JPH10153665A - Bedrock survey method - Google Patents

Bedrock survey method

Info

Publication number
JPH10153665A
JPH10153665A JP8313823A JP31382396A JPH10153665A JP H10153665 A JPH10153665 A JP H10153665A JP 8313823 A JP8313823 A JP 8313823A JP 31382396 A JP31382396 A JP 31382396A JP H10153665 A JPH10153665 A JP H10153665A
Authority
JP
Japan
Prior art keywords
ground
wave
elastic wave
rock
velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8313823A
Other languages
Japanese (ja)
Inventor
Masahiro Mizukami
雅裕 水上
Akio Murakami
晃生 村上
Yoshihisa Nawa
芳久 名和
Fumio Kawajiri
文夫 川尻
Takeshi Akashi
健 明石
Tsutomu Inaba
力 稲葉
Koji Ishiyama
宏二 石山
Susumu Hirano
享 平野
Masayuki Yamashita
雅之 山下
Kahou Horiba
夏峰 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Nishimatsu Construction Co Ltd
Original Assignee
Chubu Electric Power Co Inc
Nishimatsu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Nishimatsu Construction Co Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP8313823A priority Critical patent/JPH10153665A/en
Publication of JPH10153665A publication Critical patent/JPH10153665A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for easily and exactly surveying brittle part of ground by using elastic wave. SOLUTION: By using reflection wave of excited wave of elastic wave reflecting in the ground to be surveyed, the positions of reflection planes 21 to 25 in the ground are defined, estimating the interval where the reflection planes 22 to 24 are densely existing as the brittle parts 26 of the ground and estimating the interval where the reflection plane does not exist as intact part (hard rock part), exact survey of the bedrock is easily done regardless of the kind of the ground.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は岩盤を探査する岩盤
探査方法に係り、特に、弾性波を利用して地山の脆弱部
を探査する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for exploring a rock mass, and more particularly to a method for exploring a fragile portion of a ground using elastic waves.

【0002】[0002]

【従来の技術】トンネル掘削に際し、切羽前方の地質情
報が前もって得られれば、安全面、経済面、工期の面等
から非常に有利である。トンネルの施工に際しては、事
前に地質調査が行われることが多いが、その情報は不十
分であることが多い。そこで、掘削施工中に切羽前方の
地質状況を探査する方法の一つとして、トンネル坑内か
ら弾性波を利用する探査方法であって、多点発振1点受
振系の切羽前方探査法が知られている。
2. Description of the Related Art It is very advantageous from the viewpoint of safety, economy, construction period and the like if geological information in front of a face is obtained in advance in tunnel excavation. When constructing tunnels, geological surveys are often performed in advance, but the information is often insufficient. Therefore, as one of the methods for exploring the geological condition in front of the face during excavation work, there is known an exploration method using elastic waves from inside the tunnel, and a method for exploring the face in front of a multi-point oscillation one-point vibration receiving system is known. I have.

【0003】この切羽前方探査法は、トンネル坑内にお
いて小発破による弾性波(地震波)を発振させ、切羽前
方の地山物性の変化面からの反射波を捕え、その位置を
推定するものである。
[0003] In the method for exploring a face in front of a face, an elastic wave (seismic wave) due to small blasting is oscillated in a tunnel pit, and a reflected wave from a changing surface property of the ground in front of the face is caught and its position is estimated.

【0004】そして、この切羽前方探査法では、探査で
最終的に得られる情報は、切羽前方の地山物性の変化を
表す弾性波の反射面に関するもので、位置、性質、反射
信号の強度である。これらのうち反射面の性質とは、地
山物性がどのように変化するかを表すもので、「硬→
軟」の変化、もしくは「軟→硬」の変化のどちらかであ
る。地質推定に際しては、この組み合わせから地山の硬
軟を予想する、すなわち、「硬→軟」と「軟→硬」の順
で出現した反射面のそれぞれに挟まれた区間を地山の脆
弱部と予想するようになっている。
In this method, the information finally obtained by the exploration relates to the reflection surface of the elastic wave representing the change in the physical properties of the ground in front of the face, and is determined by the position, the property, and the intensity of the reflected signal. is there. Of these, the properties of the reflecting surface represent how the physical properties of the ground change,
It is either a change of "soft" or a change of "soft → hard". When estimating the geology, we predict the hardness of the ground from this combination, that is, the section between each of the reflecting surfaces that appeared in the order of “hard → soft” and “soft → hard” is called the weak part of the ground. As expected.

【0005】[0005]

【発明が解決しようとする課題】ところで、本発明者等
は、前記切羽前方探査法による地山の予想の検証を行う
ために、トンネル掘削によって明らかになった実際の地
質状況と、探査結果の比較照合を行った。その結果、図
4に示すように、実際の地質とくいちがう場合があるこ
とが明らかになった。
SUMMARY OF THE INVENTION Incidentally, the present inventors, in order to verify the prospect of the ground by the above-mentioned front face exploration method, examined the actual geological conditions revealed by tunnel excavation and the results of the exploration results. Comparison and collation were performed. As a result, as shown in FIG. 4, it became clear that the actual geology may be different.

