JPH1015389A - Method for regenerating catalyst - Google Patents

Method for regenerating catalyst

Info

Publication number
JPH1015389A
JPH1015389A JP8179623A JP17962396A JPH1015389A JP H1015389 A JPH1015389 A JP H1015389A JP 8179623 A JP8179623 A JP 8179623A JP 17962396 A JP17962396 A JP 17962396A JP H1015389 A JPH1015389 A JP H1015389A
Authority
JP
Japan
Prior art keywords
catalyst
copper
reaction
hydrogen chloride
chromium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8179623A
Other languages
Japanese (ja)
Other versions
JP3788530B2 (en
Inventor
Joji Morizaki
譲治 森崎
Teruo Hirayama
照夫 平山
Hironori Gamachi
宏典 蒲地
Kunihiro Yamada
国博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP17962396A priority Critical patent/JP3788530B2/en
Publication of JPH1015389A publication Critical patent/JPH1015389A/en
Application granted granted Critical
Publication of JP3788530B2 publication Critical patent/JP3788530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively regenerate a chromium oxide catalyst with deteriorated activity by impregnating the catalyst with a solution containing copper, alkali metal, rare earth metal, and transition metal excluding copper and burning it when the catalyst of chromium oxide as a main component which is used for the production of chlorine by the oxidation of hydrogen chloride. SOLUTION: In the regeneration of a catalyst of chromium oxide as a main component which is used for the production of chlorine by the oxidation of hydrogen chloride, the catalyst is impregnated with a solution containing copper, alkali metal, rare earth metal, and transition metal excluding copper and burned at 800 deg.C or below. In this process, potassium is preferable as alkali metal, lanthanum as rare earth metal, and cobalt as transition metal excluding copper. The catalyst containing chromium oxide as a main component, which is a basic catalyst, is prepared by burning a mixture of chromium salt such as chromium nitrate, ammonia or a compound which releases ammonia such as urea, and a silicon compound at 800 deg.C or below.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は塩酸の接触酸化によ
り塩素を製造するために使用する酸化クロム系触媒の再
生方法に関する。
The present invention relates to a method for regenerating a chromium oxide catalyst used for producing chlorine by catalytic oxidation of hydrochloric acid.

【0002】塩素は食塩の電解により大規模に製造され
ているが、併産する苛性ソーダとの需要バランスを調整
するのが困難な状況になっている。一方、塩化水素は有
機化合物の塩素化反応またはホスゲンとの反応の際に大
量に副生しているが、その副生量は需要より大幅に多い
ため、大量の塩化水素がかなりの処理コストをかけて無
駄に廃棄されている。
[0002] Chlorine is produced on a large scale by electrolysis of salt, but it is difficult to balance the demand with co-produced caustic soda. On the other hand, hydrogen chloride is by-produced in large amounts during the chlorination reaction of organic compounds or the reaction with phosgene, but the amount of by-products is much larger than demand, so a large amount of hydrogen chloride requires considerable processing costs. It is wasted and wasted.

【0003】従って、塩化水素から塩素を効率良く回収
出来れば、苛性ソーダとの不均衡を生じる事なく、塩素
の需要を満たすことが出来る。
Therefore, if chlorine can be efficiently recovered from hydrogen chloride, the demand for chlorine can be satisfied without causing imbalance with caustic soda.

【0004】[0004]

【従来の技術】酸化クロムを塩化水素の酸化触媒として
用いる提案もあるが、工業的使用に耐え得る十分な性能
を示す結果は報告されていない。
2. Description of the Related Art There have been proposals to use chromium oxide as an oxidation catalyst for hydrogen chloride, but no results have been reported that show sufficient performance for industrial use.

【0005】例えば、無水クロム酸または硝酸クロム水
溶液を適当な担体に含浸、熱分解して調製した触媒上に
塩化水素を400゜C前後で流通させて塩素を発生させ、
触媒が失活した後、塩化水素の供給を停止し、空気を流
通させて触媒を再生後、空気の供給を停止して再び塩化
水素を流通させる方法が提案されている(英国特許第5
84,790号)。
For example, impregnated with an aqueous solution of chromic anhydride or chromium nitrate in a suitable carrier and pyrolyzed, hydrogen chloride is passed at about 400 ° C. to generate chlorine,
After the catalyst is deactivated, a method has been proposed in which the supply of hydrogen chloride is stopped, the air is circulated to regenerate the catalyst, the supply of air is stopped, and hydrogen chloride is circulated again (UK Patent No. 5).
84,790).

【0006】また、重クロム酸塩または暗黒緑色の酸化
クロムを担体上に担持した触媒を用いることにより塩化
水素と含酸素ガスを反応温度420〜430゜C、空間速
度380Hr-1で反応させ、平衡値67.4%の塩化水素
転化率が得られている(英国特許第676,667
号)。この際、 空間速度680Hr-1では転化率63%
である。反応は340゜Cでも認められるが、 この場合
には空間速度を65Hr-1という低い値にして転化率5
2%を得ているにすぎない。これらの方法は反応温度も
高く、空間速度も低い為、工業的な実施には無理があ
る。
Further, by using a catalyst in which dichromate or dark green chromium oxide is supported on a carrier, hydrogen chloride and oxygen-containing gas are reacted at a reaction temperature of 420 to 430 ° C. and a space velocity of 380 Hr −1 , A hydrogen chloride conversion of 67.4% equilibrium has been obtained (GB 676,667).
issue). At this time, the conversion rate is 63% at the space velocity of 680 Hr -1.
It is. The reaction is also observed at 340 ° C., but in this case the space velocity is reduced to 65 Hr −1 and the conversion is 5
You only get 2%. These methods have high reaction temperatures and low space velocities, and are not practical for industrial implementation.

