JPH10153195A - Blade for compressor and manufacture thereof - Google Patents

Blade for compressor and manufacture thereof

Info

Publication number
JPH10153195A
JPH10153195A JP30968596A JP30968596A JPH10153195A JP H10153195 A JPH10153195 A JP H10153195A JP 30968596 A JP30968596 A JP 30968596A JP 30968596 A JP30968596 A JP 30968596A JP H10153195 A JPH10153195 A JP H10153195A
Authority
JP
Japan
Prior art keywords
rotor
blade
compressor
fiber
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30968596A
Other languages
Japanese (ja)
Inventor
Satoru Fukuzawa
覚 福澤
Hiroshi Niwa
洋 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP30968596A priority Critical patent/JPH10153195A/en
Publication of JPH10153195A publication Critical patent/JPH10153195A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the deformation of a blade and the wear and damage to the blade at the rotor rotation time by containing a fiber for reinforcing orientated with a specific angle for a rotor axis direction at the assembly time. SOLUTION: Blades 20, 20a, 20b are formed by a thermal flexible synthetic resin containing a fiber for reinforcing 21 orientated by 60 deg.-90 deg. for the rotor axis direction X at the assembly time and having a heat resistance of a thermal deformation temperature 130 deg.C or more. In a manufacturing method, when the fiber for reinforcing 21 is contained in a melted resin for molding and assembled to the rotor, the blade is formed by an injection molding, while making the direction in which the fiber 21 is orientated by 60 deg.-90 deg. for the rotor axis direction X to a melted resin flow direction at the time assembled to the rotor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮空気を動力源
とするコンプレッサのロータに組み付けられる羽根及び
その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blade mounted on a rotor of a compressor using compressed air as a power source, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】塗装用ガン、エアドライバ、インパクト
レンチ、エアグラインダ等のエアツールは圧縮空気によ
って回転作動するコンプレッサを有している。上記コン
プレッサの主要構成部品であるロータには複数個の溝が
形成され、各溝内に回転軸の中心に向かう方向に摺動可
能に羽根(エアツールベーン)が備えられており、その
羽根の一例(実開昭63-64472号公報)を図5及び図6を
参照して次に示す。図において(1)はコンプレッサ、
(2)はハンマである。上記ハンマ(2)は、アンビル
(3)と、コンプレッサ(2)の回転力をアンビル
(3)への間歇回転運動に変換させる手段とからなり、
コンプレッサ(1)の一定回転作動によってアンビル
(3)を間歇的に回転させる。
2. Description of the Related Art Air tools such as a coating gun, an air driver, an impact wrench, and an air grinder have a compressor which is rotated by compressed air. The rotor, which is a main component of the compressor, has a plurality of grooves formed therein, and blades (air tool vanes) are provided in each groove so as to be slidable in a direction toward the center of the rotation shaft. One example (Japanese Utility Model Laid-Open No. 63-64472) is shown below with reference to FIGS. In the figure, (1) is a compressor,
(2) is a hammer. The hammer (2) includes an anvil (3) and means for converting the rotational force of the compressor (2) into an intermittent rotational motion of the anvil (3).
The anvil (3) is intermittently rotated by a constant rotation operation of the compressor (1).

