JPH10150732A - Battery charger - Google Patents

Battery charger

Info

Publication number
JPH10150732A
JPH10150732A JP32232596A JP32232596A JPH10150732A JP H10150732 A JPH10150732 A JP H10150732A JP 32232596 A JP32232596 A JP 32232596A JP 32232596 A JP32232596 A JP 32232596A JP H10150732 A JPH10150732 A JP H10150732A
Authority
JP
Japan
Prior art keywords
voltage
charging
battery charger
battery
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32232596A
Other languages
Japanese (ja)
Inventor
Shozo Yoshikawa
正三 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP32232596A priority Critical patent/JPH10150732A/en
Publication of JPH10150732A publication Critical patent/JPH10150732A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a battery charger where the charging time is shortened while reducing heat loss. SOLUTION: The battery charger BC is constituted such that output voltage and current are compared, respectively, with reference levels and an error signal is fed back to a control section 1 so that a constant current charging operation is performed in the early charging stage and a constant voltage charging operation is performed after the battery voltage is settled. The battery charger BC comprises an amplifier 9 for amplifying the voltage in proportion to the charging current of a batter B, and an adder 4 for adding the output signal from the amplifier 9 to a reference voltage. Output voltage from the battery charger BC is controlled by feeding a differential voltage (e), obtained by comparing the output voltage from the adder 4 with the output voltage V from the battery charger BC divided through resistors 5, 6, back to the control section 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチュ−ムイオンバ
ッテリ等を充電するバッテリチャージャに関し、充電時
間が短かく熱損失の少ないバッテリチャ−ジャに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery charger for charging a lithium ion battery or the like, and more particularly to a battery charger having a short charging time and low heat loss.

【0002】[0002]

【従来の技術】図2は、従来のバッテリチャ−ジャの回
路構成例を示す図である。図示するように、従来のバッ
テリチャ−ジャBCは電圧電流を制御する制御部1、出
力電圧Vを抵抗器5と抵抗器6で分圧した電圧と基準電
圧Vrとを比較し、制御信号を出力する電圧検出部2、
シャント抵抗器10から出力電流を検出し制御信号を出
力する電流検出部3及びバッテリBを接続する充電端子
8から構成され、充電端子8を介してバッテリBに充電
電流を供給する。
2. Description of the Related Art FIG. 2 is a diagram showing an example of a circuit configuration of a conventional battery charger. As shown in the figure, a conventional battery charger BC has a control unit 1 for controlling a voltage and a current, compares a voltage obtained by dividing an output voltage V by a resistor 5 and a resistor 6 with a reference voltage Vr, and outputs a control signal. Output voltage detector 2,
It comprises a current detection section 3 for detecting an output current from the shunt resistor 10 and outputting a control signal, and a charging terminal 8 for connecting the battery B, and supplies a charging current to the battery B via the charging terminal 8.

【0003】図3は上述した従来のバッテリチャ−ジャ
の充電特性を示す図である。バッテリBが充電端子8に
接続され充電が開始されると、制御部1は充電初期では
電流検出部3の出力信号のフィ−ドバックにより充電電
流Ic´を一定に制御する。その間、バッテリBの充電
電圧Vb´はスタ−ト電圧Vsから図示するように上昇
する(定電流充電領域)。制御部1は充電電圧Vb´が
設定電圧V0から降下電圧V´(充電端子8及びスイッ
チの接触抵抗や電線等の抵抗による電圧降下分)を引い
た値(Vb´=V0−V´)に達した後は電圧検出部2
の出力信号のフィ−ドバックにより出力電圧を一定に制
御する。従って、充電電流Ic´は経過時間に従って減
衰し、充電電圧Vb´は定電圧設定値V0に近づく(定
電圧充電領域)。制御部1は満充電時t2の電流I0を検
出すると満充電と判断し充電を完了する。
FIG. 3 is a diagram showing charging characteristics of the above-mentioned conventional battery charger. When the battery B is connected to the charging terminal 8 and charging is started, the control unit 1 controls the charging current Ic 'to be constant at the beginning of charging by feedback of the output signal of the current detecting unit 3. During that time, the charging voltage Vb 'of the battery B rises from the start voltage Vs as shown (constant current charging region). The control unit 1 minus the voltage drop V'the charging voltage Vb 'from the set voltage V 0 (voltage drop due to the resistance of the contact resistance and the electric wire or the like of the charging terminals 8 and Switches) value (Vb' = V 0 -V' ), The voltage detector 2
The output voltage is controlled to be constant by feedback of the output signal. Accordingly, attenuated in accordance with the charging current Ic' the elapsed time, the charging voltage Vb' approaches the constant voltage set value V 0 (constant voltage charging region). When the control unit 1 detects the current I 0 at the time of full charge t 2 , it determines that the battery is fully charged and completes the charging.

