JPH10150982A - Support for bioreactor and its production - Google Patents

Support for bioreactor and its production

Info

Publication number
JPH10150982A
JPH10150982A JP32357096A JP32357096A JPH10150982A JP H10150982 A JPH10150982 A JP H10150982A JP 32357096 A JP32357096 A JP 32357096A JP 32357096 A JP32357096 A JP 32357096A JP H10150982 A JPH10150982 A JP H10150982A
Authority
JP
Japan
Prior art keywords
zeolite
carrier
bioreactor
microorganisms
yeast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32357096A
Other languages
Japanese (ja)
Other versions
JP3844374B2 (en
Inventor
Akira Shindo
昌 進藤
Susumu Takada
進 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKITA PREF GOV
TDK Corp
Original Assignee
AKITA PREF GOV
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKITA PREF GOV, TDK Corp filed Critical AKITA PREF GOV
Priority to JP32357096A priority Critical patent/JP3844374B2/en
Publication of JPH10150982A publication Critical patent/JPH10150982A/en
Application granted granted Critical
Publication of JP3844374B2 publication Critical patent/JP3844374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the subject inexpensive support high in mechanical strength, rich in microorganisms immobilization, and useful e.g. in continuous fermentation tanks for brewing Japanese wine, by heat treatment of zeolite at a specified temperature followed by grinding and classifying the resultant porous body. SOLUTION: This support for bioreactors is obtained by heat treatment of zeolite (e.g. natural zeolite) at 1200-1400 deg.C followed by grinding and classifying the resultant porous body. This support has an average granular size of 0.15-3.0 (pref. 0.5-3.0)mm, bulk density of 0.7-1.0g/ml and fine pores open on the surface each 5-400μm in average size, being inexpensive, high in mechanical strength, also rich in microorganisms immobilization, thus useful e.g. in continuous fermentation tanks for brewing Japanese wine (alcohol).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は微生物を利用した清酒
(アルコール)醸造の連続発酵槽等に使用されるバイオ
リアクターに関し、より詳しくはバイオリアクター内の
微生物固定化用の担体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bioreactor used in a continuous fermenter for sake (alcohol) brewing using microorganisms, and more particularly to a carrier for immobilizing microorganisms in a bioreactor.

【0002】[0002]

【従来の技術】清酒等のアルコール発酵や、醤油の醸造
等のように微生物の活動を利用した技術として、近年、
微生物を用いた連続発酵槽であるバイオリアクターに関
する技術が盛んに研究され、実用化に移されている。こ
こで、一般にバイオリアクターとは、装置内部に充填し
た各種担体に微生物である酵母、細菌等のいわゆる生体
触媒を固定化し、それらの触媒する生化学反応を利用し
て、高効率に物質生産を行う反応装置をいう。
2. Description of the Related Art In recent years, as a technology utilizing the activity of microorganisms, such as alcohol fermentation of sake or brewing of soy sauce,
The technology related to a bioreactor, which is a continuous fermenter using microorganisms, has been actively researched and put into practical use. Here, a bioreactor generally refers to immobilizing so-called biocatalysts such as microorganisms such as yeasts and bacteria on various carriers filled in the apparatus, and using the biochemical reactions catalyzed by the catalysts to efficiently produce substances. Refers to the reactor to be performed.

【0003】ところで、このような微生物を固定化する
ための担体として種々のものがあるが、例えば、FC Rep
ort 12(1994) No.8 バイオリアクター用セラミックス担
体川瀬三雄や、Gypsum & Lime No.251(1994)水産アパタ
イト多孔質焼結体を担体とした固定化酵母によるアルコ
ール発酵 池上徹・鋤本俊司 等に記載されているセラ
ミックスビーズやガラスビーズ等のような無機担体が知
られている。しかしこのような無機担体は、例えば二酸
化ケイ素を用いた担体で、嵩密度0.2〜0.5 g/cm
2 、圧縮破壊強度20〜80kg/cm2 であり、機械強
度が脆く、摩擦に弱いという欠点がある。また、高価で
あるため実用規模での使用が困難である。
[0003] There are various carriers for immobilizing such microorganisms. For example, FC Rep.
ort 12 (1994) No. 8 Ceramics carrier for bioreactor Mitsuo Kawase, Gypsum & Lime No. 251 (1994) Alcohol fermentation by immobilized yeast using porcelain apatite sintered body as a carrier Toru Ikegami, Shunji Koumoto, etc. Inorganic carriers such as ceramic beads, glass beads, and the like described in Jpn. However, such an inorganic carrier is, for example, a carrier using silicon dioxide and has a bulk density of 0.2 to 0.5 g / cm.
2. The compressive breaking strength is 20 to 80 kg / cm2, and the mechanical strength is brittle and there is a drawback that it is weak in friction. Moreover, it is difficult to use it on a practical scale because it is expensive.