【0003】コンプレッサ(1)は、軸(4)を両端に
貫通させた円柱体状ロータ(5)と、ロータ(5)の外
周側面を覆うシリンダ(6)と、ロータ(5)を気密的
に閉鎖するためにシリンダ(6)の開口両側に備えられ
るリアプレート(7)とフロントプレート(8)とを具
備する。上記ロータ(5)の外面には軸(4)と平行に
放射状に複数個の溝(9)が形成され、その各溝(9)
内に軸(4)に対し放射状方向に摺動できるように羽根
(10)が挿入されている。リアプレート(7)とフロン
トプレート(8)にはそれぞれ、ロータ(5)の軸
(4)を回転自在に保持するためのベアリング(11)
(12)が備えられている。上記ロータ(5)を収容する
シリンダ(6)の内部空間(13)は、その内径がロータ
(5)の外径より径大とされており、内部空間(13)の
軸中心は、シリンダ(6)内に取付けられた状態のロー
タ(5)の軸(4)の中心より偏芯した位置とされる。
The compressor (1) has a cylindrical rotor (5) having a shaft (4) penetrated at both ends, a cylinder (6) covering the outer peripheral side surface of the rotor (5), and an airtight rotor (5). A rear plate (7) and a front plate (8) are provided on both sides of an opening of the cylinder (6) to close the cylinder. On the outer surface of the rotor (5), a plurality of grooves (9) are formed radially in parallel with the axis (4), and each of the grooves (9) is formed.
A blade (10) is inserted therein so as to be able to slide radially with respect to the shaft (4). Bearings (11) for rotatably holding the shaft (4) of the rotor (5) on the rear plate (7) and the front plate (8), respectively.
(12) is provided. The inner space (13) of the cylinder (6) accommodating the rotor (5) has an inner diameter larger than the outer diameter of the rotor (5). 6) A position eccentric from the center of the shaft (4) of the rotor (5) mounted inside.

【0004】上記リアプレート(7)とフロントプレー
ト(8)には、シリンダ(6)の内部空間(13)に開口
する羽根出し用空気導入通路(14)(15)が形成され
る。上記空気導入通路(14)(15)へは従来既知の手段
によって圧縮空気が導入され、その圧縮空気はロータ
(5)の溝(10)のうち軸(4)の根元側に送られるよ
うに空気導入通路(14)(15)の開口部位置が設定され
る。上記羽根(10)のうち溝(9)の根元側に位置する
上下箇所には、羽根(10)が効率良く圧縮空気によって
摺動できるようにするために切り欠き部(16)が形成さ
れる。
The rear plate (7) and the front plate (8) are provided with blade introduction air introduction passages (14) (15) which open into the internal space (13) of the cylinder (6). Compressed air is introduced into the air introduction passages (14) and (15) by a conventionally known means so that the compressed air is sent to the root side of the shaft (4) in the groove (10) of the rotor (5). The opening positions of the air introduction passages (14) and (15) are set. Notches (16) are formed at upper and lower portions of the blade (10) located on the base side of the groove (9) so that the blade (10) can slide with compressed air efficiently. .

【0005】コンプレッサ作動時には、圧縮空気が空気
導入通路(14)(15)からロータ(5)の溝(9)の根
元側に導入され、その圧縮空気によって羽根(10)はシ
リンダ(6)の壁の方向に押し出され、これによって始
動時の羽根(10)の溝(9)内への油による貼り付きを
防止出来る。
During operation of the compressor, compressed air is introduced from the air introduction passages (14) and (15) to the base of the groove (9) of the rotor (5), and the compressed air causes the blade (10) to move into the cylinder (6). The blade (10) is pushed out in the direction of the wall, thereby preventing the blade (10) from sticking to the groove (9) by the oil at the time of starting.

【0006】上記羽根(10)は、従来、綿布入りのフェ
ノール樹脂積層板や綿布入りのエポキシ樹脂積層板が使
用されている。又、作動時、ロータ(5)は約3000rpm
で高速回転し、その際、軸(4)の偏芯によりロータ外
周面が内部空間(13)の壁面と接触する領域で羽根(1
0)は溝内に収まる。一方、図4(b)に示すように、
軸(4)の偏芯によりロータ外周面が内部空間(13)の
壁面から離隔する領域では遠心力により羽根(10)の一
部が放射状に溝外に飛び出して端面で壁面に接触しつつ
密封的に摺動回転し、空気を圧縮する。
Conventionally, a phenol resin laminate containing cotton cloth or an epoxy resin laminate containing cotton cloth is used for the blade (10). During operation, the rotor (5) is about 3000 rpm
At high speed. At this time, the rotor (1) rotates in the region where the rotor outer peripheral surface contacts the wall surface of the internal space (13) due to the eccentricity of the shaft (4).
0) fits in the groove. On the other hand, as shown in FIG.
In a region where the rotor outer peripheral surface is separated from the wall surface of the internal space (13) due to the eccentricity of the shaft (4), a part of the blade (10) radially jumps out of the groove due to centrifugal force and seals while contacting the wall surface at the end surface. Slidably rotates and compresses air.