【0006】すなわち、図4において符号1,2でそれ
ぞれ示す一点鎖線の部分は「硬→軟」の変化が現れた反
射面、符号3,4,5でそれぞれ示す鎖線の部分は「軟
→硬」の変化が現れた反射面を示している。したがっ
て、この図においては、反射面1と3の間および反射面
2と5の間がそれぞれ、地山の脆弱部6,7として予想
(推定)されたものとなる。一方、図4において符号8
で示す部分が実際の掘削によって現れた破砕帯(脆弱
部)、9a,9b,9cが小き裂である。したがって、
実際の脆弱部8は、探査によって予想された脆弱部6,
7とはその位置がくいちがっているのが判る。なお、図
4において符号11は発振孔、15は受振孔を示す。
That is, in FIG. 4, the one-dot chain lines indicated by reference numerals 1 and 2 are the reflecting surfaces where the change of “hard → soft” appears, and the ones indicated by the reference numerals 3, 4 and 5 are “soft → hard”. "On the reflective surface. Therefore, in this figure, the portions between the reflecting surfaces 1 and 3 and the portions between the reflecting surfaces 2 and 5 are predicted (estimated) as the weak portions 6 and 7 of the ground, respectively. On the other hand, in FIG.
The portions indicated by are crushed zones (fragile portions) that appeared by actual excavation, and 9a, 9b, 9c are small cracks. Therefore,
The actual vulnerable part 8 is the vulnerable part 6,
It can be seen that the position is different from 7. In FIG. 4, reference numeral 11 denotes an oscillation hole, and 15 denotes a vibration receiving hole.

【0007】そこで、本発明者等は、前記切羽前方探査
法による探査結果と、実際の坑内地質調査結果を比較照
合し、鋭意解析を行った結果、反射面の性質に関わら
ず、反射面が密集する部分については、地山の脆弱部と
比較的よく対応するという知見を得るに至ったのであ
る。
[0007] The present inventors have compared and collated the results of the exploration with the front face exploration method with the results of actual underground geological surveys, and performed diligent analysis. They found that the denser parts corresponded relatively well with the fragile parts of the ground.

【0008】[0008]

【課題を解決するための手段】本発明の請求項1の岩盤
探査方法は、上記知見に基づいてなされたもので、弾性
波を利用して岩盤の探査を行う岩盤探査方法であって、
弾性波である起振波が探査すべき地山内で反射する反射
波によって、該地山内にある反射面の位置を求め、前記
反射面の密集する区間を地山の脆弱部として推定するこ
とを特徴としている。
According to a first aspect of the present invention, there is provided a rock exploration method for exploring a rock using an elastic wave.
By the reflected wave reflected in the ground to be explored by the excitation wave that is an elastic wave, the position of the reflection surface in the ground is determined, and the dense section of the reflection surface is estimated as the fragile portion of the ground. Features.

【0009】前記反射面の密集とは2つ以上の反射面が
密接して存在している状態をいい、反射面相互の距離が
5メートル程度以下の場合を目安とする。また、反射面
の存在しない区間は地山の健全な部分(堅岩部)として
推定することができる。また、密集する反射面の反射信
号が高レベルの場合は、地山の健全な部分に比べて岩石
強度が非常に小さく、破砕の程度が強い地山脆弱部であ
る。一方、密集する反射面の反射信号が低レベルの場合
は、地山の健全な部分に比べて岩石強度が若干小さく、
破砕の程度が弱い地山脆弱部である。ただし、弾性波が
減衰していることが認められる場合はその限りではな
い。さらに、探査範囲内において、得られた反射面が分
散して密集していない場合、探査範囲の地山地質は全体
的に健全であり、単独で存在する反射面は小き裂などの
小さな変化を表す。
[0009] The denseness of the reflecting surfaces refers to a state in which two or more reflecting surfaces are in close contact with each other, and is used as a guide when the distance between the reflecting surfaces is about 5 meters or less. In addition, the section where the reflection surface does not exist can be estimated as a healthy part (hard rock part) of the ground. In addition, when the reflection signal of the densely reflecting surface is high, the rock strength is very low and the degree of crushing is strong, and the rock is fragile. On the other hand, when the reflection signal of the dense reflecting surface is low, the rock strength is slightly lower than that of the healthy part of the ground,
It is a fragile part of the mountain where the degree of crushing is weak. However, this does not apply when it is recognized that the elastic wave is attenuated. Furthermore, if the obtained reflecting surfaces are not dispersed and dense within the exploration area, the geological geology of the exploration area is generally sound, and the reflecting surface that exists alone has small changes such as small cracks. Represents

【0010】このように、請求項1の岩盤探査方法にあ
っては、前記反射面の密集する区間を地山の脆弱部とし
て推定し、また、反射面の存在しない区間を地山の健全
な部分(堅岩部)として推定することによって、正確な
岩盤の探査が可能となる。
As described above, according to the rock exploration method of the first aspect, the section where the reflection surface is dense is estimated as the fragile portion of the ground, and the section where the reflection surface does not exist is sound. By estimating it as a part (hard rock part), accurate rock exploration becomes possible.