【0004】しかし、上記回路構成のバッテリチャ−ジ
ャによる充電では充電時間の後半は一定電圧で充電する
為、充電電流Ic´が緩やかに減衰し、バッテリBが満
充電になるまでの時間、即ち充電完了時間t2が長くな
り不便で作業能率も悪くなるという問題があった。
However, in the charging by the battery charger having the above-described circuit configuration, the charging is performed at a constant voltage in the latter half of the charging time, so that the charging current Ic 'gradually decreases and the time until the battery B is fully charged, that is, the time. work in inconvenient efficiency a longer charging completion time t 2 also there is a problem that becomes worse.

【0005】上記問題に対処し、充電完了時間t2を短
縮するために図4に示す回路構成のバッテリチャ−ジャ
BCが提案されている。該バッテリチャ−ジャBCにお
いては、電圧検出部2は充電電流Icに比例した電圧V
gと基準電圧Vrを加算器4で加算し、該加算した電圧
と出力電圧Vを抵抗器5と抵抗器6で分圧した電圧とを
比較し、差電圧eに応じた信号を制御部1にフィ−ドバ
ックして電圧制御を行なっている。
A battery charger BC having a circuit configuration shown in FIG. 4 has been proposed in order to address the above problem and to shorten the charging completion time t 2 . In the battery charger BC, the voltage detector 2 detects a voltage V proportional to the charging current Ic.
g and the reference voltage Vr are added by the adder 4, the added voltage is compared with a voltage obtained by dividing the output voltage V by the resistors 5 and 6, and a signal corresponding to the difference voltage e is sent to the control unit 1. And the voltage is controlled by feedback.

【0006】図5は図に示す構成のバッテリチャ−ジャ
BCの充電特性を示す図である。バッテリBが充電端子
8に接続され充電が開始されると、制御部1は充電初期
では電流検出部3の出力信号のフィ−ドバックにより充
電電流Icを一定に制御する。その間、バッテリBの充
電電圧Vbはスタ−ト電圧Vsから図示するように上昇
する。
FIG. 5 is a diagram showing charging characteristics of the battery charger BC having the configuration shown in FIG. When the battery B is connected to the charging terminal 8 and charging is started, the control unit 1 controls the charging current Ic to be constant at the beginning of charging by feedback of the output signal of the current detecting unit 3. Meanwhile, the charging voltage Vb of the battery B rises from the start voltage Vs as shown in the figure.

【0007】ここで、バッテリBの充電電圧をVb、充
電電流に比例した電圧をVg、電圧降下分をV´とする
と、出力電圧V=Vb+Vg+V´・・・・・・・・・
・(1)となる。一方、制御部1は定電圧充電領域で
は、電圧検出部2の入力電圧(差電圧e)がゼロになる
ようにフィ−ドバック制御を行うので、出力電圧Vを基
準電圧Vr、抵抗器5の抵抗値R1、抵抗器6の抵抗値
R2で表すと出力電圧Vは次式で表される。 V=(Vr+Vg)(1+R1/R2) =Vr(1+R1/R2)+Vg+Vg・R1/R2 =V0+Vg+Vg・R1/R2・・・・・・・・・・・・・(2) ここで、V0は充電電流=0の時の出力電圧である。
Here, assuming that the charging voltage of the battery B is Vb, the voltage proportional to the charging current is Vg, and the voltage drop is V ', the output voltage V = Vb + Vg + V'.
-It becomes (1). On the other hand, the control unit 1 performs feedback control such that the input voltage (difference voltage e) of the voltage detection unit 2 becomes zero in the constant voltage charging region, so that the output voltage V is set to the reference voltage Vr and the resistor 5 The output voltage V is represented by the following equation when represented by the resistance value R1 and the resistance value R2 of the resistor 6. V = (Vr + Vg) ( 1 + R1 / R2) = Vr (1 + R1 / R2) + Vg + Vg · R1 / R2 = V 0 + Vg + Vg · R1 / R2 ············· (2) where, V 0 is the output voltage when the charging current = 0.

