JPH10148622A - Method and device for automatically judging accept/ reject of welded part radiation transmission test image - Google Patents

Method and device for automatically judging accept/ reject of welded part radiation transmission test image

Info

Publication number
JPH10148622A
JPH10148622A JP30662596A JP30662596A JPH10148622A JP H10148622 A JPH10148622 A JP H10148622A JP 30662596 A JP30662596 A JP 30662596A JP 30662596 A JP30662596 A JP 30662596A JP H10148622 A JPH10148622 A JP H10148622A
Authority
JP
Japan
Prior art keywords
defect
pass
fail
information
judgment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30662596A
Other languages
Japanese (ja)
Inventor
Takashi Morii
隆史 守井
Mitsuhiro Kusunoki
光裕 楠
Toshio Hasegawa
壽男 長谷川
Seishirou Kawano
征士郎 川野
Koji Sugimoto
幸治 杉本
Sadao Inai
貞夫 井内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Steel Corp filed Critical Kawasaki Heavy Industries Ltd
Priority to JP30662596A priority Critical patent/JPH10148622A/en
Publication of JPH10148622A publication Critical patent/JPH10148622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve an automatic judgment with high accuracy, reliability, stability, and efficiency by judging accept/reject only when all photographing conditions are acceptable and determining that the judgment is impossible when any photographing condition is not acceptable. SOLUTION: Defect information detected by performing a predetermined image processing to the image information of a radiation film image that is taken by a radiation film image pick-up device 78 is separated into shooting state information and pure defect information, and is stored at a shooting state information database(DB) and a pure defect information DB. When the preparation for the accept/reject automatic judgment is completed, a shooting condition criterion corresponding to the manufacturing standard of a lot and the shooting state information of a lot filed into the shooting state information DB out of the conformity criterion filed into the reference/specifications DB are compared, thus judging conformity for all shooting conditions. Then, only when all photographing conditions are satisfied, a defect accept/ reject judgment is performed by a specific procedure. On the other hand, when any photographing condition is not satisfied it is treated as automatic defect judgement- impossible condition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶接部放射線透過
試験画像の自動合否判定方法及び装置に係り、特に、鋼
板や鋼管等の金属材料溶接部の品質を評価する際に用い
るのに好適な、写真フィルムやイメージインテンシファ
イヤ上の溶接部放射線透過試験画像を画像入力手段(撮
像装置)により取込み、該画像入力手段により取込まれ
た画像情報に、予め決められた画像処理を行って欠陥情
報を検出し、該欠陥情報を予め決められた合否判定基準
と比較して、前記溶接部の合否を自動的に判定する溶接
部放射線透過試験画像の自動合否判定方法及び装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for automatically determining the acceptability of a radiation transmission test image of a welded portion, and more particularly to a method and apparatus suitable for evaluating the quality of a welded portion of a metal material such as a steel plate or a steel pipe. , A radiographic test image of a welding portion on a photographic film or an image intensifier is captured by an image input means (imaging device), and the image information captured by the image input means is subjected to predetermined image processing to obtain a defect. The present invention relates to an automatic pass / fail determination method and apparatus for a welded part radiographic transmission test image that detects information, compares the defect information with a predetermined pass / fail determination criterion, and automatically determines whether the welded part is acceptable.

【0002】[0002]

【従来の技術】一般に、鋼板や鋼管等の金属材料溶接部
の品質の評価には、放射線透過試験が行われ、X線やγ
線等の放射線透過試験により得られた写真フィルムを、
シャウカステン(Schaukasten・・・ドイツ語)と呼ば
れるフィルム観察器で検査員が目視観察し、欠陥の有
無、種類、寸法、位置等を調べ、放射線透過写真に現わ
れる濃淡像から欠陥の判別を行っている。
2. Description of the Related Art Generally, in order to evaluate the quality of a welded portion of a metal material such as a steel plate or a steel pipe, a radiation transmission test is performed, and X-ray or γ
Photographic film obtained by radiation transmission test of wire
An inspector visually observes with a film observer called Schaukasten (German), examines the presence / absence, type, size, position, etc. of the defect, and determines the defect from the grayscale image appearing in the radiographic image. .