【0004】また、岩手県醸造食品試験報告 25(1991)
バイオリアクターによる新製品(清酒生酒)の開発
大森勝雄 には高分子固定化担体として、アルギン酸ビ
ーズ、キサントンビーズが記載されている。しかし、こ
のような高分子固定化担体は、ゲル状のため酵母の固定
化量は多いものの、無機担体以上に強度が弱く、実用規
模での使用は非常に困難である。
[0004] In addition, Iwate prefecture brewed food test report 25 (1991)
Development of new product (sake sake) using bioreactor
Katsuo Omori describes alginic acid beads and xanthone beads as a polymer-immobilized carrier. However, such a polymer-immobilized carrier has a large amount of yeast immobilized because it is in a gel form, but is weaker than an inorganic carrier and is very difficult to use on a practical scale.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、機械
的強度が高く、安価で、しかも微生物の固定化量の多い
バイオリアクター用担体、およびその製造方法を提供す
ることにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a bioreactor carrier having high mechanical strength, being inexpensive, and having a large amount of immobilized microorganisms, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】上記目的は、以下の構成
により達成される。 (1) ゼオライトを加熱処理して得られた多孔質粒子
であって、平均粒子径0.15〜3.0mm、および嵩密
度0.7〜1.0 g/ml、表面に開放した細孔を有する
バイオリアクター用担体。 (2) 前記細孔の平均細孔径が5〜400μm である
上記(1)のバイオリアクター用担体。 (3) 前記ゼオライトが天然ゼオライトである上記
(1)または(2)のバイオリアクター用担体。 (4) ゼオライトを1200〜1400℃にて加熱処
理し、得られた多孔質体を粉砕し、分級して上記(1)
〜(3)のバイオリアクター用担体を得るバイオリアク
ター用担体の製造方法。 (5) 前記ゼオライトの平均粒子径が0.5〜3.0
mmである上記(4)のバイオリアクター用担体の製造方
法。 (6) 前記ゼオライトが天然ゼオライトである上記
(4)または(5)のバイオリアクター用担体の製造方
法。
The above object is achieved by the following constitution. (1) Porous particles obtained by heat treatment of zeolite, having an average particle diameter of 0.15 to 3.0 mm, a bulk density of 0.7 to 1.0 g / ml, and pores open to the surface A carrier for a bioreactor, comprising: (2) The bioreactor carrier according to (1), wherein the average pore diameter of the pores is 5 to 400 μm. (3) The bioreactor carrier according to (1) or (2), wherein the zeolite is a natural zeolite. (4) The zeolite is subjected to a heat treatment at 1200 to 1400 ° C., and the obtained porous body is pulverized and classified to obtain the above (1).
A method for producing a bioreactor carrier for obtaining the bioreactor carriers of (3). (5) The zeolite has an average particle size of 0.5 to 3.0.
(4) The method for producing a carrier for a bioreactor according to the above (4). (6) The method for producing a bioreactor carrier according to the above (4) or (5), wherein the zeolite is a natural zeolite.

【0007】[0007]

【発明の実施の形態】本発明のバイオリアクター用担体
は、好ましくは天然ゼオライトを加熱処理して得られた
多孔質粒子であって、平均粒子径0.15〜3.0mm、
および嵩密度0.7〜1.0 g/mlで、表面に好ましく
は数平均細孔径5〜400μm の開放した細孔を有す
る。ここで、天然ゼオライトとはクリノプチライトや、
モデナイトと称され、アルミノケイ酸塩からなる化合物
で、主成分としてのケイ素、アルミニウムの他に種々の
成分を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The bioreactor carrier of the present invention is preferably porous particles obtained by heat-treating natural zeolite, and has an average particle diameter of 0.15 to 3.0 mm.
It has an open pore having a bulk density of 0.7 to 1.0 g / ml and a number average pore diameter of preferably 5 to 400 μm on the surface. Here, natural zeolite is clinoptilite,
It is called modenite and is a compound composed of aluminosilicate and has various components in addition to silicon and aluminum as main components.

【0008】天然ゼオライトは1000℃以上に加熱処
理することにより、ガラス化し、溶融する。その際、そ
の構造中に水分を含んでおり、加熱の過程(ガラス化の
前後)でその水分を放出し続ける。このため、加熱過程
において容易に発泡して多孔質化し、加熱体は軽石状に
なる。このような天然ゼオライトとして、日本国内では
秋田県二ツ井町産や同県藤里町産のもの等が知られてい
るが、二ツ井町産(推定埋蔵量850万トン)のものが
好ましい。二ツ井町産のゼオライトとして、例えば、サ
ンゼオライト社製の天然ゼオライト(以下SZと略記す
る場合がある)の組成は重量百分率で、SiO2 :6
9.38%、Al2 O3 :11.02%、Fe2
O3 :0.92%、MgO:0.60%、Na2
O:3.34%、CaO:1.31、K2 O:3.1
7%、P2 O5 :0.04%、結晶水(ゼオライト
水):8.09%、吸着水:2.08%等を含有し、日
本ゼオライト社製の天然ゼオライト(以下NZと略記す
る場合がある)の組成は、SiO2 :69.7%、A
l2 O3 :12.2%、Fe2 O3 :1.1
%、MgO:1.6%、TiO2 :0.1%、Na2
O:3.5%、CaO:0.7、K2 O:3.7
%、結晶水(ゼオライト水)7.6%等を含有する。す
なわち、シリカ/アルミナの重量比は5〜7程度で、ア
ルカリ金属、アルカリ土類金属、リンの酸化物を重量百
分率で、6〜12%程度含有する。
The natural zeolite is vitrified and melted by heat treatment at 1000 ° C. or higher. At that time, the structure contains moisture, and the moisture is continuously released during the heating process (before and after vitrification). For this reason, it easily foams and becomes porous in the heating process, and the heating element becomes pumice-like. As such natural zeolites, those from Nitsui-machi, Akita Prefecture and from Fujisato-machi, Akita Prefecture are known in Japan, but those from Futatsui Town (estimated reserve 8.5 million tons) are preferable. As a zeolite from Futatsuimachi, for example, the composition of a natural zeolite (hereinafter sometimes abbreviated as SZ) manufactured by San Zeolite Co., Ltd. is represented by weight percentage, and SiO 2: 6
9.38%, Al2O3: 11.02%, Fe2
O3: 0.92%, MgO: 0.60%, Na2
O: 3.34%, CaO: 1.31, K2O: 3.1
7%, P2O5: 0.04%, water of crystallization (zeolite water): 8.09%, adsorbed water: 2.08%, etc., and a natural zeolite manufactured by Nippon Zeolite (hereinafter sometimes abbreviated as NZ) Has a composition of SiO 2: 69.7%, A
l2O3: 12.2%, Fe2O3: 1.1
%, MgO: 1.6%, TiO2: 0.1%, Na2
O: 3.5%, CaO: 0.7, K2O: 3.7
% Of crystallization water (zeolite water). That is, the weight ratio of silica / alumina is about 5 to 7 and the oxide of alkali metal, alkaline earth metal and phosphorus is contained in a weight percentage of about 6 to 12%.