【0011】また、前記岩盤探査方法において、計測に
よって記録された弾性波を解析する際に、各種フィルタ
ーの係数などの、決定しなければならない、いくつかの
パラメータがある。その中の一つにトンネル切羽前方の
弾性波伝播速度がある。切羽前方区間の弾性波伝播速度
が探査測線区間とほぼ同じと考えれるケースでは、探査
測線区間で得られた弾性波伝播速度を解析に用いること
ができるが、切羽前方区間の弾性波伝播速度が探査測線
区間のものと大きく異なると考えられるケースについて
は、その方法を用いることができない。
In the above-mentioned rock exploration method, when analyzing an elastic wave recorded by measurement, there are several parameters, such as coefficients of various filters, which must be determined. One of them is the elastic wave propagation velocity in front of the tunnel face. In the case where the elastic wave propagation velocity in the section in front of the face is considered to be almost the same as the survey line section, the elastic wave propagation velocity obtained in the survey line section can be used for analysis. The method cannot be used for cases that are considered to be significantly different from those in the survey line section.

【0012】したがって、探査すべき地山の弾性波伝播
速度が探査測線区間のものと大きく異なったり、該地山
に弾性波伝播速度の異なる複数の速度帯がある場合にお
いては、正確な岩盤探査を行うには、別個に伝播速度を
推定しなければならなず、この伝播速度の推定は困難で
あった。
Therefore, when the elastic wave propagation velocity of the ground to be searched for is significantly different from that of the survey line section or when there are a plurality of velocity bands having different elastic wave propagation velocities in the ground, accurate rock search is performed. , The propagation velocity must be separately estimated, and it is difficult to estimate the propagation velocity.

【0013】そこで、本発明の請求項2の岩盤探査方法
は、請求項1の岩盤探査方法において、予め、探査すべ
き地山内において、それぞれ弾性波伝播速度が異なる複
数の速度帯を求めておき、これら速度帯を伝播していく
起振波と反射波について代表的な往復波線経路を仮定
し、この往復波線経路に対する前記各速度帯における起
振波と反射波の波線上の長さの比に各速度帯における弾
性波伝播速度を乗じた値の総和によって、探査すべき地
山の平均弾性波伝播速度を求めることを特徴としてい
る。
According to a second aspect of the present invention, there is provided a rock exploration method according to the first aspect, wherein a plurality of velocity bands having different elastic wave propagation velocities are obtained in advance in the ground to be explored. Assuming a typical reciprocating wavy line path for the excitation wave and the reflected wave propagating in these velocity bands, the ratio of the length of the excitation wave and the reflected wave on the wavy line in each of the speed bands to the reciprocating wave line path The average elastic wave propagation velocity of the ground to be searched is obtained by the sum of the values obtained by multiplying the average by the elastic wave propagation velocity in each velocity band.

【0014】探査すべき地山内において、それぞれ弾性
波伝播速度が異なる複数の速度帯を求める場合、トンネ
ル掘削施工の事前調査で行われることの多い、地表から
の屈折法弾性波探査の結果を利用する。そして、この結
果によって、地質縦断図上に速度帯を記載し、この速度
帯が記載された地質縦断図において、起振波と反射波に
ついての代表的な往復波線経路を作図によって仮定し、
この往復波線経路に対する前記各速度帯における起振波
と反射波の波線上の長さの比に各速度帯における弾性波
伝播速度を乗じた値の総和によって、前記平均弾性波伝
播速度を求める。
When finding a plurality of velocity zones having different elastic wave propagation velocities in the ground to be searched, use the result of refraction elastic wave exploration from the surface, which is often performed in a preliminary survey of tunnel excavation work. I do. Then, according to the result, the speed zone is described on the geological profile, and in the geological profile in which the speed zone is described, a typical reciprocating ray line path for the excitation wave and the reflected wave is assumed by drawing,
The average elastic wave propagation velocity is obtained from the sum of values obtained by multiplying the ratio of the length of the excitation wave and the reflected wave on the wavy line in the velocity band to the reciprocating wave line path by the elastic wave propagation velocity in each velocity band.

【0015】このようにすれば、探査すべき地山におけ
る平均弾性波伝播速度を容易かつ短時間で求めることが
できる。そして、この平均弾性波伝播速度によって、弾
性波(起振波と反射波)を解析することによって、探査
すべき地山の弾性波伝播速度が探査測線区間のものと大
きく異なったり、該地山に弾性波伝播速度の異なる複数
の速度帯がある場合においても、正確な岩盤探査を行う
ことが可能となる。
In this way, the average elastic wave propagation velocity at the ground to be searched can be easily and quickly obtained. Then, by analyzing the elastic waves (excitation waves and reflected waves) based on the average elastic wave propagation velocity, the elastic wave propagation velocity of the ground to be explored greatly differs from that of the survey line section, Even if there are multiple velocity zones with different elastic wave propagation velocities, accurate rock exploration can be performed.