【0007】そのため、飛び出した部分に回転方向に沿
って曲げ応力が加わり、更に溝入口に接触して屈曲変形
する。その屈曲部(10a)の内側面に大きな摩擦力が加
わって摩耗し、回転不良による出力低下や摩耗粉による
焼き付き等の不具合が生じ、更に摩耗が進行すると、肉
厚が薄くなって羽根(10)が折損することがある。その
ため、従来、図4(a)に示すように、補強用繊維(1
8)、例えば炭素繊維を含有させた羽根(17)が知られ
ており、製造の際、上記補強用繊維(18)を含有した成
形用樹脂で羽根(17)を射出成形する。
[0007] Therefore, a bending stress is applied to the protruding portion along the rotational direction, and furthermore, the protruding portion comes into contact with the groove entrance to be bent and deformed. A large frictional force is applied to the inner surface of the bent portion (10a) to cause abrasion, which causes problems such as a reduction in output due to poor rotation and seizure due to abrasion powder. ) May be broken. Therefore, conventionally, as shown in FIG.
8) For example, a blade (17) containing carbon fiber is known, and at the time of production, the blade (17) is injection-molded with a molding resin containing the reinforcing fiber (18).

【0008】上記補強用繊維(18)は、羽根(17)をロ
ータ(5)に組み付けた時にロータ軸方向(X)に配向
するように含有したものである。そこで、図4(a)に
示すように、ロータ軸方向(X)に平行にゲート(19)
を配して補強用繊維含有の溶融樹脂を金型キャビティに
注入し、羽根(17)に含有した補強用繊維(18)をロー
タ軸方向(X)の方向に平行に配向させる。
The reinforcing fibers (18) are contained so that the blades (17) are oriented in the rotor axial direction (X) when assembled to the rotor (5). Therefore, as shown in FIG. 4A, the gate (19) is parallel to the rotor axis direction (X).
And the molten resin containing the reinforcing fiber is injected into the mold cavity, and the reinforcing fiber (18) contained in the blade (17) is oriented parallel to the direction of the rotor axis (X).

【0009】[0009]

【発明が解決しようとする課題】解決しようとする課題
は、フェノール樹脂やエポキシ樹脂の積層板からなる羽
根(10)(17)は全面機械加工が必要であり、寸法のバ
ラツキが大きく、又、羽根(17)に含有した補強用繊維
(18)はロータ軸方向(X)に平行に配向し、その配向
方向(X)がロータ(5)の回転モーメントの中心軸方
向に平行になるため、羽根(17)はロータ回転方向に対
して依然として変形して摩耗及び折損し易く、補強が不
十分である点である。
The problem to be solved is that the blades (10) and (17) made of a phenol resin or epoxy resin laminate need to be machined over the entire surface, and have large dimensional variations. The reinforcing fiber (18) contained in the blade (17) is oriented parallel to the rotor axis direction (X), and the orientation direction (X) is parallel to the center axis direction of the rotational moment of the rotor (5). The blades (17) are still deformed in the direction of rotation of the rotor and are liable to be worn and broken, and are insufficiently reinforced.

【0010】本発明の目的は、機械加工を必要とせず、
耐摩耗性に優れた長寿命のコンプレッサ用羽根を提供す
ることである。
An object of the present invention is to eliminate the need for machining,
An object of the present invention is to provide a long-life compressor blade with excellent wear resistance.