【0007】一方、クロム酸の水溶液とアンモニアとを
反応させて得られる化合物を800゜C以下の温度で焼成
することにより得られる酸化クロム触媒が塩化水素の酸
化反応に高活性を示す事が見いだされ(特開昭61-2
75104号公報)、当該触媒を用いることにより、従
来既知の触媒より低温かつ高い空時収率で塩素を製造出
来るようになった。
On the other hand, it has been found that a chromium oxide catalyst obtained by calcining a compound obtained by reacting an aqueous solution of chromic acid with ammonia at a temperature of 800 ° C. or less has high activity in oxidizing hydrogen chloride. (Japanese Unexamined Patent Publication No.
No. 75104), the use of the catalyst makes it possible to produce chlorine at a lower temperature and a higher space-time yield than conventionally known catalysts.

【0008】しかしながら、当該触媒の問題点として、
廃棄塩化水素ガスの酸化反応に使用すると、反応開始後
数ケ月の後には活性が低下してくることが挙げられる。
その賦活方法として高温気相で塩化水素ガス及び/また
は含酸素ガスと接触させる方法が提案されているが(特
開昭62-254846号公報)、この方法により賦活
した触媒を廃棄塩化水素ガスの酸化反応に使用すると、
反応開始後数日間は新触媒並の活性に戻るが、一週間以
上の後には活性が低下し始め、長期的使用には耐え得な
いという問題がある。
However, as a problem of the catalyst,
When used for the oxidation reaction of waste hydrogen chloride gas, the activity decreases several months after the start of the reaction.
As a method for activating the catalyst, a method of contacting with a hydrogen chloride gas and / or an oxygen-containing gas in a high temperature gas phase has been proposed (Japanese Patent Application Laid-Open No. 62-254846). When used for oxidation reactions,
Although the activity returns to the level of a new catalyst for several days after the start of the reaction, the activity starts to decrease after one week or more, and there is a problem that it cannot withstand long-term use.

【0009】また、別の賦活方法として当該触媒にクロ
ム塩または酸化クロムの水溶液を含浸させ、800℃以
下の温度で焼成する方法も提案されているが(特開平3
-221145号公報)、この方法により賦活した触媒
もまた塩化水素ガスの酸化反応に使用すると、反応開始
後数日間は新触媒並の活性に戻るが、一ヵ月以上の後に
は活性が低下し始め、長期的使用には耐え得ないという
問題がある。
As another activation method, a method has been proposed in which the catalyst is impregnated with an aqueous solution of a chromium salt or chromium oxide and calcined at a temperature of 800 ° C. or less (Japanese Patent Application Laid-Open No. HEI 3 (1993) -313).
If the catalyst activated by this method is also used in the oxidation reaction of hydrogen chloride gas, the activity returns to the same level as that of the new catalyst for several days after the start of the reaction, but the activity starts to decrease after one month or more. However, there is a problem that it cannot withstand long-term use.

【0010】銅系の触媒を用いた塩化水素の酸化による
塩素の製造法は古くからDeacon反応としてしられてお
り、1868年の Deaconの発明による銅系の触媒につい
ては、その後塩化銅と塩化カリウムに第3成分として種
々の化合物を添加した触媒が多数提案されている。しか
しながら、この触媒を工業的に使用するには、反応温度
を高くしなければ十分な反応速度が得られず、この為、
触媒成分の揮散が起こり、短期間で活性の低下を生じ触
媒寿命に致命的な問題点があると共に、触媒が固結し特
に、流動床触媒として使用した場合流動化が困難となり
触媒として用をなさなくなるという大きな問題点がある
事も知られている。
A method for producing chlorine by oxidizing hydrogen chloride using a copper-based catalyst has long been known as the Deacon reaction. For a copper-based catalyst according to the invention of Deacon in 1868, copper chloride and potassium chloride were subsequently used. Many catalysts in which various compounds are added as a third component have been proposed. However, in order to use this catalyst industrially, a sufficient reaction rate cannot be obtained unless the reaction temperature is increased.
The volatilization of the catalyst components occurs, causing a short-term decrease in activity and a fatal problem with the life of the catalyst.Also, the catalyst solidifies and becomes difficult to fluidize, especially when used as a fluidized bed catalyst, making it difficult to use it as a catalyst. It is also known that there is a big problem that it will not be done.

【0011】[0011]

【発明が解決しようとする課題】本発明の課題は、塩化
水素の酸化により塩素を製造するに際して、上述した公
知の触媒が有する問題点を解決することであり、活性の
低下した酸化クロム触媒の有用な再生方法を提供するこ
とである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the above-mentioned known catalysts when producing chlorine by oxidizing hydrogen chloride. It is to provide a useful reproduction method.