【0003】ところが、このような検査員による目視検
査は、通常暗室内で行われ、且つ、明るさの明るいシャ
ウカステンで濃度の高いフィルムを観察するため、繰返
し作業に伴って検査員の目が疲れ、作業中に視力が低下
する。又、欠陥の大きさや間隔は、0.1mm単位で測
定する必要があるのに対して、目視測定では測定精度が
良くない。更に、目視判定作業は、検査員が交代しなが
ら行われるが、濃淡像から欠陥を判別するには、検査員
の経験と勘を必要とするため、検査員によって判定結果
が微妙に異なり、検査の信頼性が低いという問題点を有
していた。
[0003] However, such a visual inspection by an inspector is usually performed in a dark room, and since a high-density film is observed with a bright bright Schaukasten, the inspector's eyes become tired due to repeated work. , Eyesight decreases during work. In addition, while the size and interval of the defects need to be measured in units of 0.1 mm, the visual measurement has poor measurement accuracy. In addition, the visual judgment work is performed while the inspector changes, but in order to judge a defect from a grayscale image, the inspector's experience and intuition are required. Has a problem of low reliability.

【0004】そこで、このような問題点を解消するべ
く、放射線透過写真から欠陥の有無、種類、寸法、位置
等を自動的に判別する方法が、特開昭60−25023
6で提案されている。この方法は、放射線透過写真を透
過した透過光を、画像入力用テレビカメラで撮影し、該
テレビカメラにより得られる画像信号を画像処理装置に
入力し、予め決められた画像処理を行って欠陥の自動判
別を行うものである。
To solve such a problem, Japanese Patent Laid-Open No. 60-25023 discloses a method of automatically determining the presence, type, size, position, and the like of a defect from a radiographic image.
6 is proposed. In this method, a transmitted light transmitted through a radiographic photograph is taken by a television camera for image input, an image signal obtained by the television camera is input to an image processing device, and a predetermined image processing is performed to perform defect processing. The automatic determination is performed.

【0005】又、この自動判別方法の確実性や安定性、
信頼性等の向上や改良を目的とした要素技術として、特
開平3−209583では、ブローホールやスラグ巻込
み等の立体的な欠陥像で、比較的コントラストが強く、
X線等の放射線の照射方向に厚みがある第1種の欠陥像
についての強調抽出と、溶接線方向に沿って長く、比較
的コントラストの弱い、融合不良等の面上(フィルム像
上では線上)の第2種の欠陥像に対する強調抽出を、同
時並行的に行う溶接欠陥像の自動抽出処理方法が提案さ
れている。又、特開平3−209582では、溶接欠陥
の種類毎に知識ベースとして所定数の欠陥推定ルールを
作成しておき、当該溶接欠陥の欠陥特徴量のデータを処
理して各欠陥推定ルールと照合し、欠陥推定ルールを満
足する処理データに対応する確信度を付与し、該確信度
により当該溶接欠陥の処理を確率的に推定する溶接欠陥
の種類推定方法が提案されている。更に、特開平3−2
10412では、ディスプレイ上に被検査部位を再現す
る際に、検査対象の既知肉厚分布に基づく濃度変化を打
消すデータを重ね合せることによって、欠陥部分とバッ
クグラウンドの濃度差を保ちつつ、バックグラウンド濃
度をほぼ一定とする放射線透過試験の欠陥判別表示方法
が提案されている。
[0005] In addition, the reliability and stability of this automatic discrimination method,
As an elemental technology for the purpose of improving and improving the reliability and the like, Japanese Patent Application Laid-Open No. Hei 3-209583 discloses a three-dimensional defect image such as a blowhole or slag entrainment, and a relatively strong contrast.
Enhancement extraction of a first-type defect image that is thick in the direction of irradiation of radiation such as X-rays, and a surface that is long along the weld line direction and has relatively low contrast, poor fusion, etc. An automatic extraction processing method of a welding defect image has been proposed in which the extraction extraction of the second type of defect image is simultaneously performed in parallel. In Japanese Patent Application Laid-Open No. Hei 3-209582, a predetermined number of defect estimation rules are prepared as a knowledge base for each type of welding defect, and data of the defect feature amount of the welding defect is processed and collated with each defect estimation rule. There has been proposed a method of estimating the type of a welding defect in which a certainty factor corresponding to processing data satisfying the defect estimation rule is assigned, and the processing of the welding defect is stochastically estimated based on the certainty factor. Further, JP-A-3-2
In 10412, when reproducing the inspected portion on the display, data for canceling the density change based on the known thickness distribution of the inspection object is superimposed, thereby maintaining the density difference between the defective portion and the background, and A defect discrimination display method of a radiation transmission test in which the density is almost constant has been proposed.