【0008】式(1)と式(2)よりバッテリBの充電
電圧Vbは、 Vb=V0+Vg・R1/R2−V´・・・・(3) となる。即ち、抵抗器7の抵抗値Rgを適切に選べば
(充電電流に比例した電圧Vgの値を適切に選べば)充
電電流のIcが定電流充電領域では充電電圧Vbは充電
電流=0の時の設定電圧V0を超えVpに達し、定電圧
充電領域では充電電流Icが減少するので、充電電圧V
bは式(3)に従って減少しV0に近づく(図の曲線V
b参照)。
From the equations (1) and (2), the charging voltage Vb of the battery B is as follows: Vb = V 0 + Vg · R1 / R2-V ′ (3) That is, if the resistance value Rg of the resistor 7 is properly selected (if the value of the voltage Vg proportional to the charging current is appropriately selected), the charging current Ic is in the constant current charging region, and the charging voltage Vb is equal to the charging current = 0. set voltage V 0, greater reached Vp of, since the constant voltage charging region charging current Ic decreases, the charging voltage V
b decreases according to equation (3) and approaches V 0 (curve V in the figure).
b).

【0009】図5から分かるように抵抗器7の抵抗値R
gを調節し充電電流Icに比例した電圧Vgを適切に発
生するように選べば、バッテリBのオ−プン電圧は設定
電圧を超えず過充電にならずバッテリBの寿命を縮める
こともなく、且つ、定電流充電領域での充電が長くな
り、定電圧充電領域は短縮され充電完了時間は図3の満
充電時間t2から図5の満充電時間t1に大幅に短縮され
る。
As can be seen from FIG. 5, the resistance value R of the resistor 7 is
If g is adjusted so as to appropriately generate a voltage Vg proportional to the charging current Ic, the open voltage of the battery B does not exceed the set voltage, does not overcharge, and does not shorten the life of the battery B. and, charging at a constant current charging region is prolonged, constant-voltage charging region is shortened charging completion time is greatly shortened full charge time t 1 in FIG. 5 from the full charge time t 2 in FIG.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上述し
た図5の充電特性を持つ図4に示す構成のバッテリチャ
−ジャBCにおいて、最高電圧Vpを許される範囲で高
くして定電流充電領域を長く、充電電流を多くするため
には抵抗器7の抵抗値Rgを高くする必要がある。抵抗
値Rgを高くするとその熱損失Ic2・Rgが高くなり
効率も低下し温度上昇のため小型化も困難になるという
問題があった。
However, in the battery charger BC having the charging characteristic shown in FIG. 5 and having the configuration shown in FIG. 4, the maximum voltage Vp is increased within the allowable range to extend the constant current charging area. In order to increase the charging current, it is necessary to increase the resistance value Rg of the resistor 7. When the resistance value Rg is increased, the heat loss Ic 2 · Rg is increased, the efficiency is reduced, and there is a problem that downsizing is difficult due to an increase in temperature.