【0009】なお、天然以外のゼオライトとして、合成
ゼオライトがあるが、通常の市販のゼオライトでは加熱
によりガラス化するものの、天然ゼオライトと同等の発
泡性を得ることは難しい。ただし、上記の天然ゼオライ
トと同様の組成であれば、合成ゼオライトであってもよ
い。
[0009] As a non-natural zeolite, there is a synthetic zeolite. However, ordinary commercially available zeolites are vitrified by heating, but it is difficult to obtain foaming properties equivalent to those of natural zeolites. However, a synthetic zeolite may be used as long as it has the same composition as the above-mentioned natural zeolite.

【0010】原材料となるゼオライトの大きさは平均粒
径で0.5〜3.0mm、好ましくは1.0〜2.0mmの
範囲である。平均粒子径が0.5mmより小さいと材料の
表面積が大きくなり、1000℃より低温での水分の蒸
発が多くなり、材料がガラス化したときに気泡の発生が
不十分となり、良好な発泡が得られず、微生物の固定化
能力が低下する。平均粒子径が3mmより大きいと、材料
表面が先にガラス化溶融し、材料内部の水蒸気が閉じこ
められ、極めて大きな気泡が多数発生するようになる。
このため、目的の大きさの細孔が少なくなり、微生物の
固定化能力が低下する。
The size of the zeolite used as a raw material has an average particle size of 0.5 to 3.0 mm, preferably 1.0 to 2.0 mm. If the average particle size is smaller than 0.5 mm, the surface area of the material increases, the evaporation of water at a temperature lower than 1000 ° C. increases, and when the material is vitrified, the generation of bubbles becomes insufficient and good foaming is obtained. And the ability to immobilize microorganisms is reduced. If the average particle diameter is larger than 3 mm, the surface of the material is vitrified and melted first, the water vapor inside the material is trapped, and many extremely large bubbles are generated.
Therefore, the number of pores having a desired size is reduced, and the ability to immobilize microorganisms is reduced.

【0011】ゼオライトの加熱温度としては、1200
〜1400℃、特に1260〜1300℃、好ましくは
1270〜1290℃、特に1270〜1280の範囲
が好ましい。加熱温度が低すぎると、発生した気泡が目
的の大きさより小さくなり過ぎる。加熱温度が高すぎる
と、発生した気泡が目的の細孔の大きさより大きくなり
すぎる。加熱時間としては、原材料の粒径や加熱温度に
より適宜定めればよいが、通常昇温時間を含めない保持
時間として、2時間以下の範囲が好ましく、より好まし
くは5〜90分の範囲で、特に10分程度が好ましい。
昇温時間としては400℃/hr程度が好ましく、加熱雰
囲気としては大気中でよい。
The heating temperature of the zeolite is 1200
To 1400 ° C, particularly 1260 to 1300 ° C, preferably 1270 to 1290 ° C, and particularly preferably 1270 to 1280. If the heating temperature is too low, the generated bubbles are too small than the target size. If the heating temperature is too high, the generated bubbles are too large than the target pore size. The heating time may be appropriately determined depending on the particle size of the raw material and the heating temperature, but as a holding time not including the temperature raising time, a range of 2 hours or less is preferable, and a range of 5 to 90 minutes is more preferable. In particular, about 10 minutes is preferable.
The heating time is preferably about 400 ° C./hr, and the heating atmosphere may be air.

【0012】原材料であるゼオライトを加熱発砲後、所
定の大きさに粉砕/分級する。粉砕方法としては、少量
であれば乳鉢などにより容易に粉砕することができる
が、実用規模では通常、ロールクラッシャ等のドライ粉
砕用の装置が用いられる。また、分級する方法として
は、所定の大きさの目開きを有する篩を用いることで容
易に分級することができる。このように多孔質体を粉砕
することにより、表面のガラス層が取り除かれ、開放気
泡(細孔)となり、この中に微生物が固定化できる。し
たがって、所望の大きさとなるゼオライト粒を、それぞ
れ付着しないように分離して加熱したものは、個々の粒
子が球状になると共に、ガラス膜で覆われ、気泡が開放
されず、微生物の固定化能力が低い。
After zeolite as a raw material is heated and fired, it is ground / classified to a predetermined size. As a pulverizing method, a small amount can be easily pulverized with a mortar or the like, but on a practical scale, a dry pulverizing device such as a roll crusher is usually used. In addition, as a method of classification, the classification can be easily performed by using a sieve having openings of a predetermined size. By pulverizing the porous body in this way, the glass layer on the surface is removed and the cells become open cells (pores), in which microorganisms can be immobilized. Therefore, the zeolite particles having a desired size, which are separated and heated so that they do not adhere to each other, are turned into spherical particles, are covered with a glass film, do not release bubbles, and have an ability to immobilize microorganisms. Is low.