【0012】[0012]

【課題を解決するための手段】本発明の課題解決のた
め、本発明者らは塩化水素の酸化による塩素の製造に用
いる酸化クロムを主成分とする触媒の再生方法について
鋭意検討した。その結果、我々は、活性の低下した酸化
クロムを主成分とする触媒に銅、アルカリ金属、希土類
金属、および銅以外の遷移金属を含む溶液を含浸させ、
800゜C以下の温度で焼成することにより活性の低下し
た酸化クロム触媒を賦活、再生でき、しかも従来の酸化
クロム触媒の再生方法が有する前述の問題点を生じず、
長時間、工業的使用に耐え得る酸化クロム触媒の再生方
法を見出し本発明を完成した。
Means for Solving the Problems In order to solve the problems of the present invention, the present inventors diligently studied a method for regenerating a catalyst containing chromium oxide as a main component used for producing chlorine by oxidizing hydrogen chloride. As a result, we impregnated a catalyst based on chromium oxide with reduced activity with a solution containing copper, alkali metals, rare earth metals, and transition metals other than copper,
By calcination at a temperature of 800 ° C. or less, the chromium oxide catalyst with reduced activity can be activated and regenerated, and the above-mentioned problems of the conventional chromium oxide catalyst regeneration method do not occur.
The present inventors have found a method for regenerating a chromium oxide catalyst that can withstand industrial use for a long time, and have completed the present invention.

【0013】即ち、本発明は、塩化水素を含酸素ガスで
酸化し塩素を製造する際に使用した酸化クロムを主成分
とする触媒を再生するに際し、該触媒に銅、アルカリ金
属、希土類金属、および銅以外の遷移金属を含む溶液を
含浸させ、焼成する事を特徴とする触媒の再生方法であ
る。
That is, according to the present invention, when regenerating a catalyst containing chromium oxide as a main component used in producing chlorine by oxidizing hydrogen chloride with an oxygen-containing gas, copper, alkali metal, rare earth metal, And a solution containing a transition metal other than copper and a catalyst.

【0014】[0014]

【発明の実施の形態】本発明の方法にベース触媒として
用いられる酸化クロムを主成分とする触媒は、例えば硝
酸クロム、塩化クロムまたは有機酸のクロム塩等のクロ
ム塩とアンモニアあるいは尿素のようなアンモニアを放
出する化合物との反応物と、ケイ素の化合物とから成る
混合物を800゜C以下の温度で焼成する事により製造す
る。クロムとシリカとの混合比は通常、特に制限はない
が、触媒を最終的に焼成して得た後の形態であるCr2
3とSiO2の重量比で、Cr23/SiO2=5/95
〜95/5の範囲が多用される。
DETAILED DESCRIPTION OF THE INVENTION The chromium oxide-based catalyst used as the base catalyst in the process of the present invention is, for example, a chromium salt such as chromium nitrate, chromium chloride or a chromium salt of an organic acid and ammonia or urea. It is prepared by calcining a mixture comprising a reactant with an ammonia releasing compound and a silicon compound at a temperature of 800 ° C. or less. Although the mixing ratio of chromium and silica is not particularly limited, Cr 2 in the form obtained after final calcination of the catalyst is used.
By the weight ratio of O 3 and SiO 2 , Cr 2 O 3 / SiO 2 = 5/95
The range of 9595/5 is frequently used.

【0015】本発明方法の触媒を用い塩素を製造する際
に使用される原料の塩化水素は通常、化学工業界では有
機化合物の塩素化またはホスゲンとの反応に際して副生
する塩化水素を使用するのが経済的であるがそれに限定
されるものではない。
As the raw material hydrogen chloride used in the production of chlorine using the catalyst of the present invention, the chemical industry usually uses hydrogen chloride which is a by-product of chlorinating organic compounds or reacting with phosgene. Is economical, but not limited thereto.

【0016】塩化水素の酸化剤としては含酸素ガスが使
用され、通常、酸素ガスまたは空気が多用される。反応
器の形式は固定床でも流動床でも実施可能であるが、塩
化水素の酸化反応のように発熱が大きい反応の場合には
除熱が容易である流動床が多用される。流動床式の場合
には、酸素ガスを、固定床式の場合には空気を使用する
場合が多い。
An oxygen-containing gas is used as an oxidizing agent for hydrogen chloride, and oxygen gas or air is generally used frequently. The type of the reactor can be either a fixed bed or a fluidized bed. However, in the case of a reaction that generates a large amount of heat, such as an oxidation reaction of hydrogen chloride, a fluidized bed that can easily remove heat is often used. In the case of a fluidized bed type, oxygen gas is often used, and in the case of a fixed bed type, air is often used.

【0017】反応に使用する塩化水素と含酸素ガス中の
酸素のモル比は、塩化水素1モルに対して酸素1/4モ
ル(当量)前後であり、通常、酸素を当量の5〜200
%過剰に使用する場合が多い。
The molar ratio of hydrogen chloride used in the reaction to oxygen in the oxygen-containing gas is about 1/4 mole (equivalent) of oxygen to 1 mole of hydrogen chloride.
Often used in excess of%.