【0011】本発明は上述の点に鑑みてなされたもので
上記問題点を除去し、充電時間が短かく、且つ熱損失が
少ないバッテリチャ−ジャを提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above problems, and has as its object to provide a battery charger which has a short charging time and a small heat loss.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
本発明はバッテリチャ−ジャの出力電圧及び出力電流を
各々基準値と比較しその差値を制御部にフィ−ドバック
し、該制御部で充電初期には定電流充電を行い、バッテ
リ電圧が一定値に達した後は定電圧充電を行うバッテリ
チャ−ジャにおいて、バッテリの充電電流に比例した電
圧値を増幅する増幅手段及び該増幅手段で増幅された電
圧値と基準電圧値を加算する加算手段を設け、加算手段
で加算された電圧値とバッテリチャ−ジャの出力電圧値
に応じた電圧値とを比較し、その差値を制御部にフィ−
ドバックしてバッテリチャ−ジャの出力電圧を制御する
ことを特徴とする。
In order to solve the above-mentioned problems, the present invention compares the output voltage and the output current of a battery charger with reference values and feeds back the difference value to a control unit. Amplifying means for amplifying a voltage value proportional to the charging current of a battery in a battery charger for performing constant current charging at the beginning of charging and performing constant voltage charging after the battery voltage reaches a constant value; Adding means for adding the voltage value amplified by the step (a) and the reference voltage value, comparing the voltage value added by the adding means with a voltage value corresponding to the output voltage value of the battery charger, and controlling the difference value In the part
And controlling the output voltage of the battery charger.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態例を図
面に基づいて詳細に説明する。図1は本発明のバッテリ
チャ−ジャの回路構成例を示す図である。図示するよう
に、本発明のバッテリチャ−ジャBCは制御部1、電圧
検出部2、電流検出部3、加算器4、抵抗器5、抵抗器
6、抵抗器7、充電端子8、増幅器9を具備する構成で
ある。本バッテリチャ−ジャBCは、充電電流Icに比
例した電圧Vgを増幅する増幅器9を設けた点を要点と
し、他は図2の回路構成と同じである。同図で図2と同
じ符号を付した部分は同一機能を有する部分であるの
で、ここでの説明は省略する。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a diagram showing an example of a circuit configuration of a battery charger of the present invention. As shown in the figure, the battery charger BC of the present invention comprises a control unit 1, a voltage detection unit 2, a current detection unit 3, an adder 4, a resistor 5, a resistor 6, a resistor 7, a charging terminal 8, an amplifier 9 It is a structure provided with. The main point of this battery charger BC is that an amplifier 9 for amplifying a voltage Vg proportional to the charging current Ic is provided, and the other points are the same as the circuit configuration of FIG. In the same drawing, the portions denoted by the same reference numerals as those in FIG. 2 have the same functions, and thus the description thereof is omitted here.

【0014】本発明のバッテリチャ−ジャの充電特性
は、図5に示す充電特性と同様である。増幅器9の増幅
度をKとして本発明のバッテリチャ−ジャの動作を説明
する。バッテリBの充電電圧をVb、充電電流に比例し
た電圧をVg、電圧降下分(充電端子8及びスイッチの
接触抵抗や電線等の抵抗による電圧降下分)をV´とす
ると、出力電圧V V=Vb+Vg+V´・・・・・・・・・・・・(4) となる。一方、制御部1は定電圧充電領域では、電圧検
出部2の入力電圧(充電電流Icに比例した電圧Vgと
基準電圧Vrを加算した電圧と出力電圧Vを抵抗器5と
抵抗器6で分圧した電圧との差電圧e)がゼロになるよ
うにフィ−ドバック制御を行うので、出力電圧Vを基準
電圧Vr、抵抗器5の抵抗値をR1、抵抗器6の抵抗値
をR2、増幅器9の増幅度をKで表すと出力電圧Vは次
式で表される。 V=(Vr+K・Vg)(1+R1/R2)・・・・・・・・・・(5) 式(4)と式(5)より充電電圧Vbは、 Vb=V0+((1+R1/R2)K−1)Vg−V´・・・・・・(6) となる。ここでV0は充電電流=0の時の出力電圧であ
る。
The charging characteristics of the battery charger of the present invention are the same as the charging characteristics shown in FIG. The operation of the battery charger of the present invention will be described with the amplification degree of the amplifier 9 as K. Assuming that the charging voltage of the battery B is Vb, the voltage proportional to the charging current is Vg, and the voltage drop (the voltage drop due to the contact resistance of the charging terminal 8 and the switch or the resistance of the electric wire or the like) is V ′, the output voltage V V = Vb + Vg + V '(4) On the other hand, in the constant voltage charging region, the control unit 1 divides the input voltage (the voltage obtained by adding the voltage Vg proportional to the charging current Ic and the reference voltage Vr) and the output voltage V into the resistor 5 and the resistor 6. Since the feedback control is performed so that the difference voltage e) from the compressed voltage becomes zero, the output voltage V is the reference voltage Vr, the resistance of the resistor 5 is R1, the resistance of the resistor 6 is R2, and the amplifier is When the amplification degree of No. 9 is represented by K, the output voltage V is represented by the following equation. V = (Vr + K · Vg) (1 + R1 / R2) (5) From the equations (4) and (5), the charging voltage Vb is: Vb = V 0 + ((1 + R1 / R2) ) K-1) Vg-V '(6) Here, V 0 is the output voltage when the charging current = 0.