【0011】[0011]

【課題を解決するための手段】本発明は、コンプレッサ
用羽根として、圧縮空気を動力源とするコンプレッサの
ロータに組み付けられる羽根であって、組み付け時にロ
ータ軸方向に対し60°〜90°で配向する補強用繊維を含
有し、又、熱変形温度130°C以上の耐熱性を有する熱
可塑性合成樹脂で形成したことを特徴とし、又、製造方
法として、成形用溶融樹脂に補強用繊維を含有させ、ロ
ータに組み付けた時、上記補強用繊維がロータ軸方向に
対し60 〜90 で配向する方向を溶融樹脂流れ方向として
射出成形により形成したことを特徴とする。
SUMMARY OF THE INVENTION The present invention relates to a blade for a compressor, which is mounted on a rotor of a compressor using compressed air as a power source, and is oriented at 60 to 90 degrees with respect to the axial direction of the rotor at the time of mounting. It is characterized by being formed of a thermoplastic synthetic resin having a heat resistance of 130 ° C. or higher and a heat distortion temperature of 130 ° C. or more. Then, when assembled to the rotor, the reinforcing fibers are formed by injection molding with the direction in which the reinforcing fibers are oriented at 60 to 90 with respect to the rotor axial direction as the molten resin flow direction.

【0012】[0012]

【発明の実施の形態】本発明に係るコンプレッサ用羽根
及びその製造方法の実施の形態を図1〜図3を参照して
以下に説明する。まず図1(a)は本発明に係るコンプ
レッサ用羽根(20)の実施の形態を示し、その特徴は、
羽根(20)をロータ(5)(図5、6を参照)に組み付
けた時、ロータ軸方向(X)に対し60°〜90°で配向す
る補強用繊維(21)を含有させたことで、図1(b)
(c)に配向方向(Ya)が60°の羽根(20a)、及び配
向方向(Yb)が90°の羽根(20b)をそれぞれ示す。そ
うすると、配向方向(Ya)(Yb)がロータ(5)の回転
モーメントの中心軸方向に大きく交差するため、羽根
(20)はロータ回転方向に対し変形し難くなり、摩耗量
も少なくなって折損し難くなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a compressor blade and a method for manufacturing the same according to the present invention will be described below with reference to FIGS. First, FIG. 1A shows an embodiment of a compressor blade (20) according to the present invention.
When the blade (20) is assembled to the rotor (5) (see FIGS. 5 and 6), the reinforcing fiber (21) oriented at 60 ° to 90 ° with respect to the rotor axial direction (X) is included. , FIG. 1 (b)
(C) shows a blade (20a) whose orientation direction (Ya) is 60 ° and a blade (20b) whose orientation direction (Yb) is 90 °. Then, since the orientation directions (Ya) and (Yb) greatly intersect with the direction of the central axis of the rotational moment of the rotor (5), the blade (20) is hardly deformed in the rotor rotational direction, the wear amount is reduced, and the breakage is caused. It becomes difficult to do.

【0013】上記羽根(20a)(20b)を製造するに際し
ては、例えば図2(a)に示すように、ピンゲート(2
2)を用いた場合、ロータ軸方向(X)に対し60°〜90
°の方向に平行にピンゲート(22)の注入口を配し、補
強用繊維(21)を含有した溶融樹脂をその方向から金型
キャビティに注入して射出成形すれば良い。そうする
と、樹脂内に含有した大部分の補強用繊維(21)が樹脂
内でロータ軸方向(X)に対し60°〜90°の方向に配向
し、成形後にゲート部分を切削除去しておく。
In manufacturing the blades (20a) and (20b), for example, as shown in FIG.
When 2) is used, 60 ° to 90 ° with respect to the rotor axial direction (X)
The injection port of the pin gate (22) may be arranged in parallel to the direction of °, and the molten resin containing the reinforcing fiber (21) may be injected into the mold cavity from that direction and injection-molded. Then, most of the reinforcing fibers (21) contained in the resin are oriented in the resin in a direction of 60 ° to 90 ° with respect to the rotor axial direction (X), and the gate portion is cut and removed after molding.