【0013】粉砕された多孔質粒子の大きさは、平均粒
子径0.15〜3.0mm、特に0.6〜2mmの範囲が好
ましい。粒子径が0.15に満たないと、強度、微生物
の固定化能力が低く実用的でない。粒子径が3mmを超え
ると、表面積が減少するため、微生物の固定化能力が減
少する。また、嵩密度は0.7〜1.0 g/ml、好まし
くは0.75〜0.9 g/ml、特に0.8〜0.9 g/
mlである。嵩密度が0.7 g/ml未満であると、担体強
度が低下するとともに、バイオリアクター全体の微生物
数が少なくなる。嵩密度が1.0 g/mlを超えると、通
液速度が低下し、生産効率が低下すると共に、目詰まり
等を生じやすくなる。
The size of the pulverized porous particles is preferably in a range of an average particle diameter of 0.15 to 3.0 mm, particularly preferably 0.6 to 2 mm. If the particle diameter is less than 0.15, the strength and the ability to immobilize microorganisms are low and not practical. If the particle diameter exceeds 3 mm, the surface area decreases, and the ability to immobilize microorganisms decreases. The bulk density is 0.7 to 1.0 g / ml, preferably 0.75 to 0.9 g / ml, particularly 0.8 to 0.9 g / ml.
ml. When the bulk density is less than 0.7 g / ml, the strength of the carrier is reduced and the number of microorganisms in the entire bioreactor is reduced. When the bulk density exceeds 1.0 g / ml, the liquid passing rate is reduced, the production efficiency is reduced, and clogging or the like is easily caused.

【0014】多孔質粒子は表面に開放された細孔を有す
る。このような開放された細孔を有することにより、細
孔内に微生物を固定化することができる。開放された細
孔の数平均細孔径は5〜400μm、より好ましくは1
0〜200μm であることが好ましい。細孔の径は大き
すぎても、小さすぎても微生物の固定化能力が低下す
る。このような細孔の径はSEM(走査型電子顕微鏡)
で細孔の表面を観察し、これを短径と長径との平均とし
て、50個程度の細孔の平均として計測することができ
る。また、所定表面積当たりの細孔の数、すなわち細孔
密度は、例えば0.5×0.5mmあたりの細孔数は、好
ましくは5〜30、特に7〜20の範囲が好ましい。細
孔密度が小さすぎると、単位面積あたりの微生物の固定
化能力が低下し、細孔密度が大きすぎると、細孔の径が
小さくなり、微生物の固定化能力が低下する。このよう
な細孔は連続したものであることが好ましい。
The porous particles have open pores on the surface. By having such open pores, microorganisms can be immobilized in the pores. The number average pore diameter of the opened pores is 5 to 400 μm, more preferably 1 to 400 μm.
It is preferably from 0 to 200 μm. If the diameter of the pores is too large or too small, the ability to immobilize microorganisms is reduced. The diameter of such pores is determined by SEM (scanning electron microscope)
And observe the surface of the pores, and measure the average of the minor axis and the major axis as an average of about 50 pores. Further, the number of pores per predetermined surface area, that is, the pore density, for example, the number of pores per 0.5 × 0.5 mm is preferably 5 to 30, particularly preferably 7 to 20. If the pore density is too low, the ability of immobilizing microorganisms per unit area will decrease, and if the pore density is too high, the diameter of the pores will decrease and the ability to immobilize microorganisms will decrease. Such pores are preferably continuous.

【0015】多孔粒子の圧縮強度は9Kg/mm2以上、さ
らには10Kg/mm2以上が好ましい。圧縮強度が9Kg/m
m2に満たないと、担体として必要な強度が得られない。
圧縮強度の上限は200Kg/mm2程度である。
The compressive strength of the porous particles 9Kg / mm 2 or more, further 10 Kg / mm 2 or more. Compressive strength is 9kg / m
If it is less than m 2 , the strength required as a carrier cannot be obtained.
The upper limit of the compressive strength is about 200 kg / mm 2 .

【0016】次に、このようなゼオライト多孔質粒子の
作成方法について説明する。
Next, a method for producing such porous zeolite particles will be described.

【0017】平均粒子径が0.5〜3.0mmの天然ゼオ
ライトをアルミナセッター上に載置し、好ましくは室温
から400℃/hr程度の昇温速度で、1260〜130
0℃に加熱し、2時間以下、好ましくは5〜10分間保
持する。次に、加熱を停止して、室温まで自然冷却し、
多孔質体(発泡体)を得る。出来上がった多孔質体を粉
砕し、所望の大きさの篩を用いて分級するが、大きいも
のはさらに粉砕・分級し、所望の大きさになるまでこれ
を繰り返す。次いで、得られた所定粒径の多孔質粒を水
洗して、微粉を取り除くと共に、エッジを削り落とす。
最後に乾燥させて担体を得る。
A natural zeolite having an average particle size of 0.5 to 3.0 mm is placed on an alumina setter, and preferably at a temperature rising rate of from room temperature to about 400 ° C./hr, from 1260 to 130 ° C.
Heat to 0 ° C. and hold for 2 hours or less, preferably 5-10 minutes. Next, stop heating, cool naturally to room temperature,
A porous body (foam) is obtained. The resulting porous body is pulverized and classified using a sieve of a desired size. Larger ones are further pulverized and classified, and this is repeated until a desired size is obtained. Next, the obtained porous particles having a predetermined particle size are washed with water to remove fine powder, and the edges are scraped off.
Finally, the carrier is obtained by drying.