【0016】[0016]

【発明の実施の形態】以下、図面を参照して本発明の岩
盤探査方法の実施の形態の一例について説明する。図1
は、本発明の岩盤探査方法を実施するための装置の概念
図である。計測に際しては、60メートル程度の測線
を、切羽手前のトンネル側壁に直線状に設ける。そし
て、小規模の探査用発破を測線上の30ケ所程度の発振
孔11内で行い、測線後方の受振センサ12で弾性波
(地震波)を計測する。発破には高性能爆薬と探鉱用電
気雷管13を用いる。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a rock exploration method according to an embodiment of the present invention. FIG.
FIG. 1 is a conceptual diagram of an apparatus for implementing a rock exploration method of the present invention. At the time of measurement, a measurement line of about 60 meters is provided in a straight line on the tunnel side wall in front of the face. Then, a small-scale explosion for exploration is performed in about 30 oscillation holes 11 on the survey line, and an elastic wave (earthquake wave) is measured by a vibration sensor 12 behind the survey line. Blasting uses a high-performance explosive and an exploration detonator 13.

【0017】前記受振センサ12は1本のロッド14に
コンパクトにまとめられて挿入されており、トンネル軸
方向と鉛直方向の2成分加速度計が3セット装着されて
いる。これら受振センサ12が挿入されたロッド14は
ゆるみ域の影響を低減させるための受振孔15に挿入し
て用いる。また、前記ロッド14は地山との密着性を高
めるために専用のガイドケーシング16内に挿入され、
このガイドケーシング16は無収縮モルタルによって地
山に固着させる。なお、図1において、符号17は発破
器、18はトリガーボックス、19は記録装置を示す。
The vibration sensor 12 is compactly assembled and inserted into one rod 14, and three sets of two-component accelerometers in the axial direction and the vertical direction of the tunnel are mounted. The rod 14 into which the vibration sensor 12 is inserted is used by inserting it into a vibration hole 15 for reducing the influence of the loose area. Further, the rod 14 is inserted into a dedicated guide casing 16 in order to enhance the adhesion to the ground,
The guide casing 16 is fixed to the ground with non-shrink mortar. In FIG. 1, reference numeral 17 denotes a blaster, 18 denotes a trigger box, and 19 denotes a recording device.

【0018】前記岩盤探査装置による弾性波(地震波)
の解析は、大きく2段階に分けて行う。第1段階である
波界処理過程は、記録波から直接P波、直接S波、後方
反射波、表面波等のノイズを除去・低減させ、前方の反
射面20で反射した反射波のみを増幅・抽出する過程で
ある。また、第2段階であるイベント抽出過程は、前記
波界処理過程で得られた反射波についてマイグレーショ
ン処理を行った後、反射面の抽出と、その3次元表示を
行う過程である。
Elastic waves (seismic waves) generated by the rock exploration apparatus
Is performed in two major steps. The wave field processing process, which is the first stage, removes and reduces noise such as a direct P wave, a direct S wave, a back reflection wave, and a surface wave from the recording wave, and amplifies only the reflection wave reflected by the front reflection surface 20.・ This is the process of extraction. The event extraction process, which is the second stage, is a process of performing a migration process on the reflected wave obtained in the wave field processing process, extracting a reflection surface, and three-dimensionally displaying the reflection surface.

【0019】前記弾性波の解析を行う場合において、切
羽前方区間の弾性波伝播速度が探査測線区間のものと大
きく異なると考えられるケースでは、探査測線区間の弾
性波伝播速度を用いると、反射面の位置がずれて抽出さ
れるため、既存の地質情報から切羽前方区間の弾性波伝
播速度の平均値を求め、この平均弾性波伝播速度を用い
て解析を行う。
In the case of analyzing the elastic wave, in the case where the elastic wave propagation velocity in the section in front of the face is considered to be significantly different from that in the search line section, the reflection surface can be obtained by using the elastic wave propagation velocity in the search line section. Is extracted with the position shifted, the average value of the elastic wave propagation velocity in the section in front of the face is obtained from the existing geological information, and analysis is performed using this average elastic wave propagation velocity.

【0020】前記平均弾性波伝播速度を求めるには、例
えば以下のようにして行う。すなわち、図2に示すよう
に、探査範囲が地形的に谷部である場合、縦断図上で、
トンネル軸方向から上向きθまでを反射波の強調方向と
し、トンネル軸近傍の地山かからの反射波を増幅する。
図2において、S1〜S4はトンネル掘削施工の事前調
査で行った、地表からの屈折法弾性波探査によって得ら
れた地山の速度帯であり、これら速度帯S1〜S4にお
けるそれぞれの弾性波伝播速度V1〜V4は、V1<V
2<V3<V4となっている。なお、前記速度帯S1
は、強風化などによる地山表面付近の脆弱部であり、弾
性波の減衰が著しい部分である。
The average elastic wave propagation velocity is determined, for example, as follows. That is, as shown in FIG. 2, when the exploration range is a valley in terms of topography,
The direction from the tunnel axis direction to the upward direction θ is used as the reflected wave enhancement direction, and the reflected wave from the ground near the tunnel axis is amplified.
In FIG. 2, S1 to S4 are ground velocity zones obtained by refraction elastic wave exploration from the surface of the ground, which were performed in a preliminary survey of tunnel excavation work, and respective elastic wave propagation in these velocity bands S1 to S4. The speeds V1 to V4 are V1 <V
2 <V3 <V4. The speed zone S1
Is a fragile portion near the ground surface due to strong weathering, etc., and is a portion where the elastic wave is significantly attenuated.