【0006】[0006]

【発明が解決しようとする課題】一方、実際の金属材料
溶接部、例えば図1に示すような、鋼厚板10をU加工
し、O加工した後、突合せ部を溶接して製造されるUO
E鋼管12の管端溶接部の、図2に示すような透過撮影
範囲14に対する放射線写真フィルムを用いた放射線透
過試験においては、例えば表1のように、鋼管の製造規
格(JIS、API、ASTM、その他)によって、適
用される合否判定基準が異なり、更に、需要家の追加仕
様が付加されるのが一般的である。図1において、12
Mは母材部、12Bは、溶接によって形成されたビード
部、図2において、12Eは管端、12Kは管端開先加
工部であり、前記透過撮影範囲に対応するX線撮影画像
のイメージを図3に示す。
On the other hand, a UO which is manufactured by U-working an actual metal material weld, for example, a steel plate 10 as shown in FIG.
In a radiation transmission test using a radiographic film for a transmission imaging range 14 as shown in FIG. 2 of a tube end welded portion of the E-tube 12, as shown in Table 1, for example, as shown in Table 1, steel pipe production standards (JIS, API, ASTM) , Etc.), the pass / fail judgment criterion to be applied is different, and additional specifications of the customer are generally added. In FIG. 1, 12
M is a base material part, 12B is a bead part formed by welding, in FIG. 2, 12E is a pipe end, 12K is a pipe end groove processing part, and an image of an X-ray image corresponding to the transmission imaging range. Is shown in FIG.

【0007】[0007]

【表1】 [Table 1]

【0008】又、上記のように鋼管の製造規格毎に適用
される合否判定基準においては、規格毎に測定・判定対
象項目が異なり、又、測定・判定対象項目の中には、透
過度計識別度タイプ、同識別度、階調計要否、同濃度
差、フィルム濃度範囲等の撮影画像の撮影条件の適否を
示す項目と、図4に示すような、割れ20、溶込不足2
2、融合不良24の可否、濃度大欠陥の可否、隣接欠陥
間隔、欠陥面積、欠陥面積率、球状欠陥の個々の最大許
容大きさ、細長状欠陥の合計長さ、最大オフシーム等の
純欠陥情報を示す項目が混在している。
[0008] In the pass / fail judgment criteria applied to each steel pipe manufacturing standard as described above, the items to be measured / judged are different for each standard. Items indicating the appropriateness of the shooting conditions of the shot image, such as the discrimination type, the discrimination, the necessity of the tone meter, the same density difference, the film density range, and the like, as shown in FIG.
2. Pure defect information such as the possibility of fusion failure 24, the possibility of large density defects, the distance between adjacent defects, the defect area, the defect area ratio, the maximum allowable size of individual spherical defects, the total length of elongated defects, and the maximum off-seam Are mixed.

【0009】図4において、20は、割れ、22は、開
先が残っている状態等によって生じる、ビード部センタ
ーラインにほぼ平行な線状欠陥である溶込不足(I
P)、24は、仮付け溶接部の未溶着等によって生じ
る、やはりビード部センターラインにほぼ平行な線状欠
陥である融合不良(LF)、26は、球状欠陥であるブ
ローホール、28は、方向が不定の線状欠陥であるスラ
グ巻込み、30は、内面ビードと外面ビードのずれによ
る欠陥であるオフシーム、32は、パイプ、タングステ
ン巻込、アンダーカット等のその他の欠陥である。
In FIG. 4, numeral 20 indicates a crack, and numeral 22 indicates a penetration defect (I) which is a linear defect substantially parallel to the center line of the bead portion caused by a state where a groove remains.
P) and 24 are fusion defects (LF) which are linear defects which are also substantially parallel to the bead center line and which are caused by unwelding of the tack welded portion, etc., 26 are blowholes which are spherical defects, and 28 are blowholes which are spherical defects. Slag entrainment, which is a linear defect whose direction is indeterminate, 30 is an off-seam, which is a defect caused by displacement between an inner bead and an outer bead, and 32 is another imperfection, such as a pipe, tungsten entrainment, and undercut.