【0014】又、図2(b)(c)に示すように、ファ
ンゲート(23)を用いた場合、上記同様、ロータ軸方向
(X)に対し60°〜90°の方向に平行にファンゲート
(24)の注入口を配し、補強用繊維(21)を含有した樹
脂をその方向から金型キャビティに注入して射出成形す
れば良い。そうすると、樹脂内に含有した大部分の補強
用繊維(21)がロータ軸方向(X)に対し60°〜90°の
方向に配向し、成形後にゲート部分を切削除去してお
く。
As shown in FIGS. 2 (b) and 2 (c), when the fan gate (23) is used, the fan is arranged in parallel to the direction of 60 to 90 ° with respect to the rotor axial direction (X). The injection port of the gate (24) may be provided, and the resin containing the reinforcing fiber (21) may be injected into the mold cavity from that direction to perform injection molding. Then, most of the reinforcing fibers (21) contained in the resin are oriented in a direction of 60 ° to 90 ° with respect to the rotor axial direction (X), and the gate portion is cut and removed after molding.

【0015】又、成形用樹脂として熱変形温度130°C以
上の耐熱性を有する熱可塑性合成樹脂にすると、高空気
圧、高回転の使用にも耐えられ、射出成形で連続的に高
精度で寸法の揃った羽根(20)を製造出来る。
Further, when the molding resin is a thermoplastic synthetic resin having a heat resistance of a heat deformation temperature of 130 ° C. or more, it can withstand high air pressure and high rotation, and can be continuously dimensioned with high precision by injection molding. A uniform blade (20) can be manufactured.

【0016】又、耐久試験による測定結果を表1に示
す。尚、表中、樹脂基材として、PIは熱変形温度238
°Cの熱可塑性ポリイミド樹脂(三井東圧化学社製:AUR
UM PD450)、PENは熱変形温度165°Cのポリエーテル
ニトリル樹脂(出光興産社製:ID300)、PPSは熱変
形温度138°Cのポリフェニレンスルファイド樹脂(トー
プレン社製:T4)、POMは熱変形温度110°Cのポリア
セタール樹脂(ポリプラスチ ック社製:ジュラコンM90
-71)を示す。{但し、熱変形温度はASTM D64
8(18.6kgf/cm2)に基づく。}又、補強用繊維とし
て、CFは平均繊維長0.7mmの炭素繊維(呉羽化学社
製:クレカチョップM107T)、ARFは平均繊維長0.25m
mの芳香族ポリアミド繊維(日本アラミド社製:トワロ
ン−0.25mm−カットファ イバー)を示し、表中にはな
いが、チタン酸繊維等の耐熱性繊維を用いても良い。
又、固体潤滑剤として、GRP−1、GRP−2は黒鉛
粉末(GRP-1は日本黒鉛社製:ACP、GRP-2は鐘紡社製:
ベルパール−C2000)、PTFEは四フッ化エ チレン樹
脂粉末(喜多村社製:KTL610)を示す。
Table 1 shows the measurement results of the durability test. In the table, as the resin substrate, PI is the heat distortion temperature 238.
° C thermoplastic polyimide resin (Mitsui Toatsu Chemical: AUR
UM PD450), PEN is a polyethernitrile resin with a thermal deformation temperature of 165 ° C (ID300 from Idemitsu Kosan Co., Ltd.), PPS is a polyphenylene sulfide resin with a thermal deformation temperature of 138 ° C (Toprene: T4), and POM is heat Polyacetal resin with a deformation temperature of 110 ° C (manufactured by Polyplastics: Duracon M90
-71). {However, heat deformation temperature is ASTM D64
8 (18.6 kgf / cm 2 ). CF As the reinforcing fibers, CF is a carbon fiber having an average fiber length of 0.7 mm (Kureha Chemical Co., Ltd .: Creca Chop M107T), and ARF is an average fiber length of 0.25 m.
m is an aromatic polyamide fiber (manufactured by Nippon Aramid Co., Ltd .: Twaron-0.25 mm-cut fiber). Although not shown in the table, heat-resistant fiber such as titanate fiber may be used.
As solid lubricants, GRP-1 and GRP-2 are graphite powders (GRP-1 is Nippon Graphite Co., Ltd .: ACP, GRP-2 is Kanebo Co., Ltd.):
Bellpearl-C2000) and PTFE indicate ethylene tetrafluoride resin powder (KTL610, manufactured by Kitamura Co., Ltd.).