【0021】そして、前記速度帯S1〜S4が記載され
た地質縦断図において、起振波と反射波についての代表
的な往復波線経路を以下のようにして作図によって仮定
する。まず、レシーバ(受振動センサ12)から前方に
所定距離までを解析範囲とし、直角三角形△DBCを作
図する。ここで、線分DBは、適宜設定されるが例えば
150メートル程度とする。また、線分DCは、速度帯
S1とS2の境界曲線の接点を通る直線であり、△DB
Cの内部に速度帯S1が含まれないようにする。さら
に、線分CBは、B点から垂直に上方に延ばした垂線が
前記線分DCと交わるC点と、前記B点とを結ぶ線分で
ある。
In the geological profile showing the speed bands S1 to S4, a typical reciprocating wavy line path for the excitation wave and the reflected wave is assumed by drawing as follows. First, a right triangle △ DBC is drawn with the analysis range extending from a receiver (vibration sensor 12) to a predetermined distance in front. Here, the line segment DB is appropriately set, but is, for example, about 150 meters. The line segment DC is a straight line passing through the contact point of the boundary curve between the speed bands S1 and S2,
The speed zone S1 is not included in C. Further, the line segment CB is a line segment connecting the point C and a point C where a perpendicular extending vertically upward from the point B intersects the line segment DC.

【0022】次に、前記△DBC内を伝播していく起振
波と反射波について代表的な往復波線経路を以下のよう
にして仮定する。まず、線分DBと線分DCとのなす角
度θの二等分線と、前記線分CBとの交点をR(仮定し
た波線の反射点)とし、線分RDを反射波の波線(復路
の波線)とする。一方、前記多数(例えば30個)の発
振孔11…を結ぶ直線の中点をAとし、この点Aと前記
交点Rを結ぶ線分ARを起振波の波線(往路の波線)と
する。そして、前記線分ARと、前記速度帯S2〜S4
の境界との交点をp1,p2,p3とし、線分RDと速度
帯S2〜S4の境界との交点をq1,q2,q3とする。
Next, a typical reciprocating trajectory of the oscillating wave and the reflected wave propagating in the △ DBC is assumed as follows. First, the intersection between the bisector of the angle θ formed by the line segment DB and the line segment DC and the line segment CB is R (assumed reflection point of the wavy line), and the line segment RD is represented by the wavy line of the reflected wave (return path). Wavy line). On the other hand, the middle point of a straight line connecting the large number (for example, 30) of the oscillation holes 11 is defined as A, and the line segment AR connecting this point A and the intersection R is defined as a wavy line of the excitation wave (outgoing wavy line). Then, the line segment AR and the speed bands S2 to S4
Are defined as p1, p2, and p3, and the intersections between the line segment RD and the boundaries of the speed bands S2 to S4 are defined as q1, q2, and q3.

【0023】次に、前記往復波線経路(線分AR+線分
RD)に対する前記各速度帯S2〜S4における起振波
と反射波の波線上の長さの比に、各速度帯における弾性
波伝播速度を乗じた値の総和によって、探査すべき地山
の平均弾性波伝播速度Vを求める。この平均弾性波伝播
速度Vは次式で求められる。
Next, the elastic wave propagation in each speed band is determined by the ratio of the length of the oscillating wave to the reflected wave in each of the speed bands S2 to S4 with respect to the reciprocating wave line path (line segment AR + line segment RD). The average elastic wave propagation velocity V of the ground to be searched is obtained from the sum of the values multiplied by the velocity. This average elastic wave propagation velocity V is obtained by the following equation.

【数1】 (Equation 1)

【0024】このように、作図と簡単な計算によって、
探査すべき地山における平均弾性波伝播速度を容易かつ
短時間で求めることができる。そして、この平均弾性波
伝播速度によって、弾性波(起振波と反射波)を解析す
ることによって、探査すべき地山の弾性波伝播速度が探
査測線区間のものと大きく異なったり、該地山に弾性波
伝播速度の異なる複数の速度帯がある場合においても、
正確な岩盤探査を行うことが可能となる。
Thus, by drawing and simple calculation,
The average elastic wave propagation velocity in the ground to be searched can be obtained easily and in a short time. Then, by analyzing the elastic waves (excitation waves and reflected waves) based on the average elastic wave propagation velocity, the elastic wave propagation velocity of the ground to be explored greatly differs from that of the survey line section, Even if there are multiple velocity bands with different elastic wave propagation velocities,
Accurate rock exploration can be performed.