【0018】触媒床に供給する塩化水素は、200〜1
800(Nl/Hr.)Kg-cat.の範囲が適している。
The hydrogen chloride supplied to the catalyst bed is 200 to 1
A range of 800 (Nl / Hr.) Kg-cat. Is suitable.

【0019】反応温度は300〜450゜C、特に360
〜420゜Cで多用される。本反応は常圧、加圧のいずれ
でも実施可能であるが、通常1〜11×105Paの加
圧下で行うのが好ましい場合が多い。
The reaction temperature is between 300 and 450 ° C., in particular 360
Frequently used at ~ 420 ° C. This reaction can be carried out under normal pressure or under pressure, but it is often preferable to carry out the reaction under a pressure of usually 1 to 11 × 10 5 Pa.

【0020】従来公知の酸化クロムを主成分とする触媒
は上記の反応条件で数ケ月ないし半年間反応に使用した
場合は活性が低下し、初期に塩化水素の転化率が70〜
80%を示したものが50〜60%になる。
When a conventionally known catalyst containing chromium oxide as a main component is used for a reaction for several months to half a year under the above reaction conditions, its activity is reduced, and the conversion of hydrogen chloride is initially 70 to 70%.
What shows 80% becomes 50-60%.

【0021】活性の低下した触媒は銅、アルカリ金属、
希土類金属、および銅以外の遷移金属を含む溶液を含浸
し、800゜C以下の温度で焼成することにより活性を回
復させる事が出来る。
Catalysts with reduced activity include copper, alkali metals,
The activity can be recovered by impregnating with a solution containing a rare earth metal and a transition metal other than copper and firing at a temperature of 800 ° C. or less.

【0022】本発明において銅、アルカリ金属、希土類
金属、および銅以外の遷移金属を酸化クロムを主成分と
する触媒に加える方法としては、含浸法、共沈法、蒸着
法等の従来公知の触媒調製法を採用できるが、含浸法が
より有効であり、また操作的にも簡便である。
In the present invention, as a method for adding a transition metal other than copper, an alkali metal, a rare earth metal, and copper to a catalyst containing chromium oxide as a main component, a conventionally known catalyst such as an impregnation method, a coprecipitation method, or a vapor deposition method may be used. Although a preparation method can be adopted, the impregnation method is more effective and the operation is simple.

【0023】含浸法の一例としては酸化クロムを主成分
とする触媒に銅、アルカリ金属、希土類金属、および銅
以外の遷移金属を含む溶液を含浸し、800℃以下の温
度で焼成する方法が挙げられる。
As an example of the impregnation method, there is a method in which a catalyst containing chromium oxide as a main component is impregnated with a solution containing copper, an alkali metal, a rare earth metal, and a transition metal other than copper, and calcined at a temperature of 800 ° C. or less. Can be

【0024】本発明方法において 銅、アルカリ金属、
および希土類金属の3成分の使用は必須であり、このう
ちのどの成分が欠けても再生触媒の活性は充分には向上
しない。
In the method of the present invention, copper, an alkali metal,
The use of three components of rare earth metals is indispensable, and the activity of the regenerated catalyst is not sufficiently improved even if any of these components is missing.

【0025】この3成分の含浸量の影響については、含
浸量の増加と共に活性向上の効果がある一方、触媒流動
性が低下する傾向がある。そこで、この3成分に銅以外
の遷移金属を追加することで触媒活性のさらなる向上、
活性経時低下の減少、および含浸量増加に伴う触媒流動
性低下の防止を計ることができる。
Regarding the influence of the impregnation amount of these three components, while the effect of improving the activity is increased as the impregnation amount is increased, the fluidity of the catalyst tends to decrease. Therefore, by adding a transition metal other than copper to the three components, the catalytic activity is further improved,
It is possible to reduce the decrease in the activity over time and to prevent the decrease in the catalyst fluidity due to the increase in the impregnation amount.

【0026】また、銅以外の遷移金属を溶解した溶液の
含浸方法は、銅,アルカリ金属、希土類金属を含む溶液
の含浸を行う前、同時、および後に行う、先付け含浸
法、同時含浸法、および後付け含浸法が可能であり含浸
方法に特に制限はない。
The impregnation method of a solution in which a transition metal other than copper is dissolved is carried out before, simultaneously with and after the impregnation of a solution containing copper, an alkali metal and a rare earth metal. A post-impregnation method is possible, and there is no particular limitation on the impregnation method.