【0010】更に、純欠陥情報には、 個別の欠陥の種類、大きさ又は長さ、位置、欠陥の濃
度等の個別欠陥情報、 複数の欠陥の相互関係、即ち、合計欠陥長さ、欠陥間
隔、群欠陥の数量、合計面積、合計欠陥点数、欠陥面積
率等の群欠陥情報、 溶接線長手方向の管端に最も近い欠陥の管端からの距
離、溶接線オフシーム量等の全体制約的欠陥情報等が含
まれ、複雑且つ多岐に亘る。
[0010] Further, the pure defect information includes individual defect information such as the type, size or length, position, and defect concentration of each individual defect, the interrelationship of a plurality of defects, that is, the total defect length, the defect interval. Group defect information such as the number of group defects, total area, total number of defects, defect area ratio, etc .; total constraining defects such as the distance from the pipe end of the defect closest to the pipe end in the longitudinal direction of the weld line, and the amount of weld seam off seam It contains information, etc., and is complex and diverse.

【0011】このため、前記のように検査員による目視
検査の決定にも拘らず、例えばUOE鋼管管端溶接部の
放射線透過試験画像の自動合否判定方法に関しては、こ
れまで実用化されていなかったのが実情である。
For this reason, in spite of the visual inspection decision made by the inspector as described above, for example, a method of automatically determining whether or not a radiographic transmission test image of a UOE steel pipe end is welded has not been put to practical use. That is the fact.

【0012】本発明は、前記従来の問題点を解消するべ
くなされたもので、検査の精度、信頼性、安定性が高
く、検査効率の良い溶接部放射線透過試験画像の自動合
否判定方法及び装置を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and has a high inspection accuracy, reliability, and stability, and has a high inspection efficiency. The task is to provide

【0013】[0013]

【課題を解決するための手段】本発明は、溶接部の放射
線透過試験画像を画像入力手段により取り込み、該取り
込まれた画像情報に予め決められた画像処理を行って欠
陥情報を検出し、該欠陥情報を予め決められた合否判定
基準と比較して前記溶接部の合否を自動的に判定する溶
接部放射線透過試験画像の自動合否判定方法において、
前記合否判定基準を撮影条件判定基準と欠陥合否判定基
準とに、前記欠陥情報を撮影状態情報と純欠陥情報と
に、それぞれ分類し、まず、前記撮影状態情報を前記撮
影条件判定基準と比較して、全ての撮影条件が合格する
場合のみ、前記純欠陥情報を前記欠陥合否判定基準とを
比較して欠陥合否判定を行い、いずれかの撮影条件が不
合格の場合には、欠陥合否判定不可とすることにより、
前記課題を解決したものである。
According to the present invention, a radiation transmission test image of a welded portion is captured by image input means, and the captured image information is subjected to predetermined image processing to detect defect information. In the automatic pass / fail judgment method of the weld portion radiation transmission test image, which automatically determines the pass / fail of the weld by comparing the defect information with a predetermined pass / fail judgment criterion,
The pass / fail criterion is classified into a photographing condition criterion and a defect pass / fail criterion, and the defect information is classified into photographing state information and pure defect information, respectively.First, the photographing state information is compared with the photographing condition criterion. Only when all of the photographing conditions pass, the pure defect information is compared with the defect pass / fail decision criterion to make a defect pass / fail decision. If any of the photographing conditions is rejected, the defect pass / fail decision cannot be made. By doing
This has solved the above-mentioned problem.