【0025】図3は、前記平均弾性波伝播速度を用い
て、本例の岩盤探査方法による弾性波(地震波)の解析
を行った結果を表示したもので、この図においては、反
射面の位置、方向、および反射面の性質が表示されてい
る。すなわち、図3において符号21,22でそれぞれ
示す一点鎖線の部分は「硬→軟」の変化が現れた反射
面、符号23,24,25でそれぞれ示す鎖線の部分は
「軟→硬」の変化が現れた反射面を示している。なお、
符号8で示す部分は実際の掘削によって現れた破砕帯
(脆弱部)、9a,9b,9cは小き裂を示している。
FIG. 3 shows a result of analysis of an elastic wave (seismic wave) by the rock exploration method of the present embodiment using the average elastic wave propagation velocity. In this figure, the position of the reflecting surface is shown. , Direction, and the nature of the reflective surface are indicated. That is, in FIG. 3, dashed lines indicated by reference numerals 21 and 22 indicate reflection surfaces where the change of “hard → soft” appears, and dashed lines indicated by reference numerals 23, 24 and 25 indicate change of “soft → hard”. Indicates the reflective surface where appears. In addition,
A portion indicated by reference numeral 8 indicates a crush zone (fragile portion) that has appeared by actual excavation, and 9a, 9b, and 9c indicate small cracks.

【0026】そして、本例の岩盤探査方法においては、
前記反射面の密集する区間を地山の脆弱部として推定す
る。すなわち、図3に示すように、反射面23,24,
22が密集しているので、この区間を地山の脆弱部26
として推定し、反射面の存在しない区間を地山の健全な
部分(堅岩部)として推定し、さらに、単独で存在する
反射面21,25は小き裂などの小さな変化として推定
する。
In the rock exploration method of this example,
A section where the reflection surface is dense is estimated as a fragile portion of the ground. That is, as shown in FIG.
22 are dense, so this section is
, The section where there is no reflective surface is estimated as a sound part (hard rock) of the ground, and the reflective surfaces 21 and 25 that exist alone are estimated as small changes such as small cracks.

【0027】図3から明らかなように、前記脆弱部26
として推定された位置と、実際の破砕帯(脆弱部)8の
位置とはほぼ一致し、また、反射面の密集していない区
間は、小き裂9a,9cはあるものの、全体的に地質は
健全であり、また、単独で存在する反射面21,25の
位置と、前記小き裂9a,9cの位置がほぼ一致してい
るのが判る。
As is apparent from FIG.
And the actual position of the crush zone (fragile portion) 8 almost coincides. In the section where the reflection surfaces are not dense, although there are small cracks 9a and 9c, Is sound, and it can be seen that the positions of the reflecting surfaces 21 and 25 that exist alone and the positions of the small cracks 9a and 9c substantially coincide with each other.

【0028】このように、本例の岩盤探査方法にあって
は、反射面23,24,22の密集する区間を地山の脆
弱部26として推定し、また、反射面の存在しない区間
を地山の健全な部分(堅岩部)として推定することによ
って、正確な岩盤の探査を地山の岩の種類に関わらず容
易に行うことができる。なお、上記の例では、本発明の
岩盤探査方法を前記トンネル坑内から弾性波を利用す
る、多点発振1点受振系の切羽前方探査法を用いた場合
に適用した例について述べたが、本発明は、前記切羽前
方探査法以外の、弾性波を用いる切羽前方の探査やその
他の地山の探査にも同様に適用することができるのは勿
論のことである。
As described above, in the rock exploration method of the present embodiment, the section where the reflection surfaces 23, 24, and 22 are dense is estimated as the weak portion 26 of the ground, and the section where the reflection surface does not exist is the ground. By estimating it as a healthy part of the mountain (hard rock), accurate rock exploration can be easily performed regardless of the type of rock at the ground. In the above example, an example was described in which the rock mass exploration method of the present invention was applied to the case where a front face exploration method of a multi-point oscillation single-point vibration receiving system using elastic waves from the inside of the tunnel was used. Of course, the present invention can be similarly applied to the exploration in front of a face using elastic waves and the exploration of other grounds other than the exploration in front of the face.

【0029】[0029]

【発明の効果】以上説明したように、本発明の請求項1
の岩盤探査方法は、弾性波である起振波が探査すべき地
山内で反射する反射波によって、該地山内にある反射面
の位置を求め、前記反射面の密集する区間を地山の脆弱
部として推定するものであるから、正確な岩盤の探査を
地山の岩の種類に関わらず容易に行うことができる。
As described above, according to the first aspect of the present invention,
The rock mass exploration method of (1) finds the position of the reflection surface in the ground by the reflected wave in which the exciting wave which is an elastic wave is reflected in the ground to be searched, and makes the section where the reflection surface is densely fragile Since it is estimated as a part, accurate rock exploration can be easily performed regardless of the type of rock at the ground.