【0027】銅成分としては、具体的には例えば硝酸
銅、硫酸銅、塩化銅、および酸化銅が使用でき、アルカ
リ金属、希土類金属、および銅以外の遷移金属も同様
に、それらの金属の硝酸塩、硫酸塩、塩化物、および酸
化物などが使用でき、具体的に、アルカリ金属成分とし
ては、硝酸カリウム、硫酸カリウム、塩化カリウム、硝
酸ナトリウム、硫酸ナトリウム、塩化ナトリウム、酸化
ナトリウム等が挙げられる。希土類金属塩としては、ラ
ンタン、プラセオジム、ネオジム、プロメチウム、サマ
リウム、ユウロピウム等の硝酸塩、硫酸塩、ハロゲン化
塩、酸化物等が挙げられ、なかでもランタンの塩が好ま
しい。また、銅以外の遷移金属としては、チタン、バナ
ジウム、マンガン、鉄、コバルト、ニッケル等の硝酸
塩、硫酸塩、ハロゲン化塩、酸化物等が挙げられ、なか
でもコバルトの塩が好ましい。
As the copper component, specifically, for example, copper nitrate, copper sulfate, copper chloride, and copper oxide can be used. Similarly, alkali metals, rare earth metals, and transition metals other than copper can also be used. , Sulfate, chloride, oxide and the like can be used. Specific examples of the alkali metal component include potassium nitrate, potassium sulfate, potassium chloride, sodium nitrate, sodium sulfate, sodium chloride, and sodium oxide. Rare earth metal salts include nitrates, sulfates, halides, oxides and the like of lanthanum, praseodymium, neodymium, promethium, samarium, europium and the like, with lanthanum salts being preferred. Examples of transition metals other than copper include nitrates, sulfates, halides, and oxides of titanium, vanadium, manganese, iron, cobalt, nickel, and the like, and among them, cobalt salts are preferable.

【0028】銅,アルカリ金属、希土類金属、および銅
以外の遷移金属の濃度は、高い程効果が得られるが、酸
化クロムを主成分とする触媒のクロムに対して原子比率
で銅=0.01〜0.3,カリウム=0.005〜0.2,ラ
ンタン=0.01〜0.3、コバルト=0.01〜0.3の
範囲が好ましい。
The effect can be obtained as the concentration of copper, alkali metal, rare earth metal and transition metal other than copper increases, but copper = 0.01 in atomic ratio to chromium of the catalyst containing chromium oxide as a main component. -0.3, potassium = 0.005-0.2, lanthanum = 0.01-0.3, cobalt = 0.01-0.3.

【0029】[0029]

【実施例】次に、本発明の方法を実施例でさらに詳細に
説明する。 実施例1 クロミア75重量%、シリカ25重量%からなる平均粒
径60μの微小球状流動床用触媒40g を内径1インチ
のガラス製流動床反応器に充填した。廃塩化水素ガスを
334ml/min、酸素を167ml/minで流動床に流入させ
反応管外部を電気炉で内温380゜Cに加熱し反応させ
た。酸素/塩化水素モル比=1/2、酸素過剰率100
%である。反応開始3日目の塩化水素の転化率は73%
であった。反応開始30日目では転化率67%を示し、
65日目には55%まで低下した。この廃触媒にCu
(NO32・3H2O3.78g、KNO31.56g、L
a(NO32・6H2O5.32g、およびCo(NO3
2・6H2O5.92gを溶解した水溶液27mlを同時に
含浸後、420℃で5時間焼成した。この再生触媒40
gを上記と同様にして反応させた。反応開始3日目の塩
化水素の転化率は78%であった。反応開始30日目で
は転化率70%を示し、65日目には転化率68%であ
り、新触媒と同等以上の活性及び寿命を示した。
Next, the method of the present invention will be described in more detail with reference to Examples. Example 1 A glass fluidized bed reactor having an inner diameter of 1 inch was charged with 40 g of a microsphere fluidized bed catalyst having an average particle size of 60 µm and consisting of 75% by weight of chromia and 25% by weight of silica. Waste hydrogen chloride gas was introduced into the fluidized bed at 334 ml / min and oxygen at 167 ml / min, and the outside of the reaction tube was heated to 380 ° C. in an electric furnace to cause a reaction. Oxygen / hydrogen chloride molar ratio = 1/2, oxygen excess ratio 100
%. The conversion of hydrogen chloride on the third day of the reaction was 73%
Met. On the 30th day from the start of the reaction, the conversion was 67%,
On day 65, it dropped to 55%. Cu
(NO 3) 2 · 3H 2 O3.78g, KNO 3 1.56g, L
5.32 g of a (NO 3 ) 2 .6H 2 O and Co (NO 3 )
After simultaneously impregnated with an aqueous solution 27ml was dissolved 2 · 6H 2 O5.92g, and calcined 5 hours at 420 ° C.. This regenerated catalyst 40
g was reacted as described above. The conversion of hydrogen chloride on the third day from the start of the reaction was 78%. On the 30th day from the start of the reaction, the conversion was 70%, and on the 65th day, the conversion was 68%, indicating an activity and life equivalent to or higher than that of the new catalyst.

【0030】実施例2 クロミア75重量%、シリカ25重量%からなる平均粒
径60μの微小球状流動床用触媒40g を内径1インチ
のガラス製流動床反応器に充填した。実施例1と同様に
反応して得られた廃触媒を抜き出し、この廃触媒にCu
(NO32・3H 2O3.78g、KNO31.56g、L
a(NO32・6H2O5.32g、およびCo(NO3
2・6H2O2.96gを溶解した水溶液25mlを含浸
後、420℃で5時間焼成した。この再生触媒40gを
上記と同様にして反応させた。反応開始3日目の塩化水
素の転化率は77%であった。反応開始30日目では転
化率68%を示し、65日目には転化率62%であり、
新触媒と同等以上の活性及び寿命を示した。
Example 2 Average particle composed of 75% by weight of chromia and 25% by weight of silica
40 g of microsphere fluidized bed catalyst with a diameter of 60 µ
Into a glass fluidized bed reactor. As in the first embodiment
The spent catalyst obtained by the reaction was extracted, and Cu was added to the spent catalyst.
(NOThree)Two・ 3H Two3.78 g of O, KNOThree1.56g, L
a (NOThree)Two・ 6HTwo5.32 g of O, and Co (NOThree)
Two・ 6HTwoImpregnated with 25 ml of an aqueous solution in which 2.96 g of O was dissolved
Then, it was baked at 420 ° C. for 5 hours. 40 g of this regenerated catalyst
The reaction was carried out as described above. Chlorinated water on the third day of the reaction
The conversion of the element was 77%. 30 days after the start of the reaction
The conversion rate was 68%, and on the 65th day, the conversion rate was 62%.
It showed the same activity or life as the new catalyst.