【0015】抵抗器7の抵抗値をRgとするとVg=I
c・RgとなりIcは時間に従って急激に減衰するので
充電電圧Vbは図5に示す特性となる。式(6)から増
幅器9の増幅度Kを適切に選択することにより、充電電
圧Vbは設定電圧V0(充電電流=0の時の出力電圧)
を超えて許される限り高く(Vp)設定することができ
る。また、抵抗器7による熱損失は、熱損失=Ic2
Rgであり、抵抗値Rgを小さくすることにより発熱量
を充分に小さくすることができる。
If the resistance value of the resistor 7 is Rg, Vg = I
c · Rg, and Ic attenuates rapidly with time, so that the charging voltage Vb has the characteristics shown in FIG. By appropriately selecting the amplification degree K of the amplifier 9 from the equation (6), the charging voltage Vb becomes the set voltage V 0 (the output voltage when the charging current = 0).
Can be set as high as possible (Vp). The heat loss due to the resistor 7 is given by the following equation: Heat loss = Ic 2.
Rg, and the calorific value can be sufficiently reduced by reducing the resistance value Rg.

【0016】以上述べたように本実施例によれば、充電
電流Icに比例した電圧を増幅器9で増幅し基準電圧V
rに加算した電圧と出力電圧Vを抵抗器5及び抵抗器6
で分圧した電圧とを電圧検出部2で比較し、その差電圧
eを制御部1を通してフィ−ドバックし出力電圧を制御
するので、増幅器9の増幅度Kを適切に選べば充電電圧
Vbは許される限り高くして充電時間を短縮することが
でき、しかも、充電電流Icを検出する抵抗器7の抵抗
値Rgを充分に小さくすることにより熱損失を小さくし
発熱量を抑えることができる。
As described above, according to this embodiment, the voltage proportional to the charging current Ic is amplified by the amplifier 9 and the reference voltage V
r and the output voltage V are applied to the resistors 5 and 6
And the output voltage is controlled by feedback of the difference voltage e through the control unit 1. If the amplification K of the amplifier 9 is properly selected, the charging voltage Vb is The charging time can be shortened by setting as high as possible and the resistance value Rg of the resistor 7 for detecting the charging current Ic can be sufficiently reduced to reduce the heat loss and suppress the heat generation.

【0017】[0017]

【発明の効果】以上説明したように本発明によれば、バ
ッテリの充電電流に比例した電圧値を増幅する増幅手段
及び該増幅手段で増幅された電圧値と基準電圧値を加算
する加算手段を設け、加算手段で加算された電圧値とバ
ッテリチャ−ジャの出力電圧値に応じた電圧値とを比較
し、その差電圧値を制御部にフィ−ドバックしてバッテ
リチャ−ジャの出力電圧を制御するので、増幅器の増幅
度を好適に選定することにより、定電流領域でのバッテ
リチャ−ジャの出力電圧を許される範囲で上昇させ充電
時間を短縮すると共に、充電電流を検出する抵抗器の抵
抗値を充分小さくすることにより発熱量を抑え、且つ小
型化が可能なバッテリチャ−ジャを提供できる。
As described above, according to the present invention, the amplifying means for amplifying the voltage value proportional to the charging current of the battery and the adding means for adding the voltage value amplified by the amplifying means and the reference voltage value are provided. The voltage value added by the adding means is compared with a voltage value corresponding to the output voltage value of the battery charger, and the difference voltage value is fed back to the control unit to output the output voltage of the battery charger. Therefore, by appropriately selecting the amplification degree of the amplifier, the output voltage of the battery charger in the constant current region is increased within an allowable range to shorten the charging time, and a resistor for detecting the charging current is used. By making the resistance value sufficiently small, it is possible to provide a battery charger capable of suppressing the amount of heat generation and downsizing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のバッテリチャ−ジャの回路構成例を示
す図である。
FIG. 1 is a diagram showing a circuit configuration example of a battery charger of the present invention.

【図2】従来のバッテリチャ−ジャの回路構成例を示す
図である。
FIG. 2 is a diagram showing a circuit configuration example of a conventional battery charger.

【図3】図2に示すバッテリチャ−ジャの充電特性を示
す図である。
FIG. 3 is a diagram showing charging characteristics of the battery charger shown in FIG.

