made large. As a result, the refrigerant flowing out of the inlet pipe 20, changing its direction, and flowing into the rear tank 16r is rectified and flows almost uniformly into the rear tank 16r. In opening the refrigerant passage O, not only the diameter is not necessarily changed, but also the hole pitch of a uniform diameter may be adjusted, or the number of openings may be adjusted. Further, as shown in FIG. 6, a rectangular refrigerant passage portion O may be provided, and the opening area thereof may be changed.

【0021】次に、当該エバポレータ11の作用を説明
する。まず、この積層型エバポレータを制作する場合に
は、例えば、多数の通孔を開設したプレートをプレスあ
るいは折り曲げにより筒状に成形する。次に、この側面
を溶接等により接合した後に、内部に仕切部材18を挿
入して接合する。そして、一端に出口管19及び入口管
20を接合し、他端を端板により閉塞する。このように
形成されたタンク部16に予め形成された液管エレメン
トeを取付けるとともに当該液管エレメントe間に伝熱
フィンfを介装して熱交換器を形成する。このように構
成された熱交換器は、両端が閉鎖された1本の筒状部材
17の内部を仕切部材18により仕切り、前方タンク1
6f、後方タンク16r及び整流室Sを形成しているの
で、デバイドを複数設けなくても整流された冷媒を熱交
換器本体12内を流通させることができ、タンク部にお
ける部品点数が削減され、しかも1本の筒状部材17に
よりタンク部16を形成しているので、タンク自体の剛
性も向上する。この結果、タンク部16に取り付けられ
ている熱交換器本体12の剛性も向上することになる。
Next, the operation of the evaporator 11 will be described. First, when manufacturing this laminated evaporator, for example, a plate having a large number of through holes is formed into a cylindrical shape by pressing or bending. Next, after joining the side surfaces by welding or the like, the partition member 18 is inserted inside and joined. Then, the outlet pipe 19 and the inlet pipe 20 are joined to one end, and the other end is closed by an end plate. The liquid pipe element e formed in advance is attached to the tank section 16 thus formed, and the heat exchanger is formed by interposing the heat transfer fin f between the liquid pipe elements e. In the heat exchanger configured as described above, the inside of one tubular member 17 having both ends closed is partitioned by the partition member 18, and the front tank 1 is closed.
6f, the rear tank 16r and the rectifying chamber S are formed, so that the rectified refrigerant can be circulated in the heat exchanger body 12 without providing a plurality of divides, and the number of parts in the tank portion is reduced. Moreover, since the tank portion 16 is formed by one cylindrical member 17, the rigidity of the tank itself is also improved. As a result, the rigidity of the heat exchanger body 12 attached to the tank 16 is also improved.

【0022】このようにして形成された熱交換器の入口
管20から整流室Sに流入した冷媒は、図7に示すよう
に、整流室Sの軸線に沿うように流れ整流室Sの奥の壁
に衝突し、流速を弱められ、仕切部材18の流体通過部
Oを通る。この場合、流体通過部Oの開口面積は、入口
管20の流出口近傍は大きく、遠い側は小さくなってい
るので、整流室Sから後方タンク16rに流入する冷媒
は、後方タンク16rの軸線方向である程度整流されて
後方タンク16rに流入することになる。また後方タン
ク16rに流入した冷媒は、後方タンク16r内で一旦
貯溜されることになるので、これによっても冷媒の流速
は後方タンク16rの全域に亘りほぼ均等になる。
The refrigerant flowing into the rectification chamber S from the inlet pipe 20 of the heat exchanger thus formed flows along the axis of the rectification chamber S as shown in FIG. It collides with the wall, the flow velocity is weakened, and passes through the fluid passage O of the partition member 18. In this case, the opening area of the fluid passage portion O is large near the outlet of the inlet pipe 20 and small on the far side, so that the refrigerant flowing into the rear tank 16r from the rectification chamber S flows in the axial direction of the rear tank 16r. Therefore, the air is rectified to some extent and flows into the rear tank 16r. Further, the refrigerant flowing into the rear tank 16r is temporarily stored in the rear tank 16r, so that the flow velocity of the refrigerant becomes substantially equal over the entire area of the rear tank 16r.