【0014】又、前記撮影状態情報が、フィルム濃度、
透過度計識別度、階調計濃度差の中の少なくとも一つを
含み、前記撮影条件判定基準が、フィルム濃度規定、透
過度計識別度規定、階調計濃度差規定の中の該当規定を
含むようにしたものである。
Further, the photographing state information includes film density,
The transmissometer discrimination, including at least one of a tone meter density difference, wherein the shooting condition determination criterion is a film density rule, a transmittance meter rule, and a tone meter density difference rule. It is meant to be included.

【0015】又、前記合否判定基準が、予め規格・基準
毎に決められたものを記憶装置にファイルしておき、当
該ロットに適用される規格・基準を入力手段を介し指定
して読み出すようにし、一方、前記記憶装置にファイル
されていない規格・基準の場合、あるいは、追加仕様が
ある場合は、その合否判定基準を入力手段を介して前記
記憶装置に手入力するようにしたものである。
[0015] In addition, the pass / fail judgment criterion determined in advance for each standard / criterion is stored in a storage device, and the standard / criterion applied to the lot is designated and read out through input means. On the other hand, in the case of a standard / standard not stored in the storage device, or when there is an additional specification, the pass / fail judgment criterion is manually input to the storage device via input means.

【0016】又、前記欠陥合否判定が、個別の欠陥の種
類、大きさ又は長さ、位置、欠陥の濃度等の個別欠陥情
報を、欠陥要因(種類)規定、個別欠陥長規定、欠陥濃
度規定等を含む個別欠陥規定と比較して合否を判定する
個別欠陥合否判定と、複数の欠陥の相互関係、即ち、合
計欠陥長さ、欠陥間隔、群欠陥の数量、合計面積、合計
欠陥点数、欠陥面積率等の群欠陥情報を、合計欠陥長規
定、欠陥間隔規定、クラスタ欠陥規定、合計欠陥点数規
定、欠陥面積率規定等を含む群欠陥規定と比較して合否
を判定する群欠陥合否判定と、溶接線長手方向の材料端
縁に最も近い欠陥の前記材料端縁からの距離、溶接線オ
フシーム量等を、材料端部無欠陥規定、オフシーム規定
等の全体制約規定と比較して合否を判定する全体制約的
欠陥合否判定の少なくとも一つを含み、更に、前記の合
否判定により少なくとも一つ以上の不合格判定が出た場
合に、これらの中で溶接線長手方向端部より最も内部側
の不合格要因で総合不合格とし、前記の合否判定のいず
れにおいても合格判定が出た場合に、総合合格とする最
終合否判定を含むようにしたものである。
In addition, the defect pass / fail judgment is performed by determining individual defect information such as the type, size or length, position, and defect density of an individual defect by specifying a defect factor (type), an individual defect length, and a defect density. Individual defect acceptance / rejection judgment which determines pass / fail by comparing with individual defect provisions including, etc., and the interrelationship of a plurality of defects, that is, total defect length, defect interval, number of group defects, total area, total defect points, defects Group defect information such as area defect ratio, total defect length specification, defect interval specification, cluster defect specification, total defect point specification, defect area ratio specification, etc. , Determine the pass / fail by comparing the distance from the material edge of the defect closest to the material edge in the longitudinal direction of the weld line, the amount of welding seam off-seam, etc. to the overall constraint rules such as the material edge no defect definition, off-seam definition, etc. The overall constrained defect pass / fail At least one, and when at least one or more rejections are obtained by the above pass / fail judgment, a total rejection is caused by a rejection factor that is the innermost side from the end in the longitudinal direction of the weld line among these. In the case where a pass judgment is made in any of the above pass / fail judgments, a final pass / fail judgment is made to be a comprehensive pass.