【0018】固定化する微生物としては、アルコール発
酵、醸造等に用いる酵母(Sacchromyces cerevisiae,Sa
ccharomyces uvarum)、大腸菌(Escherichia coli)、
乳酸菌(Lactobacillus属, Streptococcus属)、酢酸
菌( Acetobacter属)、枯草菌( Bacillus Subtilis)
等の一般的な細菌およびこれらの形質転換体(遺伝子組
み換え体)等が挙げられるが、なかでも醸造用の酵母が
適している。このような醸造用の酵母としては、醸造原
料液を代謝して、エチルアルコール、二酸化炭素等を生
産するものであればよく、具体的にはサッカロミセス・
セルビシエ(Sacchromyces cerevisiae )、サッカロミ
セス・ウバルム(Saccharomyces uvarum)等を挙げるこ
とができ、特に好ましい酵母として、清酒発酵用の清酒
酵母協会6号株、同7号株、同9号株、同10号株、同
11号株、同14号株、同15号株等があるが、いずれ
のものも本発明の担体に固定化することができる。
As the microorganism to be immobilized, yeast (Sacchromyces cerevisiae, Sa) used for alcohol fermentation, brewing and the like can be used.
ccharomyces uvarum), Escherichia coli,
Lactic acid bacteria (genus Lactobacillus, Streptococcus), acetic acid bacteria (genus Acetobacter), Bacillus subtilis
And the like, and transformants (genetically modified organisms) thereof, among which yeasts for brewing are suitable. Such yeast for brewing may be any as long as it produces ethyl alcohol, carbon dioxide, etc., by metabolizing the brewing raw material liquid. Specifically, Saccharomyces
Sacchromyces cerevisiae, Saccharomyces uvarum and the like. Particularly preferred yeasts are the Sake Yeast Association No. 6, 7, 7, 9 and 10 strains for sake fermentation. , No. 11, No. 14, No. 15, etc., and any of them can be immobilized on the carrier of the present invention.

【0019】このような微生物を担体に固定化する方法
としては、担体と微生物とを所定の培養液中に浸漬し、
所定時間培養することで容易に担体へ固定化することが
できる。培養液としては、例えば酵母の場合YEPD液
体培地、GP培地等、バクテリアの場合にはNB培地、
ペプトン培地等が挙げられ、培養時間は微生物の種類、
培養温度、培地の種類により適宜定められるが、通常2
4〜72時間程度である。
As a method for immobilizing such a microorganism on a carrier, the carrier and the microorganism are immersed in a predetermined culture solution,
By culturing for a predetermined time, it can be easily immobilized on a carrier. As a culture solution, for example, YEPD liquid medium and yeast medium for yeast, NB medium for bacteria,
Peptone medium and the like, the culture time is the type of microorganism,
The temperature is appropriately determined depending on the cultivation temperature and the type of medium.
It is about 4 to 72 hours.

【0020】リアクター容器(発酵槽)としては、使用
目的、生産量、使用する微生物の種類等により適宜定め
ればよく、例えば、カラム型リアクター、流動層型リア
クター、撹拌槽型リアクター、エアーリフト型リアクタ
ー等が挙げられ、また上記岩手県醸造食品試験報告 25
(1991) バイオリアクターによる新製品(清酒生酒)の
開発 大森勝雄 に記載された発酵槽も用いることがで
きる。
The reactor vessel (fermenter) may be appropriately determined depending on the purpose of use, the production amount, the type of microorganism used, and the like. For example, a column type reactor, a fluidized bed type reactor, a stirred tank type reactor, an air lift type reactor Reactors, etc .;
(1991) Development of a new product (sake sake) using a bioreactor The fermenter described in Katsuo Omori can also be used.

【0021】[0021]

【実施例】以下、本発明の実施例を示し、本発明をより
具体的に説明する。
The present invention will be described more specifically with reference to the following examples.