【0031】比較例1 クロミア75重量%、シリカ25重量%からなる平均粒
径60μの微小球状流動床用触媒40g を内径1インチ
のガラス製流動床反応器に充填した。実施例1と同様に
反応して得られた廃触媒を抜き出し、Cu(NO32・3
2O3.78g、KNO31.56g、La(NO32
6H2O5.32g、を溶解した水溶液27mlに含浸後、
420゜Cで5時間焼成した。この再生触媒40gを上記
と同様にして反応させた。反応開始3日目の塩化水素の
転化率は75%、反応開始30日目では転化率66%を
示し、65日目には転化率56%であった。
COMPARATIVE EXAMPLE 1 40 g of a microsphere fluidized bed catalyst having an average particle size of 60 μm and consisting of 75% by weight of chromia and 25% by weight of silica were charged into a glass fluidized bed reactor having an inner diameter of 1 inch. The spent catalyst obtained by the reaction in the same manner as in Example 1 was extracted, and Cu (NO 3 ) 2.
3.78 g of H 2 O, 1.56 g of KNO 3 , La (NO 3 ) 2.
After impregnation in 27 ml of an aqueous solution of 5.32 g of 6H 2 O,
It was baked at 420 ° C. for 5 hours. 40 g of this regenerated catalyst was reacted in the same manner as described above. The conversion of hydrogen chloride was 75% on the third day of the reaction, 66% on the 30th day of the reaction, and 56% on the 65th day.

【0032】比較例2 クロミア75重量%、シリカ25重量%からなる平均粒
径60μの微小球状流動床用触媒40g を内径1インチ
のガラス製流動床反応器に充填した。実施例1と同様に
反応して得られた廃触媒を抜き出し、この廃触媒にCo
(NO32・6H 2O5.92gを溶解した水溶液27ml
に含浸後、420゜Cで5時間焼成した。この再生触媒4
0gを上記と同様にして反応させた。反応開始3日目の
塩化水素の転化率は55%であり転化率の向上はなかっ
た。
Comparative Example 2 Average particle composed of 75% by weight of chromia and 25% by weight of silica
40 g of microsphere fluidized bed catalyst with a diameter of 60 µ
Into a glass fluidized bed reactor. As in the first embodiment
The spent catalyst obtained by the reaction was extracted, and Co was added to the spent catalyst.
(NOThree)Two・ 6H Two27 ml of an aqueous solution containing 5.92 g of O
After immersion, the mixture was fired at 420 ° C. for 5 hours. This regenerated catalyst 4
0 g was reacted as described above. Day 3 of reaction start
The conversion of hydrogen chloride is 55%, and there is no improvement in the conversion
Was.

【0033】実施例3 クロミア75重量%、シリカ25重量%からなる平均粒
径60μの微小球状流動床用触媒40g を内径1インチ
のガラス製流動床反応器に充填した。実施例1と同様に
反応して得られた廃触媒を抜き出し、この廃触媒にCu
(NO32・3H 2O3.78g、KNO31.56g、L
a(NO32・6H2O5.32gを溶解した水溶液20
mlを含浸後、420℃で5時間焼成した。その後Co
(NO32・6H2O5.92gを溶解した水溶液7.4m
lを含浸後、420℃で5時間焼成した。この再生触媒
40gを上記と同様にして反応させた。反応開始3日目
の塩化水素の転化率は78%であった。反応開始30日
目では転化率70%を示し、65日目には転化率68%
であり、新触媒と同等以上の活性及び寿命を示した。
Example 3 Average particle composed of 75% by weight of chromia and 25% by weight of silica
40 g of microsphere fluidized bed catalyst with a diameter of 60 µ
Into a glass fluidized bed reactor. As in the first embodiment
The spent catalyst obtained by the reaction was extracted, and Cu was added to the spent catalyst.
(NOThree)Two・ 3H Two3.78 g of O, KNOThree1.56g, L
a (NOThree)Two・ 6HTwoAn aqueous solution 20 in which 5.32 g of O is dissolved
After impregnation, the mixture was fired at 420 ° C. for 5 hours. Then Co
(NOThree)Two・ 6HTwo7.4m of an aqueous solution in which 5.92g of O is dissolved
After the impregnation, the mixture was fired at 420 ° C. for 5 hours. This regenerated catalyst
40 g were reacted as described above. Day 3 of reaction start
The conversion of hydrogen chloride was 78%. 30 days after the start of the reaction
The conversion rate was 70%, and the conversion rate was 68% on the 65th day.
And showed an activity and life equivalent to or higher than that of the new catalyst.