【0017】上記各原料を表中に示した割合(重量%)
で配合し、ヘンシェルミキサを用いて乾式混合し、更に
押出機にて溶融押出を行ない造粒し、これを各々の樹脂
基材に適した条件で射出成形を行ない、60×60×1.2mm
の板状素材に成形した。板状素材の一辺にはファンゲー
トが設けてあるため、形成された板状素材には、ゲート
から平行に補強用繊維が配向されている。この板状素材
から、図3に示すように、溶融樹脂流れ方向(補強用繊
維の配向方向)を(Y)とし、補強用繊維がロータ軸方
向(X)に対して90°に配向する羽根(20b)と、ロー
タ軸方向(X)に 対して60°に配向する羽根(20a)
と、ロータ軸方向(X)に対して45°に配向 する羽根
(21a)及びロータ軸方向(X)に対して平行(0°)に
配向する羽根(21b)を切り出す。これらの羽根をエア
ツールに組み付け、ロータ回転数3000rpm 、雰囲気温度
35°C、運転時間1000hの耐久試験を行ない、端面の摩耗
量は耐久試 験1000h後で1.00mm以下であれば、許容範囲
内である。
[0017] The ratio of each of the above raw materials shown in the table (% by weight)
And dry-mixed using a Henschel mixer, melt-extruded with an extruder and granulated, and injection-molded under conditions suitable for each resin base material, 60 × 60 × 1.2 mm
Into a plate material. Since a fan gate is provided on one side of the plate-shaped material, reinforcing fibers are oriented in the formed plate-shaped material in parallel from the gate. From this plate-shaped material, as shown in FIG. 3, the molten resin flow direction (the orientation direction of the reinforcing fibers) is (Y), and the reinforcing fibers are oriented at 90 ° to the rotor axis direction (X). (20b) and the blade (20a) oriented at 60 ° to the rotor axis direction (X)
Then, a blade (21a) oriented at 45 ° to the rotor axis direction (X) and a blade (21b) oriented parallel (0 °) to the rotor axis direction (X) are cut out. Assemble these blades to the air tool, rotor rotation speed 3000rpm, ambient temperature
A durability test was performed at 35 ° C and an operation time of 1000 hours. If the amount of abrasion on the end face is 1.00 mm or less after 1000 hours of the durability test, it is within the allowable range.

【0018】[0018]

【表1】 [Table 1]

【0019】上記測定結果によれば、実施例1、2、3
では樹脂基材の熱変形温度が130°Cより高く、補強用繊
維の配向がロータ軸に対し60°〜90°で配向しているた
め、端面の摩耗量が少なく、羽根の破損がなかった。実
施例1と比較例4、実施例2と比較例5の結果から補強
用繊維の配向がロータ軸に対して平行に近い程、端面の
摩耗量が少ないが、羽根側面のロータ溝入口と接する箇
所の摩耗が激しく、耐久試験中に羽根の割れが発生して
いることが判る。比較例6は補強用繊維の配向がロータ
軸方向(X)に対して90°であるにもかかわらず、熱変
形温度が130°C 以下であるため、ロータの割れはない
が、端面の摩耗量が許容範囲を大きく上回った。更に、
実施例1で用いた材料を使用して本発明に係る形状の羽
根の射出成形金型を製造し連続して100個の成形を行な
ったが、寸法のバラツキが無い非常に高精度な羽根を形
成できた。
According to the above measurement results, Examples 1, 2, 3
Since the heat deformation temperature of the resin base material is higher than 130 ° C and the orientation of the reinforcing fibers is oriented at 60 ° to 90 ° with respect to the rotor axis, the amount of wear on the end face is small and the blades are not damaged . From the results of Example 1 and Comparative Example 4, and Example 2 and Comparative Example 5, as the orientation of the reinforcing fiber is closer to parallel to the rotor axis, the amount of wear on the end face is smaller, but it comes into contact with the rotor groove inlet on the blade side face. It can be seen that the parts were severely worn and the blades were cracked during the durability test. In Comparative Example 6, although the orientation of the reinforcing fibers was 90 ° with respect to the rotor axial direction (X), the heat deformation temperature was 130 ° C or less, so there was no cracking of the rotor, but the end face was worn. The amount was well above the acceptable range. Furthermore,
The material used in Example 1 was used to manufacture a blade injection molding die having a shape according to the present invention, and 100 moldings were continuously performed. Could be formed.