【0022】<実施例1、2> 〔担体の作製〕日本ゼオライト社製6号(表中NZ6号
と略記する):粒子径0.5〜1.5mmをアルミナセッ
ターに乗せ、大気雰囲気中、1270℃で10分間加熱
保持した。出来上がった多孔質体を粉砕し、0.6〜
1.0mm(実施例1)、1.0超〜2.0mm(実施例
2)の大きさにそれぞれ分級した。得られた多孔質粒子
担体の嵩密度、圧縮破壊強度を測定した。ここで圧縮破
壊強度は、担体一粒を取り出し、顆粒強度試験機で測定
し、担体の長径から円換算で求めた見かけの断面積で除
して算出した。また表面のSEM写真から数平均細孔径
および細孔密度を算出した。ここで、細孔密度とは、
0.5×0.5mmの区画内に存在する細孔の数を計測し
たものである。得られた結果を表1に、その表面のSE
M写真の例を図1に示す。なお、粒子径0.6mm未満の
多孔質体は、粒径が小さいため圧縮破壊強度が測定不能
であるので省略した。 〔酵母の固定化〕YEPD培地(グルコース2%、酵母
エキス1%、ポリペプトン2%)100mlと、上記で得
られた担体10g とを500ml三角フラスコに入れ、1
21℃15分間の滅菌を行った。その後、清酒酵母協会
7号を1白金耳植菌し、28℃で2日間振とう培養を行
い、担体に酵母を固定化した。 〔固定化酵母の測定〕酵母固定化後の担体を滅菌水中で
破砕し、酵母を遊離させ、その懸濁液中の遊離酵母数を
トーマの血球計を用いて計測した。遊離酵母数を上記担
体の見かけ断面積より得られた見かけ体積で除して算出
した。得られた結果を表1に示す。 <実施例3、4>以下の担体を用いる他は、実施例1、
2と同様にして酵母を固定化し、酵母数を計測した。そ
の結果を表1に示す。
<Examples 1 and 2> [Preparation of support] Nippon Zeolite No. 6 (abbreviated as NZ6 in the table): A particle size of 0.5 to 1.5 mm was placed on an alumina setter, It was heated and maintained at 1270 ° C. for 10 minutes. Pulverize the resulting porous material, 0.6-
The particles were classified into sizes of 1.0 mm (Example 1) and more than 1.0 to 2.0 mm (Example 2). The bulk density and compressive breaking strength of the obtained porous particle carrier were measured. Here, the compressive fracture strength was calculated by taking out one carrier and measuring it with a granule strength tester, and dividing it by the apparent cross-sectional area obtained by converting the major axis of the carrier into a circle. The number average pore diameter and pore density were calculated from the SEM photograph of the surface. Here, the pore density is
The number of pores present in a 0.5 × 0.5 mm section was measured. Table 1 shows the obtained results.
An example of the M photograph is shown in FIG. The porous body having a particle diameter of less than 0.6 mm was omitted because the compressive breaking strength could not be measured due to the small particle diameter. [Immobilization of yeast] 100 ml of YEPD medium (2% glucose, 1% yeast extract, 2% polypeptone) and 10 g of the carrier obtained above were placed in a 500 ml Erlenmeyer flask,
Sterilization was performed at 21 ° C. for 15 minutes. Thereafter, one platinum loop of Sake Yeast Association No. 7 was inoculated and shake-cultured at 28 ° C. for 2 days to immobilize the yeast on a carrier. [Measurement of Immobilized Yeast] The carrier after yeast immobilization was crushed in sterile water to release yeast, and the number of free yeast in the suspension was measured using a Toma hemocytometer. The number of free yeasts was calculated by dividing the apparent cross-sectional area of the carrier by the apparent volume obtained. Table 1 shows the obtained results. <Examples 3 and 4> Example 1 was repeated except that the following carriers were used.
Yeast was immobilized in the same manner as in 2, and the number of yeasts was counted. Table 1 shows the results.

【0023】サンゼオライト社製8〜20#(表中SZ
8〜20#と略記する):粒子径0.8〜3.0mmを実
施例1、2と同様に加熱・粉砕し、0.6〜1.0mm
(実施例3)、1.0超〜2.0mm(実施例4)の大き
さにそれぞれ分級し、担体を得た。実施例1、2と同様
にして測定した担体の特性を表1に示す。 <実施例5、6>以下の担体を用いる他は、実施例3、
4と同様にして酵母を固定化し、酵母数を計測した。そ
の結果を表1に示す。なお、粒子径0.6mm未満の多孔
質体は、粒径が小さいため圧縮破壊強度が測定不能であ
るので省略した。
Sanzeolite 8-20 # (SZ in the table)
8-20 #): Heat and pulverize a particle diameter of 0.8-3.0 mm in the same manner as in Examples 1 and 2 to obtain a particle diameter of 0.6-1.0 mm.
(Example 3) Classified into sizes of more than 1.0 to 2.0 mm (Example 4) to obtain carriers. Table 1 shows the carrier characteristics measured in the same manner as in Examples 1 and 2. <Examples 5 and 6> Except for using the following carriers,
Yeast was immobilized in the same manner as in Example 4, and the number of yeasts was counted. Table 1 shows the results. The porous body having a particle diameter of less than 0.6 mm was omitted because the compressive breaking strength could not be measured due to the small particle diameter.

【0024】実施例3、4において、加熱温度を130
0℃とした他は実施例3、4と同様にして加熱・分級
し、0.6〜1.0mm(実施例5)、1.0超〜2.0
mm(実施例6)の大きさの多孔質粒子にそれぞれ分級
し、担体を得た。この担体について実施例1、2と同様
にして測定した特性を表1に示す。なお、粒子径0.6
mm未満の多孔質体は、粒径が小さいため圧縮破壊強度が
測定不能であるので省略した。
In Examples 3 and 4, the heating temperature was set to 130
Except that the temperature was 0 ° C., heating and classification were performed in the same manner as in Examples 3 and 4, and 0.6 to 1.0 mm (Example 5), more than 1.0 to 2.0
Each of the particles was classified into porous particles having a size of mm (Example 6) to obtain a carrier. Table 1 shows the characteristics of this carrier measured in the same manner as in Examples 1 and 2. In addition, particle diameter 0.6
Porous materials of less than mm were omitted because their compressive fracture strength could not be measured due to their small particle size.

【0025】<比較例1>担体として市販のガラスビー
ズ:粒子径2〜3mmを用いる他は、実施例1、2と同様
にして酵母を固定化し、酵母数を計測した。その結果を
表1に、その表面のSEM写真の例を図2に示す。
Comparative Example 1 Commercially available glass beads as a carrier: Except for using a particle diameter of 2 to 3 mm, yeast was immobilized in the same manner as in Examples 1 and 2, and the number of yeasts was counted. The result is shown in Table 1, and an example of the SEM photograph of the surface is shown in FIG.