【図4】従来のバッテリチャ−ジャの回路構成の例を示
す図である。
FIG. 4 is a diagram showing an example of a circuit configuration of a conventional battery charger.

【図5】図4に示すバッテリチャ−ジャの充電特性を示
す図である。
5 is a diagram showing charging characteristics of the battery charger shown in FIG.

【符号の説明】[Explanation of symbols]

BC バッテリチャ−ジャ 1 制御部 2 電圧検出部 3 電流検出部 4 加算器 5 抵抗器 6 抵抗器 7 抵抗器 8 充電端子 9 増幅器 B バッテリ BC Battery Charger 1 Controller 2 Voltage Detector 3 Current Detector 4 Adder 5 Resistor 6 Resistor 7 Resistor 8 Charging Terminal 9 Amplifier B Battery

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 バッテリチャ−ジャの出力電圧及び出力
電流を各々基準値と比較しその差値を制御部にフィ−ド
バックし、該制御部で充電初期には定電流充電を行い、
バッテリ電圧が一定値に達した後は定電圧充電を行うバ
ッテリチャ−ジャにおいて、 前記バッテリの充電電流に比例した電圧値を増幅する増
幅手段及び該増幅手段で増幅された電圧値と基準電圧値
を加算する加算手段を設け、 前記加算手段で加算された電圧値とバッテリチャ−ジャ
の出力電圧値に応じた電圧値とを比較し、その差値を前
記制御部にフィ−ドバックしてバッテリチャ−ジャの出
力電圧を制御することを特徴とするバッテリチャ−ジ
ャ。
An output voltage and an output current of a battery charger are each compared with a reference value, and a difference value is fed back to a control unit. The control unit performs constant current charging at an initial stage of charging.
Amplifying means for amplifying a voltage value proportional to the charging current of the battery, a voltage value amplified by the amplifying means, and a reference voltage value in a battery charger for performing constant voltage charging after the battery voltage reaches a constant value. The voltage value added by the adding means is compared with a voltage value corresponding to the output voltage value of the battery charger, and the difference value is fed back to the control unit to provide a battery. A battery charger for controlling an output voltage of the charger.
JP32232596A 1996-11-18 1996-11-18 Battery charger Pending JPH10150732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32232596A JPH10150732A (en) 1996-11-18 1996-11-18 Battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32232596A JPH10150732A (en) 1996-11-18 1996-11-18 Battery charger

Publications (1)

Publication Number Publication Date
JPH10150732A true JPH10150732A (en) 1998-06-02

Family

ID=18142387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32232596A Pending JPH10150732A (en) 1996-11-18 1996-11-18 Battery charger

Country Status (1)

Country Link
JP (1) JPH10150732A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155799A (en) * 2010-01-28 2011-08-11 Ntt Docomo Inc Charging circuit, mobile unit, and charging method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155799A (en) * 2010-01-28 2011-08-11 Ntt Docomo Inc Charging circuit, mobile unit, and charging method

Similar Documents

Publication Publication Date Title
JP3303155B2 (en) Battery charger
US6087810A (en) Constant current and constant voltage battery charger
JP2006211885A (en) Capacity adjusting device and capacity adjusting method for battery pack
US7612539B2 (en) Battery charger circuits using constant current/constant voltage mode using maintenance offset currents and methods of operating the same
JP2005500791A5 (en)
JPH1066276A (en) Charge protector and charger
US7535119B2 (en) Power control apparatus of a complex terminal
JPH0678471A (en) Charging method
JPH06133465A (en) Method and apparatus for charging secondary battery
JPH0787673A (en) Charging controlling system
JP3177955B2 (en) Rechargeable battery charging method and charging system
JPH10150732A (en) Battery charger
JP3278487B2 (en) Rechargeable power supply
JPS58148633A (en) Automatic charger
JP2809391B2 (en) Constant current / constant voltage charger
JP2523857Y2 (en) Charger
JP2672100B2 (en) Charge controller for rechargeable vacuum cleaner
JP2005045994A (en) Ac adaptor and charging method therefor
JPH04281340A (en) Battery charge controller
JP4524606B2 (en) Reference voltage generation circuit and AC adapter
JP3480854B2 (en) Rechargeable battery charging circuit
SU936103A1 (en) Device for testing storage battery
JPH07177670A (en) Charging circuit for secondary battery
JPS6360622B2 (en)
JPH09130987A (en) Charging control equipment