【0020】[0020]

【発明の効果】本発明によれば、圧縮空気を動力源とす
るコンプレッサのロータに組み付けられる羽根であっ
て、組み付け時にロータ軸方向に対し60°〜90°で配向
する補強用繊維を含有したから、ロータ回転時に羽根の
変形が軽減して羽根の摩耗及び破損を著しく減少するこ
とができ、回転不良による出力低下や摩耗粉による焼き
付き等の不具合を除去し、非常に長寿命の羽根を形成で
きる。又、羽根の材料として熱可塑性樹脂を用いること
により射出成形で連続的に高精度で寸法の揃った羽根を
製造することが可能で、機械加工が不要となる。
According to the present invention, there is provided a blade to be mounted on a rotor of a compressor using compressed air as a power source, the reinforcing blade being oriented at 60 ° to 90 ° with respect to the axial direction of the rotor at the time of mounting. From this, the deformation of the blades during rotation of the rotor is reduced, and the wear and breakage of the blades can be significantly reduced, and problems such as output reduction due to poor rotation and seizure due to abrasion powder are eliminated, forming a blade with extremely long life. it can. Further, by using a thermoplastic resin as the material of the blade, it is possible to continuously manufacture blades of uniform dimensions with high precision by injection molding, and machining is not required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明に係るコンプレッサ用羽根の実
施の形態を示す斜視図。(b)はロータ軸方向に対し60
°配向させた補強用繊維を含有した本発明に係るコンプ
レッサ用羽根の実施の形態を示す正面図。(c)はロー
タ軸方向に対し90°配向させた補強用繊維を含有した本
発明に係るコンプレッサ用羽根の実施の形態を示す正面
図。
FIG. 1A is a perspective view showing an embodiment of a compressor blade according to the present invention. (B) is 60 in the rotor axis direction.
FIG. 1 is a front view showing an embodiment of a compressor blade according to the present invention containing oriented reinforcing fibers. (C) is a front view showing an embodiment of the compressor blade according to the present invention containing reinforcing fibers oriented at 90 ° to the rotor axis direction.

【図2】(a)は本発明に係るコンプレッサ用羽根の製
造方法の実施の形態を示すピンゲートの斜視図。(b)
(c)は本発明に係るコンプレッサ用羽根の製造方法の
実施の形態を示す異なる方向から見た各斜視図。
FIG. 2A is a perspective view of a pin gate illustrating an embodiment of a method for manufacturing a compressor blade according to the present invention. (B)
(C) is each perspective view seen from the different direction which shows embodiment of the manufacturing method of the compressor blade which concerns on this invention.

【図3】ロータ軸方向に対し90°、60°、45°、0°配向さ
せた補強用繊維を含有したコンプレッサ用羽根の製造手
段を示すファンゲートの金型斜視図。
FIG. 3 is a perspective view of a mold for a fan gate showing a means for manufacturing a compressor blade containing reinforcing fibers oriented at 90 °, 60 °, 45 °, and 0 ° with respect to the rotor axis direction.

【図4】(a)は従来のコンプレッサ用羽根の一例とゲ
ートを示す斜視図。(b)は従来の課題を示すコンプレ
ッサ用羽根の平面図。
FIG. 4A is a perspective view showing an example of a conventional compressor blade and a gate. (B) is a top view of a compressor blade showing a conventional problem.

【図5】エアツールの一例を示す縦断面図。FIG. 5 is a longitudinal sectional view showing an example of an air tool.