【0030】また、請求項2の岩盤探査方法は、請求項
1の岩盤探査方法において、予め、探査すべき地山内に
おいて、それぞれ弾性波伝播速度が異なる複数の速度帯
を求めておき、これら速度帯を伝播していく弾性波(起
振波と反射波)について代表的な往復波線経路を仮定
し、この往復波線経路に対する前記各速度帯における弾
性波の波線上の長さの比に各速度帯における弾性波伝播
速度を乗じた値の総和によって、探査すべき地山の平均
弾性波伝播速度を求めるものであるから、探査すべき地
山の弾性波伝播速度が探査測線区間のものと大きく異な
ったり、該地山に弾性波伝播速度の異なる複数の速度帯
がある場合においても、正確な岩盤探査を行うことがで
きる。
Further, according to the rock exploration method of claim 2, in the rock exploration method of claim 1, a plurality of velocity bands having different elastic wave propagation velocities are obtained in advance in the ground to be investigated, and these velocity zones are determined. A typical reciprocating wavy path is assumed for the elastic waves (excitation waves and reflected waves) propagating in the band, and the ratio of the length of the elastic wave on the wavy line in each of the velocity bands to the reciprocating wavy path is calculated by Since the average elastic wave propagation velocity of the ground to be searched is determined by the sum of the values multiplied by the elastic wave propagation velocity in the band, the elastic wave propagation velocity of the ground to be searched is larger than that of the survey line section. Even when the ground is different or when there are a plurality of velocity bands having different elastic wave propagation velocities in the ground, accurate rock exploration can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の岩盤探査方法を実施する探査装置の一
例を示す概念図である
FIG. 1 is a conceptual diagram showing an example of an exploration apparatus for implementing a rock exploration method of the present invention.

【図2】本発明の岩盤探査方法に用いる地山の一例を示
す縦断面図である。
FIG. 2 is a longitudinal sectional view showing an example of a ground used in the rock exploration method of the present invention.

【図3】本発明の岩盤探査方法によって得られた結果
と、実際の地質の対比を示すトンネルの断面図である。
FIG. 3 is a sectional view of a tunnel showing a comparison between a result obtained by the rock exploration method of the present invention and actual geology.

【図4】従来の岩盤探査方法によって得られた結果と、
実際の地質の対比を示すトンネルの断面図である。
FIG. 4 shows the results obtained by the conventional rock exploration method,
It is sectional drawing of the tunnel which shows the comparison of actual geology.

【符号の説明】[Explanation of symbols]

8 実際の破砕帯(脆弱部) 9a〜9c 実際の小き裂 21,25 単独で存在する反射面 22,23,24 密集している反射面 26 探査によって推定された脆弱部 8 Actual crush zone (fragile part) 9a-9c Actual small crack 21, 25 Reflecting surface that exists alone 22, 23, 24 Reflecting surface that is dense 26 Vulnerable part estimated by exploration

───────────────────────────────────────────────────── フロントページの続き (72)発明者 名和 芳久 愛知県名古屋市東区東新町1番地 中部電 力株式会社内 (72)発明者 川尻 文夫 愛知県名古屋市東区東新町1番地 中部電 力株式会社内 (72)発明者 明石 健 神奈川県大和市下鶴間2570−4 西松建設 株式会社技術研究所内 (72)発明者 稲葉 力 神奈川県大和市下鶴間2570−4 西松建設 株式会社技術研究所内 (72)発明者 石山 宏二 神奈川県大和市下鶴間2570−4 西松建設 株式会社技術研究所内 (72)発明者 平野 享 神奈川県大和市下鶴間2570−4 西松建設 株式会社技術研究所内 (72)発明者 山下 雅之 神奈川県大和市下鶴間2570−4 西松建設 株式会社技術研究所内 (72)発明者 堀場 夏峰 神奈川県大和市下鶴間2570−4 西松建設 株式会社技術研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshihisa Nawa 1 Higashi-ku, Higashi-ku, Nagoya City, Aichi Prefecture Inside (72) Inventor Fumio Kawajiri 1 Higashi-Shimmachi, Higashi-ku, Nagoya City, Aichi Chubu Electric Power Company (72) Inventor Takeshi Akashi 2570-4 Shimotsuruma, Yamato-shi, Kanagawa Prefecture Nishimatsu Construction Co., Ltd.Technical Research Institute (72) Inventor Riki Inaba 2570-4 Shimotsurumama, Yamato-shi, Kanagawa Prefecture Nishimatsu Construction Co., Ltd.Technology Research Institute (72) Inventor Koji Ishiyama 2570-4 Shimotsuruma, Yamato-shi, Kanagawa Prefecture Nishimatsu Construction Co., Ltd. (72) Inventor Takashi Hirano 2570-4 Shimotsuruma, Yamato-shi, Kanagawa Prefecture Nishimatsu Construction Co., Ltd. 2570-4 Shimotsuruma, Yamato City, Kanagawa Prefecture Nishimatsu Construction Co., Ltd. (72) Inventor Horiba Natsumine Yamato, Kanagawa Prefecture 2570-4 Shimotsuruma, Nishimatsu Nishimatsu Construction Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 弾性波を利用して岩盤の探査を行う岩盤
探査方法であって、 弾性波である起振波が探査すべき地山内で反射する反射
波によって、該地山内にある反射面の位置を求め、 前記反射面の密集する区間を地山の脆弱部として推定す
ることを特徴とする岩盤探査方法。
1. A rock mass exploration method for exploring a rock mass using an elastic wave, wherein an exciting wave, which is an elastic wave, is reflected by the reflected wave in the ground to be searched, and a reflection surface in the ground is detected. A rock mass exploration method comprising: determining a position of a reflection surface; and estimating a section where the reflection surface is dense as a fragile portion of the ground.
【請求項2】 請求項1記載の岩盤探査方法において、 予め、探査すべき地山内において、それぞれ弾性波伝播
速度が異なる複数の速度帯を求めておき、これら速度帯
を伝播していく起振波と反射波について代表的な往復波
線経路を仮定し、この往復波線経路に対する前記各速度
帯における前記起振波と反射波の波線上の長さの比に各
速度帯における弾性波伝播速度を乗じた値の総和によっ
て、探査すべき地山における平均弾性波伝播速度を求め
ることを特徴とする岩盤探査方法。
2. The rock exploration method according to claim 1, wherein a plurality of velocity bands having different elastic wave propagation velocities are obtained in advance in the ground to be searched, and vibrations propagating through these velocity bands are obtained. Assuming a typical reciprocating wavy line path for the wave and the reflected wave, the elastic wave propagation velocity in each speed band is determined by the ratio of the length of the vibrating wave and the reflected wave on the wavy line in each speed band to the reciprocating wave line path. A rock exploration method, wherein an average elastic wave propagation velocity in a ground to be searched is obtained from a sum of multiplied values.
JP8313823A 1996-11-25 1996-11-25 Bedrock survey method Pending JPH10153665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8313823A JPH10153665A (en) 1996-11-25 1996-11-25 Bedrock survey method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8313823A JPH10153665A (en) 1996-11-25 1996-11-25 Bedrock survey method