【0023】この結果、冷媒は、多数ある各液管エレメ
ントeに均等に流入し、U字状の通路tを通ってエバポ
レータ本体12の前面側に向かうことになるので、冷媒
がエバポレータ本体12の全体に均等に分散されること
になり、熱交換状態が均一化され、熱交換効率が高めら
れる。そして、このような冷媒が前方タンク16fに集
められ、出口管19から流出する。
As a result, the refrigerant flows evenly into each of the many liquid pipe elements e and flows toward the front side of the evaporator main body 12 through the U-shaped passage t. It is evenly distributed throughout, the heat exchange state is made uniform, and the heat exchange efficiency is enhanced. Then, such refrigerant is collected in the front tank 16f and flows out from the outlet pipe 19.

【0024】本発明は、上述した実施の形態のみに限定
されるものではなく、特許請求の範囲の範囲内で種々改
変することができる。例えば、前記仕切部材18は、一
対のプレートを用いて筒状部材17の内部を3つの室に
分割したものであるが、本発明は、これのみでなく、図
8に示すように、軸直角断面がほぼU字状をした仕切部
材18を使用しても良い。このようにすれば、部品点数
が削減されるのみでなく、仕切部材自体の剛性も向上
し、これによりタンクの剛性も向上する。
The present invention is not limited to the above-described embodiment, but can be variously modified within the scope of the claims. For example, the partition member 18 divides the inside of the cylindrical member 17 into three chambers using a pair of plates, but the present invention is not limited to this, and as shown in FIG. A partition member 18 having a substantially U-shaped cross section may be used. This not only reduces the number of components, but also increases the rigidity of the partition member itself, thereby improving the rigidity of the tank.

【0025】また、図9に示すように、軸直角断面が筒
状をした仕切部材18を使用しても良い。このようにす
れば、仕切部材18自体の剛性が前記図8に示すものよ
りさらに向上し、これによりタンクの剛性も向上する。
Further, as shown in FIG. 9, a partition member 18 having a cylindrical section perpendicular to the axis may be used. By doing so, the rigidity of the partition member 18 itself is further improved than that shown in FIG. 8, and the rigidity of the tank is also improved.

【0026】[0026]

【発明の効果】以上説明したように、請求項1に記載の
発明は、整流室から流体通過部を通るとき及び後方タン
クに入ったときに、仕切部材等による整流作用を受け、
各液管エレメントに均一に流入し、熱交換器本体での熱
交換効率が高められ、また、両端が閉鎖された1本の筒
状部材の内部を仕切部材により仕切り、前方タンク、後
方タンク及び整流室を形成しているので、タンク制作に
おける部品点数が削減され、タンク自体の剛性も向上
し、しかもこのタンクに取り付けられている熱交換器本
体の剛性も向上する。
As described above, according to the first aspect of the present invention, when passing through the fluid passage from the rectifying chamber and entering the rear tank, the rectifying action of the partition member or the like is provided.
It flows into each liquid pipe element uniformly, the heat exchange efficiency in the heat exchanger body is enhanced, and the inside of one tubular member whose both ends are closed is partitioned by a partition member, a front tank, a rear tank and Since the rectifying chamber is formed, the number of parts in tank production is reduced, the rigidity of the tank itself is improved, and the rigidity of the heat exchanger body attached to the tank is also improved.

【0027】請求項2に記載の発明は、仕切部材を軸直
角断面U字状としたので、部品点数が削減され制作が容
易となるのみでなく、仕切部材自体の剛性も向上し、こ
れによりタンクの剛性も向上する。
According to the second aspect of the present invention, since the partition member has a U-shaped cross section perpendicular to the axis, not only the number of parts is reduced and production is facilitated, but also the rigidity of the partition member itself is improved. The rigidity of the tank is also improved.

【0028】請求項3に記載の発明は、仕切部材を軸直
角断面筒状としたので、仕切部材自体の剛性がさらに向
上し、これによりタンクの剛性も向上する。
According to the third aspect of the present invention, since the partition member has a tubular shape in a cross section perpendicular to the axis, the rigidity of the partition member itself is further improved, and thereby the rigidity of the tank is also improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態を略示する分解斜視図で
ある。
FIG. 1 is an exploded perspective view schematically showing an embodiment of the present invention.

【図2】 液管エレメントと伝熱フィンを示す分解斜視
図である。
FIG. 2 is an exploded perspective view showing a liquid tube element and heat transfer fins.