【0034】実施例4 クロミア75重量%、シリカ25重量%からなる平均粒
径60μの微小球状流動床用触媒40g を内径1インチ
のガラス製流動床反応器に充填した。実施例1と同様に
反応して得られた廃触媒を抜き出し、この廃触媒にCu
(NO32・3H 2O15.17g、KNO36.24g、
La(NO32・6H2O10.64g、およびCo(N
32・6H2O5.92gを溶解した水溶液50.0ml
を含浸後、420℃で5時間焼成した。この再生触媒4
0gを上記と同様にして反応させた。反応開始3日目の
塩化水素の転化率は80%であった。反応開始30日目
では転化率72%を示し、65日目には転化率70%で
あり、新触媒と同等以上の活性及び寿命を示した。
Example 4 Average particle composed of 75% by weight of chromia and 25% by weight of silica
40 g of microsphere fluidized bed catalyst with a diameter of 60 µ
Into a glass fluidized bed reactor. As in the first embodiment
The spent catalyst obtained by the reaction was extracted, and Cu was added to the spent catalyst.
(NOThree)Two・ 3H Two15.17 g, KNOThree6.24 g,
La (NOThree)Two・ 6HTwoO.64 g and Co (N
OThree)Two・ 6HTwo50.0 ml of an aqueous solution containing 5.92 g of O
And baked at 420 ° C. for 5 hours. This regenerated catalyst 4
0 g was reacted as described above. Day 3 of reaction start
The conversion of hydrogen chloride was 80%. 30 days after the start of the reaction
Shows a conversion rate of 72%. On the 65th day, the conversion rate is 70%.
And showed activity and life equivalent to or better than the new catalyst.

【0035】比較例3 クロミア75重量%、シリカ25重量%からなる平均粒
径60μの微小球状流動床用触媒40g を内径1インチ
のガラス製流動床反応器に充填した。実施例1と同様に
反応して得られた廃触媒を抜き出し、この廃触媒にCu
(NO32・3H 2O15.17g、KNO36.24g、
La(NO32・6H2O10.64gを溶解した水溶液
50.0mlを含浸後、420℃で5時間焼成した。こ
の再生触媒40gを上記と同様にして反応させた。反応
開始3日目の塩化水素の転化率は79%であった。反応
開始30日目では転化率71%を示し、65日目には転
化率69%であり、新触媒と同等以上の活性及び寿命を
示すが30日目以降から触媒流動性がやや低下する傾向
が見られた。
Comparative Example 3 Average particle composed of 75% by weight of chromia and 25% by weight of silica
40 g of microsphere fluidized bed catalyst with a diameter of 60 µ
Into a glass fluidized bed reactor. As in the first embodiment
The spent catalyst obtained by the reaction was extracted, and Cu was added to the spent catalyst.
(NOThree)Two・ 3H Two15.17 g, KNOThree6.24 g,
La (NOThree)Two・ 6HTwoAn aqueous solution in which 10.64 g of O is dissolved
After impregnation with 50.0 ml, it was baked at 420 ° C. for 5 hours. This
Was reacted in the same manner as described above. reaction
The conversion of hydrogen chloride on the third day after the start was 79%. reaction
On the 30th day, the conversion rate was 71%, and on the 65th day, the conversion rate was 71%.
Conversion rate is 69%, and the activity and service life are equal to or higher than that of the new catalyst.
As shown, the catalyst fluidity tends to decrease slightly from the 30th day.
It was observed.

【0036】[0036]

【発明の効果】本発明の方法によれば、塩化水素の酸化
反応に長期間使用し、活性が低下した従来公知の酸化ク
ロムを主成分とする触媒を銅、アルカリ金属、希土類金
属、および銅以外の遷移金属を含む溶液を含浸させ、8
00゜C以下の温度で焼成する事により賦活再生する事が
できる。このようにして得られた再生触媒は活性が高
く、触媒流動性も良好であり、長期間の寿命試験におい
ても新触媒と同程度の性能を有する。
According to the method of the present invention, a conventionally known chromium oxide-based catalyst which has been used for a long period of time in the oxidation reaction of hydrogen chloride and has reduced activity can be used as a catalyst for copper, alkali metals, rare earth metals, and copper. Impregnated with a solution containing a transition metal other than
Activation and regeneration can be performed by firing at a temperature of 00 ° C or less. The regenerated catalyst thus obtained has high activity and good catalyst fluidity, and has the same performance as the new catalyst in a long-term life test.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 国博 福岡県大牟田市浅牟田町30番地 三井東圧 化学株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Kunihiro Yamada, Inventor: 30 Asamuta-cho, Omuta-shi, Fukuoka Prefecture Mitsui Toatsu Chemical Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】塩化水素を含酸素ガスで酸化し塩素を製造
する際に使用した酸化クロムを主成分とする触媒を再生
するに際し、該触媒に銅、アルカリ金属、希土類金属、
および銅以外の遷移金属を含む溶液を含浸させ、焼成す
る事を特徴とする触媒の再生方法。
(1) When regenerating a catalyst containing chromium oxide as a main component used in producing chlorine by oxidizing hydrogen chloride with an oxygen-containing gas, copper, an alkali metal, a rare earth metal,
And a catalyst containing a transition metal other than copper.
【請求項2】アルカリ金属がカリウムである請求項1記
載の方法。
2. The method according to claim 1, wherein the alkali metal is potassium.
【請求項3】希土類金属がランタンである請求項1記載
の方法。
3. The method according to claim 1, wherein the rare earth metal is lanthanum.
【請求項4】銅以外の遷移金属がコバルトである請求項
1記載の方法。
4. The method according to claim 1, wherein the transition metal other than copper is cobalt.
JP17962396A 1996-07-09 1996-07-09 Catalyst regeneration method Expired - Lifetime JP3788530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17962396A JP3788530B2 (en) 1996-07-09 1996-07-09 Catalyst regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17962396A JP3788530B2 (en) 1996-07-09 1996-07-09 Catalyst regeneration method