Publications (1)

Publication Number Publication Date
JPH10153665A true JPH10153665A (en) 1998-06-09

Family

ID=18045950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8313823A Pending JPH10153665A (en) 1996-11-25 1996-11-25 Bedrock survey method

Country Status (1)

Country Link
JP (1) JPH10153665A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156459A (en) * 2000-09-06 2002-05-31 Fujita Corp Geologic survey method for existent tunnel and maintaining and managing method for existent tunnel using the same
JP2003014863A (en) * 2001-07-03 2003-01-15 Fujita Corp Method for investigating natural ground
JP2014181948A (en) * 2013-03-18 2014-09-29 Shimizu Corp Reception sensor mounting fixture
JP2015090032A (en) * 2013-11-06 2015-05-11 清水建設株式会社 Tunnel natural ground search system
CN113534289A (en) * 2021-07-15 2021-10-22 武汉长盛煤安科技有限公司 Real-time early warning device and method for advanced intelligent comprehensive detection based on Internet of things

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156459A (en) * 2000-09-06 2002-05-31 Fujita Corp Geologic survey method for existent tunnel and maintaining and managing method for existent tunnel using the same
JP4526738B2 (en) * 2000-09-06 2010-08-18 株式会社フジタ Geological exploration method of existing tunnel and maintenance management method of existing tunnel using it
JP2003014863A (en) * 2001-07-03 2003-01-15 Fujita Corp Method for investigating natural ground
JP2014181948A (en) * 2013-03-18 2014-09-29 Shimizu Corp Reception sensor mounting fixture
JP2015090032A (en) * 2013-11-06 2015-05-11 清水建設株式会社 Tunnel natural ground search system
CN113534289A (en) * 2021-07-15 2021-10-22 武汉长盛煤安科技有限公司 Real-time early warning device and method for advanced intelligent comprehensive detection based on Internet of things
CN113534289B (en) * 2021-07-15 2022-11-29 武汉长盛煤安科技有限公司 Real-time early warning device and method for advanced intelligent comprehensive detection based on Internet of things

Similar Documents

Publication Publication Date Title
Ashida Seismic imaging ahead of a tunnel face with three-component geophones
Johansson et al. Shock wave interactions in rock blasting: the use of short delays to improve fragmentation in model-scale
US11112513B2 (en) Method and device for estimating sonic slowness in a subterranean formation
JP5985371B2 (en) Geological exploration method during tunnel excavation
US20140379304A1 (en) Extracting timing and strength of each of a plurality of signals comprising an overall blast, impulse or other energy burst
CN110687607B (en) Stoneley wave detection method and system
JP4157635B2 (en) Tunnel face forward exploration method
JP6522918B2 (en) Elastic wave velocity measurement method
JP6418387B2 (en) Forward exploration method of tunnel face
Riggs Seismic wave types in a borehole
JP5940303B2 (en) Tunnel face forward exploration method
JPH10153665A (en) Bedrock survey method
US11585212B2 (en) Anisotropy model guided fracture properties extraction from VSP data
CN108121010A (en) Based on the united underground dead face slot wave forward probe method and system in hole lane
JP4260329B2 (en) Geological exploration method in front of tunnel face
JPH07259472A (en) Geological survey in tunnel digging
Dickmann 3D Tunnel Seismic Prediction: A next generation tool to characterize rock mass condition ahead of the tunnel face
JPH08226975A (en) Method for surveying geology in front of face of tunnel
JP4187042B2 (en) Seismic depth transmission method using underground insertion tube
JP3410965B2 (en) Geological exploration method, elastic wave generation method, and elastic wave generator
JP4283985B2 (en) Geological exploration method
JP6936751B2 (en) Ground information acquisition method and equipment
CN115184990B (en) Microseism monitoring and observing method
CN112946753B (en) Near-surface stratum structure analysis system and method
Dickmann et al. Is geological uncertainty ahead of the face controllable