【図3】 同実施の形態のタンク部分を示す断面図であ
る。
FIG. 3 is a sectional view showing a tank portion of the embodiment.

【図4】 同実施の形態の仕切部材の一方を示す正面図
である。
FIG. 4 is a front view showing one of the partition members of the embodiment.

【図5】 整流室内における流入冷媒の流量分布図であ
る。
FIG. 5 is a flow distribution diagram of a refrigerant flowing in a rectification chamber.

【図6】 仕切部材の他の実施の形態を示す正面図であ
る。
FIG. 6 is a front view showing another embodiment of the partition member.

【図7】 同実施の形態の冷媒の流れ状態を示す概略斜
視図である。
FIG. 7 is a schematic perspective view showing a flow state of a refrigerant according to the embodiment.

【図8】 本発明の他の実施の形態のタンク部分を示す
断面図である。
FIG. 8 is a sectional view showing a tank portion according to another embodiment of the present invention.

【図9】 本発明のさらに他の実施の形態のタンク部分
を示す断面図である。
FIG. 9 is a sectional view showing a tank portion according to still another embodiment of the present invention.

【図10】 従来の積層型エバポレータを示す概略斜視
図である。
FIG. 10 is a schematic perspective view showing a conventional laminated evaporator.

【符号の説明】[Explanation of symbols]

11…熱交換器、 12…熱交換器本体、 13…仕切壁、 16…タンク部、 16f…前方タンク部、 16r…後方タンク部、 17…筒状部材、 18…仕切部材、 19…出口管、 20…入口管、 O…冷媒通過部、 S…整流室。 DESCRIPTION OF SYMBOLS 11 ... Heat exchanger, 12 ... Heat exchanger main body, 13 ... Partition wall, 16 ... Tank part, 16f ... Front tank part, 16r ... Back tank part, 17 ... Cylindrical member, 18 ... Partition member, 19 ... Outlet pipe , 20 ... inlet pipe, O ... refrigerant passage, S ... rectification chamber.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 仕切壁(13)によって内部にUターン通路
が形成された偏平な液管エレメント(e) を伝熱フィン
(f) を介して多数積層してなる熱交換器本体(12)と、こ
の液管エレメント(e) の偏平な面に沿って流れる空気の
流れ方向前方下部に設けられた前方タンク部(16f) 及び
同方向後方下部に設けられた後方タンク部(16r) を備え
たタンク部(16)と、当該タンク部(16)に熱交換流体の出
口管(19)及び入口管(20)をそれぞれ同一側面に連設し、
当該入口管(20)から流入した熱交換流体を後方タンク部
(16r) より前記Uターン通路を通って前方タンク部(16
f)に導き、出口管(19)より流出させるようにした熱交換
器(11)において、 タンク部(16)を、両端が閉鎖された1本の筒状部材(17)
の内部を仕切部材(18)により前記空気の流れ方向に直交
する方向に沿って仕切ることにより前記前方タンク部(1
6f) 、後方タンク(16r) 及び前記入口管(20)が連通する
整流室(S)としたものにより構成し、当該整流室(S)と
前記前方タンク部(16)とを仕切る前記仕切部材(18)に前
記入口管(20)の流出口に近い側から遠い側に向かって次
第に開口面積が小さくなる流体通過部(O)を形成したこ
とを特徴とする熱交換器。
1. A flat liquid pipe element (e) having a U-turn passage formed therein by a partition wall (13).
(f) and a front tank section (16f) provided at the lower front in the flow direction of air flowing along the flat surface of the liquid pipe element (e). ) And a rear tank part (16r) provided at the rear lower part in the same direction, and a heat exchange fluid outlet pipe (19) and an inlet pipe (20) in the tank part (16), respectively. Connected on the same side,
The heat exchange fluid flowing from the inlet pipe (20) is transferred to the rear tank
(16r) through the U-turn passage to the front tank part (16r
In the heat exchanger (11) which is led to f) and flows out from the outlet pipe (19), the tank part (16) is connected to a single cylindrical member (17) having both ends closed.
Is partitioned by a partitioning member (18) in a direction perpendicular to the air flow direction, whereby the front tank portion (1
6f) a rectifying chamber (S) in which the rear tank (16r) and the inlet pipe (20) communicate with each other, and the partition member for separating the rectifying chamber (S) from the front tank portion (16). The heat exchanger according to (18), wherein a fluid passage portion (O) whose opening area gradually decreases from a side closer to the outlet of the inlet pipe (20) to a side farther from the outlet.
【請求項2】 前記仕切部材(18)は、軸直角断面がほぼ
U字状をしたものにより構成してなる請求項1に記載の
熱交換器。
2. The heat exchanger according to claim 1, wherein the partition member has a substantially U-shaped cross section perpendicular to the axis.
【請求項3】 前記仕切部材(18)は、軸直角断面が筒状
をしたものにより構成してなる請求項1に記載の熱交換
器。
3. The heat exchanger according to claim 1, wherein the partitioning member (18) has a cylindrical cross section perpendicular to the axis.
JP31615896A 1996-11-27 1996-11-27 Heat exchanger Withdrawn JPH10157447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31615896A JPH10157447A (en) 1996-11-27 1996-11-27 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31615896A JPH10157447A (en) 1996-11-27 1996-11-27 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH10157447A true JPH10157447A (en) 1998-06-16