Publications (2)

Publication Number Publication Date
JPH1015389A true JPH1015389A (en) 1998-01-20
JP3788530B2 JP3788530B2 (en) 2006-06-21

Family

ID=16069011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17962396A Expired - Lifetime JP3788530B2 (en) 1996-07-09 1996-07-09 Catalyst regeneration method

Country Status (1)

Country Link
JP (1) JP3788530B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000043313A1 (en) * 1999-01-22 2000-07-27 Sumitomo Chemical Company, Limited Method for producing chlorine
WO2001060743A1 (en) * 2000-01-19 2001-08-23 Sumitomo Chemical Company, Limited Method for producing chlorine
JP2010274217A (en) * 2009-05-29 2010-12-09 Sumitomo Chemical Co Ltd Method of activating catalyst for producing chlorine, and method of producing chlorine
JP2012061450A (en) * 2010-09-17 2012-03-29 Mitsui Chemicals Inc Method for producing regenerated catalyst for chlorine production, method for regenerating deteriorated catalyst, method for producing chlorine, and method for maintaining activity of catalyst for chlorine production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000043313A1 (en) * 1999-01-22 2000-07-27 Sumitomo Chemical Company, Limited Method for producing chlorine
US6977066B1 (en) 1999-01-22 2005-12-20 Sumitomo Chemical Company, Limited Method for producing chlorine
KR101513298B1 (en) * 1999-01-22 2015-04-17 스미또모 가가꾸 가부시끼가이샤 Method for producing chlorine
WO2001060743A1 (en) * 2000-01-19 2001-08-23 Sumitomo Chemical Company, Limited Method for producing chlorine
KR101513299B1 (en) * 2000-01-19 2015-04-17 스미또모 가가꾸 가부시끼가이샤 Method for producing chlorine
JP2010274217A (en) * 2009-05-29 2010-12-09 Sumitomo Chemical Co Ltd Method of activating catalyst for producing chlorine, and method of producing chlorine
JP2012061450A (en) * 2010-09-17 2012-03-29 Mitsui Chemicals Inc Method for producing regenerated catalyst for chlorine production, method for regenerating deteriorated catalyst, method for producing chlorine, and method for maintaining activity of catalyst for chlorine production

Also Published As

Publication number Publication date
JP3788530B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
KR100199510B1 (en) Catalyst for preparing chlorine from hydrogen chloride
US5023225A (en) Dehydrogenation catalyst and process for its preparation
US5663113A (en) Ammoxidation catalyst composition
US5658842A (en) Ammoxidation catalyst composition, and process for producing acrylonitrile or methacrylonitrile using the same
JPH0569042B2 (en)
HU214845B (en) Catalyst-composition and process for oxychlorination of ethylene to 1,-2-dichloroethane
JP2645467B2 (en) Oxychlorination catalyst
JPS63230504A (en) Production of chlorine
KR0151633B1 (en) Ammoxidation catalyst composition and process for producing acrylonitrile or methacrylonitrile by using the same
JPH0377839A (en) Ortho-alkylation
JP3852983B2 (en) Catalyst for producing chlorine from hydrogen chloride
KR20000075903A (en) USE OF Ce/Zr MIXED OXIDE PHASE FOR THE MANUFACTURE OF STYRENE BY DEHYDROGENATION OF ETHYLBENZENE
CN107952436A (en) A kind of preparing chlorine by oxidizing hydrogen chloride copper-zirconium based catalyst and its preparation method and application
JPH1015389A (en) Method for regenerating catalyst
KR20090026381A (en) Process for the chlorine by oxidation of hydrogen chloride
JP3270670B2 (en) Catalyst for the production of chlorine from hydrogen chloride
JPS61136902A (en) Manufacture of chlorine
US5093292A (en) Chromium oxide catalyst impregnation regeneration method
US5268512A (en) Catalyst and process for producing phenol
JPH039772B2 (en)
CN114100652A (en) Catalyst for producing hydrogen cyanide by methanol gas phase catalytic ammoxidation, and preparation method and application thereof
JPH0568401B2 (en)
JPH03221145A (en) Regeneration of catalyst
JPH053404B2 (en)
JPH0767530B2 (en) Catalyst activation method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060322

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term