【0026】<比較例2>以下の担体を用いる他は、実
施例1、2と同様にして酵母を固定化し、酵母数を計測
した。その結果を表1に示す。
Comparative Example 2 Yeast was immobilized in the same manner as in Examples 1 and 2, except that the following carriers were used, and the number of yeasts was counted. Table 1 shows the results.

【0027】日本ゼオライト社製8号(NZ8号):粒
子径0.1〜0.5mmを実施例1、2と同様にして加熱
・分級し、1.0超〜2.0mmの大きさの多孔質粒子に
それぞれ分級し、担体を得た。実施例1、2と同様にし
て測定した担体の特性を表1に、その表面のSEM写真
の例を図3に示す。
No. 8 (NZ8) manufactured by Nippon Zeolite Co., Ltd .: A particle size of 0.1 to 0.5 mm was heated and classified in the same manner as in Examples 1 and 2 to give a particle size of more than 1.0 to 2.0 mm. The particles were classified into porous particles to obtain carriers. Table 1 shows the characteristics of the carrier measured in the same manner as in Examples 1 and 2, and FIG. 3 shows an example of an SEM photograph of the surface.

【0028】<比較例3>以下の担体を用い、加熱温度
を1310℃とした他は、実施例1、2と同様にして酵
母を固定化し、酵母数を計測した。その結果を表1に示
す。
Comparative Example 3 Yeast was immobilized in the same manner as in Examples 1 and 2, except that the following carriers were used and the heating temperature was set at 1310 ° C., and the number of yeasts was counted. Table 1 shows the results.

【0029】ケーエス鉱業社製:粒子径20〜40mm材
を実施例1、2と同様にして加熱・分級し、1.0超〜
2.0mmの大きさの多孔質粒子にそれぞれ分級し、担体
を得た。実施例1、2と同様にして測定した担体の特性
を表1に、その表面のSEM写真の例を図4に示す。
KS Mining Co., Ltd .: A material having a particle size of 20 to 40 mm is heated and classified in the same manner as in Examples 1 and 2, and
The particles were classified into porous particles having a size of 2.0 mm to obtain a carrier. Table 1 shows the characteristics of the carrier measured in the same manner as in Examples 1 and 2, and FIG. 4 shows an example of an SEM photograph of the surface.

【0030】<比較例4>以下の担体を用いる他は、実
施例1、2と同様にして酵母を固定化し、酵母数を計測
した。その結果を表1に示す。
Comparative Example 4 Yeast was immobilized in the same manner as in Examples 1 and 2, except that the following carriers were used, and the number of yeasts was counted. Table 1 shows the results.

【0031】サンゼオライト社製8〜20#(SZ8〜
20#):粒子径1〜2mmを、1粒、1粒離してアルミ
ナセッターに乗せ、粒子相互が付着しないようにして1
300℃で加熱し、粉砕・分級せずにそのまま担体とし
た。実施例1、2と同様にして測定した担体の特性を表
1に、その表面のSEM写真の例を図5に示す。
Sanzeolite 8-20 # (SZ8-
20 #): A particle diameter of 1 to 2 mm is placed on an alumina setter with one grain and one grain separated from each other to prevent particles from adhering to each other.
It was heated at 300 ° C. and used as a carrier without pulverization and classification. Table 1 shows the characteristics of the carrier measured in the same manner as in Examples 1 and 2, and FIG. 5 shows an example of an SEM photograph of the surface.

【0032】[0032]

【表1】 [Table 1]

【0033】表1から明らかなように、本発明のバイオ
リアクター用担体は、酵母の固定化能力は従来のガラス
担体と同等〜約2倍であり、圧縮破壊強度は2倍以上と
優れた特性を示している。
As is clear from Table 1, the carrier for a bioreactor of the present invention has an immobilizing capacity for yeast that is equal to or about twice that of a conventional glass carrier, and has excellent compressive breaking strength of twice or more. Is shown.

【0034】[0034]

【発明の効果】本発明によれば機械的強度が高く、安価
で、しかも微生物の固定化量の多いバイオリアクター用
担体、およびその製造方法が提供可能となった。
According to the present invention, it is possible to provide a bioreactor carrier having high mechanical strength, being inexpensive, and having a large amount of immobilized microorganisms, and a method for producing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1、2により得られた多孔質粒
子表面の例である図面代用写真。
FIG. 1 is a drawing-substitute photograph showing an example of the surface of a porous particle obtained according to Examples 1 and 2 of the present invention.

【図2】本発明の比較例1のガラスビーズ表面のSEM
写真の例である図面代用写真。
FIG. 2 is an SEM of a glass bead surface of Comparative Example 1 of the present invention.
Drawing substitute photograph which is an example of photograph.

【図3】本発明の比較例2により得られた多孔質粒子表
面の例である図面代用写真。
FIG. 3 is a drawing-substitute photograph showing an example of the surface of a porous particle obtained in Comparative Example 2 of the present invention.

【図4】本発明の比較例3により得られた多孔質粒子表
面の例である図面代用写真。
FIG. 4 is a drawing-substitute photograph showing an example of the surface of a porous particle obtained in Comparative Example 3 of the present invention.