【0017】又、溶接部放射線透過試験画像の自動合否
判定装置において、溶接部の放射線透過試験画像を取り
込むための画像入力手段と、該画像入力手段により取り
込まれた画像情報に、予め決められた画像処理を行って
欠陥情報を検出する画像処理手段と、予め決められた合
否判定基準を、撮影条件判定規定と欠陥合否判定基準に
分類して記憶する判定基準記憶手段と、前記欠陥情報を
撮影状態情報と純欠陥情報に分類し、まず、前記撮影状
態情報を前記撮影条件判定基準と比較して、全ての撮影
条件が合格する場合のみ、前記純欠陥情報を前記欠陥合
否判定基準と比較して欠陥合否判定を行い、いずれかの
撮影条件が不合格の場合には、欠陥合否判定不可とする
判定手段とを備えることにより、前記課題を解決したも
のである。
Further, in the automatic pass / fail judgment apparatus for the radiographic transmission test image of the welded portion, the image input means for capturing the radiographic test image of the welded portion and the image information taken in by the image input means are determined in advance. Image processing means for performing image processing to detect defect information; criterion storage means for classifying and storing predetermined pass / fail criterion into photographing condition criterion rules and defect pass / fail criterion; Classifying into the state information and the pure defect information, first, comparing the photographing state information with the photographing condition criterion, and only when all the photographing conditions pass, comparing the pure defect information with the defect pass / fail criterion. This problem has been solved by providing a defect acceptance / rejection determination and determining means for failing the defect acceptance / rejection determination if any of the photographing conditions is unsuccessful.

【0018】[0018]

【発明の実施の形態】以下図面を参照して、本発明の実
施形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0019】図5は、図1に示したような方法で撮影さ
れた、UOE鋼管の管端部放射線透過試験の現像済み放
射線写真フィルム40の画像の例を模式的に示したもの
である。図5における符号は、図3及び図4と同じであ
り、更に、フィルム番号42、及び、例えば識別可能な
ワイヤ本数から、認識可能な最小線径を求めるための、
線径が異なる複数本のワイヤを張ったワイヤ型透過度計
の画像44が写し込まれている。
FIG. 5 schematically shows an example of an image of the developed radiographic film 40 in the pipe end radiation transmission test of the UOE steel pipe, which is photographed by the method shown in FIG. The reference numerals in FIG. 5 are the same as those in FIGS. 3 and 4, and are further used to determine the minimum recognizable wire diameter from the film number 42 and, for example, the number of recognizable wires.
An image 44 of a wire-type penetrometer in which a plurality of wires having different wire diameters are stretched is captured.

【0020】図6は、鋼管搬送装置上で搬送されている
UOE鋼管の管端溶接部に対して自動的に放射線(例え
ばX線)透過試験を行い、透過写真フィルムを自動的に
現像した後、その放射線透過写真フィルム画像をテレビ
カメラ等の撮像装置で撮像し、その撮像信号を画像処理
装置に取込んで自動的に合否判定を行うまでの一連の装
置構成を系統図として示したものである。
FIG. 6 shows that a radiation (eg, X-ray) transmission test is automatically performed on a pipe end welded portion of a UOE steel pipe being conveyed on a steel pipe conveying device, and a transmission photographic film is automatically developed. This is a system diagram showing a series of device configurations from capturing the radiographic film image with an image capturing device such as a television camera, taking the image signal into an image processing device, and automatically performing a pass / fail determination. is there.