Family

ID=18073936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31615896A Withdrawn JPH10157447A (en) 1996-11-27 1996-11-27 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH10157447A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255095A (en) * 2000-03-15 2001-09-21 Zexel Valeo Climate Control Corp Heat exchanger
JP2002147802A (en) * 2000-11-06 2002-05-22 Nok Corp Humidifier
WO2009017042A1 (en) * 2007-07-27 2009-02-05 Mitsubishi Heavy Industries, Ltd. Refrigerant evaporator
KR100966746B1 (en) * 2003-05-23 2010-06-29 한라공조주식회사 Plate for evaporator
JP2011099649A (en) * 2009-11-09 2011-05-19 Showa Denko Kk Evaporator
JP2021517232A (en) * 2018-03-22 2021-07-15 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Heat exchanger with improved liquid / gas mixer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255095A (en) * 2000-03-15 2001-09-21 Zexel Valeo Climate Control Corp Heat exchanger
JP2002147802A (en) * 2000-11-06 2002-05-22 Nok Corp Humidifier
JP4610715B2 (en) * 2000-11-06 2011-01-12 Nok株式会社 Humidifier
KR100966746B1 (en) * 2003-05-23 2010-06-29 한라공조주식회사 Plate for evaporator
WO2009017042A1 (en) * 2007-07-27 2009-02-05 Mitsubishi Heavy Industries, Ltd. Refrigerant evaporator
JP2009030882A (en) * 2007-07-27 2009-02-12 Mitsubishi Heavy Ind Ltd Refrigerant evaporator
US8413715B2 (en) 2007-07-27 2013-04-09 Mitsubishi Heavy Industries, Ltd. Refrigerant evaporator with U-turn block and refrigerant-distributing holes
JP2011099649A (en) * 2009-11-09 2011-05-19 Showa Denko Kk Evaporator
JP2021517232A (en) * 2018-03-22 2021-07-15 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Heat exchanger with improved liquid / gas mixer

Similar Documents

Publication Publication Date Title
US5984000A (en) Layered heat exchangers
US4821531A (en) Refrigerant evaporator
US20050269066A1 (en) Heat exchanger
EP0947792A2 (en) Refrigerant evaporator and manufacturing method for the same
EP0855566A2 (en) Integrated heat exchanger
JPH08254399A (en) Heat exchanger
JPH10185463A (en) Heat-exchanger
JPH06159983A (en) Heat exchanger
US6293011B1 (en) Heat exchanger for vehicle air conditioner
JP2002162174A (en) Snaky heat exchanger
US20070051504A1 (en) Heat exchanger
JPH0571876B2 (en)
US7918266B2 (en) Heat exchanger
US20040050531A1 (en) Heat exchanger
JPH10157447A (en) Heat exchanger
JP3627295B2 (en) Heat exchanger
JPH0933187A (en) Laminated heat exchanger
JPH10325646A (en) Heat exchanger
JPH11325784A (en) Heat exchanger
JP2005195318A (en) Evaporator
JP2001330391A (en) Heat exchanger
JPH08271167A (en) Heat exchanger
JPH09280773A (en) Liquid receiving part built-in type condenser
JP2000055573A (en) Refrigerant evaporator
JPH09113069A (en) Evaporator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040203