【図6】図5のエアツールのコンプレッサの分解斜視
図。
FIG. 6 is an exploded perspective view of a compressor of the air tool in FIG. 5;

【符号の説明】[Explanation of symbols]

20、20a、20b コンプレッサ用羽根 21 補強用繊維 X ロータ軸方向 Ya 補強用繊維配向方向(60°) Yb 補強用繊維配向方向(90°) 20, 20a, 20b Compressor blade 21 Reinforcing fiber X Rotor axial direction Ya Reinforcing fiber orientation direction (60 °) Yb Reinforcing fiber orientation direction (90 °)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮空気を動力源とするコンプレッサの
ロータに組み付けられる羽根であって、組み付け時にロ
ータ軸方向に対し60°〜90°で配向する補強用繊維
を含有したことを特徴とするコンプレッサ用羽根。
1. A compressor mounted on a rotor of a compressor using compressed air as a power source, the compressor comprising reinforcing fibers oriented at 60 ° to 90 ° with respect to the axial direction of the rotor at the time of mounting. Wings.
【請求項2】 熱変形温度130°C以上の耐熱性を有
する熱可塑性合成樹脂で形成したことを特徴とする請求
項1記載のコンプレッサ用羽根。
2. The compressor blade according to claim 1, wherein the blade is formed of a thermoplastic synthetic resin having a heat resistance of a heat distortion temperature of 130 ° C. or higher.
【請求項3】 成形用溶融樹脂に補強用繊維を含有さ
せ、ロータに組み付けた時、上記補強用繊維がロータ軸
方向に対し60°〜90°で配向する方向を溶融樹脂流
れ方向として射出成形により形成することを特徴とする
請求項1又は2記載のコンプレッサ用羽根の製造方法。
3. A method in which a reinforcing fiber is contained in a molten resin for molding and when the reinforcing fiber is assembled to a rotor, the direction in which the reinforcing fiber is oriented at 60 ° to 90 ° with respect to the axial direction of the rotor is defined as injection flow of the molten resin. The method for manufacturing a compressor blade according to claim 1, wherein the blade is formed by:
JP30968596A 1996-11-20 1996-11-20 Blade for compressor and manufacture thereof Withdrawn JPH10153195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30968596A JPH10153195A (en) 1996-11-20 1996-11-20 Blade for compressor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30968596A JPH10153195A (en) 1996-11-20 1996-11-20 Blade for compressor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH10153195A true JPH10153195A (en) 1998-06-09

Family

ID=17996054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30968596A Withdrawn JPH10153195A (en) 1996-11-20 1996-11-20 Blade for compressor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH10153195A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012501407A (en) * 2008-08-29 2012-01-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Composite parts for aircraft engines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012501407A (en) * 2008-08-29 2012-01-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Composite parts for aircraft engines

Similar Documents

Publication Publication Date Title
EP3124760B1 (en) Seal ring
US20040258548A1 (en) Progressive cavity pump/motor
US20020141894A1 (en) Rotary vane pump with continuous fiber reinforced polymeric composite vanes less prone to catastrophic failure
CN1676934A (en) Scroll type hydraulic machine
US5941704A (en) Crown cage for ball bearing and dental hand piece including the same
GB2315524A (en) Rolling bearing creep prevention device
KR101234491B1 (en) Single-winged vacuum pump
KR20160095136A (en) Internally meshing gear pump
EP3904735A1 (en) Flow control valve seal and flow control valve device
JPH10153195A (en) Blade for compressor and manufacture thereof
CN1087401C (en) Fluid compressor
US7048494B2 (en) Turbine fuel pump
WO2015046513A1 (en) Scroll member and scroll-type fluid machine
JPH08105391A (en) Tip seal and scroll compressor
CN106536928B (en) Semi-spherical sliding shoe of swash plate type compressor and swash plate type compressor
CN1118041A (en) Rotative compressor
JPS63105293A (en) Scroll compressor
CN108591052B (en) Pump impeller
JP2007205423A (en) Oldham's ring and fluid machine equipped therewith
JP2000055067A (en) Sliding key and continuously variable transmission
KR100483001B1 (en) Air tool
JP2013036339A (en) Rotation stopping mechanism of wobble plate of swash plate type variable displacement compressor and constant velocity universal joint constituting the same
JP2839569B2 (en) Fluid compressor
US20230087184A1 (en) Compressor
JPH05256280A (en) Fluid compressor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040203