【図5】本発明の比較例4により得られた多孔質粒子表
面の例である図面代用写真。
FIG. 5 is a drawing-substitute photograph showing an example of the surface of a porous particle obtained in Comparative Example 4 of the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ゼオライトを加熱処理して得られた多孔
質粒子であって、平均粒子径0.15〜3.0mm、およ
び嵩密度0.7〜1.0 g/ml、表面に開放した細孔を
有するバイオリアクター用担体。
1. Porous particles obtained by heat-treating zeolite, having an average particle diameter of 0.15 to 3.0 mm, a bulk density of 0.7 to 1.0 g / ml, and being open to the surface. A bioreactor carrier having pores.
【請求項2】 前記細孔の平均細孔径が5〜400μm
である請求項1のバイオリアクター用担体。
2. An average pore diameter of the pores is 5 to 400 μm.
The carrier for a bioreactor according to claim 1, which is:
【請求項3】 前記ゼオライトが天然ゼオライトである
請求項1または2のバイオリアクター用担体。
3. The bioreactor carrier according to claim 1, wherein the zeolite is a natural zeolite.
【請求項4】 ゼオライトを1200〜1400℃にて
加熱処理し、得られた多孔質体を粉砕し、分級して請求
項1〜3のバイオリアクター用担体を得るバイオリアク
ター用担体の製造方法。
4. A method for producing a bioreactor carrier, wherein the zeolite is heat-treated at 1200 to 1400 ° C., and the obtained porous body is pulverized and classified to obtain the bioreactor carrier according to claim 1.
【請求項5】 前記ゼオライトの平均粒子径が0.5〜
3.0mmである請求項4のバイオリアクター用担体の製
造方法。
5. The zeolite having an average particle size of 0.5 to 5.
5. The method for producing a bioreactor carrier according to claim 4, which is 3.0 mm.
【請求項6】 前記ゼオライトが天然ゼオライトである
請求項4または5のバイオリアクター用担体の製造方
法。
6. The method for producing a bioreactor carrier according to claim 4, wherein the zeolite is a natural zeolite.
JP32357096A 1996-11-19 1996-11-19 Bioreactor carrier and method for producing the same Expired - Fee Related JP3844374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32357096A JP3844374B2 (en) 1996-11-19 1996-11-19 Bioreactor carrier and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32357096A JP3844374B2 (en) 1996-11-19 1996-11-19 Bioreactor carrier and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10150982A true JPH10150982A (en) 1998-06-09
JP3844374B2 JP3844374B2 (en) 2006-11-08

Family

ID=18156185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32357096A Expired - Fee Related JP3844374B2 (en) 1996-11-19 1996-11-19 Bioreactor carrier and method for producing the same

Country Status (1)

Country Link
JP (1) JP3844374B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012044904A (en) * 2010-08-25 2012-03-08 Akita Prefectural Univ Rhizobium-inoculating material, method for inoculating the rhizobium-inoculating material, and cultivation method
JP2013147408A (en) * 2012-01-23 2013-08-01 Masanao Kato Proton conductor, and electrochemical element using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012044904A (en) * 2010-08-25 2012-03-08 Akita Prefectural Univ Rhizobium-inoculating material, method for inoculating the rhizobium-inoculating material, and cultivation method
JP2013147408A (en) * 2012-01-23 2013-08-01 Masanao Kato Proton conductor, and electrochemical element using the same

Also Published As

Publication number Publication date
JP3844374B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
EP0975285B1 (en) Calcium phosphate microcarriers and microspheres
Messing et al. Pore dimensions for accumulating biomass. I. Microbes that reproduce by fission or by budding
US5096814A (en) Macroporous and microporous inorganic carrier for immobilization of cells
Navarro et al. Modification of yeast metabolism by immobilization onto porous glass
US9969971B2 (en) Calcium-containing structures and methods of making and using the same
Böttcher et al. Biocers: ceramics with incorporated microorganisms for biocatalytic, biosorptive and functional materials development
PT2603577T (en) Magnetic glass particles for use in biogas plants, fermentation processes and separation processes
JPS62171686A (en) Production of biological group composite
US5518910A (en) Low density glassy materials for bioremediation supports
CN109456960A (en) A kind of method of redox graphene immobilization Phenylalanine dehydrogenase
JPH0951794A (en) Porous carrier for bioreactor
JPH10150982A (en) Support for bioreactor and its production
EP0217917B1 (en) Weighted microsponge for immobilizing bioactive material
US5039630A (en) Method for producing granular multi-cellular glass and the glass produced by the method
Desimone et al. Production of monoclonal antibodies from hybridoma cells immobilized in 3D sol–gel silica matrices
Guoqiang et al. Immobilization of Lactobacillus casei cells to ceramic material pretreated with polyethylenimine
CN110201204B (en) Biological deodorant carrier and preparation method thereof, and biological deodorant and preparation method thereof
EP1270533A2 (en) Ceramic materials, method for their production and use thereof
EP0060052A1 (en) Method of immobilizing live microorganisms
JP3071969B2 (en) Support for growing microorganisms made of porous ceramics
JPH11292651A (en) Zeolite-forming porous body and its production
EP0634489B1 (en) Hydrothermally synthesized porous kaolinite as a carrier for a biocatalyst
CN114573352B (en) Sialon-silicon nitride biological ceramic and preparation method thereof
JPH0441598B2 (en)
IWASAKI et al. Porous alumina ceramics for immobilization of soy sauce yeast cells

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20040618

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051031

A131 Notification of reasons for refusal

Effective date: 20060418

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060725

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060815

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090825

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100825

LAPS Cancellation because of no payment of annual fees