【0021】図6において、50は、UOE鋼管12の
搬送装置、52は、該鋼管搬送装置50を制御するため
のシーケンサ、54は放射線写真撮影装置、56は、該
放射線写真撮影装置54を制御するためのシーケンサで
ある。60は、放射線撮影室であり、フィルムが装填さ
れたカセットを自動的にセッティングするためのカセッ
ト自動セッティング装置62、前記シーケンサ52、5
6と協調しつつ、該カセット自動セッティング装置62
を制御するためのシーケンサ64、情報を授受するため
のパーソナルコンピュータ(パソコン)66、撮影順を
表示するためのディスプレイ端末装置68を備えてい
る。70は、フィルム自動現像室であり、フィルム自動
セッテイング装置72、自動現像機74、現像後フィル
ム処理装置76、例えば工業用テレビカメラで構成され
る放射線(写真)フィルム撮像装置78、判定済フィル
ム処理装置80、前記フィルム自動セッティング装置7
2及び判定済フィルム処理装置80を制御するためのシ
ーケンサ82、前記放射線写真フィルム撮像装置78出
力の画像信号を処理する画像処理装置84、例えばパソ
コンで構成されるフィルム番号読取り装置86、例えば
エンジニアリングワークステーション(EWS)で構成
される合否判定装置が設けられている。90は、前記鋼
管搬送制御用のシーケンサ52から入力されるトラッキ
ング信号等に応じて、前記パソコン66に撮影指示情報
を与えると共に、ディスプレイ端末装置68にトラッキ
ング状態を表示する等、総合管理用のプロセスコンピュ
ータ(P/C)、92は、事務所94から判定基準を入
力するための判定基準入力端末装置である。
In FIG. 6, reference numeral 50 denotes a transfer device for the UOE steel pipe 12; 52, a sequencer for controlling the steel pipe transfer device 50; 54, a radiographic photographing device; Sequencer to do. Reference numeral 60 denotes a radiation imaging room, which is a cassette automatic setting device 62 for automatically setting a cassette loaded with a film, and the sequencers 52, 5
6, the automatic cassette setting device 62
, A personal computer (personal computer) 66 for transmitting and receiving information, and a display terminal device 68 for displaying the order of photographing. Reference numeral 70 denotes an automatic film developing chamber, which includes an automatic film setting device 72, an automatic developing device 74, a post-developing film processing device 76, a radiation (photo) film imaging device 78 including, for example, an industrial television camera, and a determined film processing device. Device 80, the automatic film setting device 7
2 and a sequencer 82 for controlling the determined film processing apparatus 80, an image processing apparatus 84 for processing image signals output from the radiographic film imaging apparatus 78, for example, a film number reading apparatus 86 composed of a personal computer, for example, an engineering work A pass / fail determination device including a station (EWS) is provided. Reference numeral 90 denotes a process for general management, such as giving shooting instruction information to the personal computer 66 and displaying a tracking state on the display terminal device 68 in accordance with a tracking signal or the like input from the sequencer 52 for controlling the steel pipe conveyance. The computer (P / C) 92 is a criterion input terminal device for inputting a criterion from the office 94.

【0022】これらのうち、フィルム自動現像室70の
暗室から、フィルムが装填されたカセットを放射線撮影
室60へ搬送し、カセット自動セッティング装置62に
よりパイプ番号やフィルム番号を自動的にセットした
後、放射線写真撮影装置54に送り、図2に示したよう
に、UOE鋼管12の管端部12Eと管端部開先加工部
12Kを含む管端溶接部に対して放射線透過撮影を行
い、撮影済フィルム40を自動的にフィルム自動現像室
70へ返送するまでは、既に実用化されている。
Of these, a cassette loaded with a film is transported from the dark room of the automatic film developing room 70 to the radiation imaging room 60, and the pipe number and the film number are automatically set by the automatic cassette setting device 62. It is sent to the radiographic photographing apparatus 54, and as shown in FIG. 2, the radiographic imaging is performed on the pipe end welding portion including the pipe end portion 12E and the pipe end groove portion 12K of the UOE steel pipe 12, and the photographing is completed. Until the film 40 is automatically returned to the automatic film developing chamber 70, it is already in practical use.

【0023】フィルム自動現像室70においては、フィ
ルム自動セッティング装置72により、暗室内で未撮影
の放射線フィルムを取出し、カセットにフィルムを装填
してカセット搬送装置(図示省略)に供給すると共に、
撮影済フィルムが装填され、回収されたカセットを開封
し、未現像フィルムを自動現像機74に挿入する。フィ
ルムが該自動現像機74から排出された後、現像後フィ
ルム処理装置76で、放射線写真フィルム撮像装置78
にフィルムを供給する。該放射線写真フィルム撮像装置
78によるフィルム画像の撮影が完了した後、判定済フ
ィルム処理装置80によって、それぞれ分類し、保管箱
(図示省略)に移す。
In the automatic film developing room 70, an unphotographed radiation film is taken out from the dark room by the automatic film setting device 72, the film is loaded in a cassette, and supplied to a cassette carrying device (not shown).
The cassette in which the photographed film is loaded and the collected film is opened, and the undeveloped film is inserted into the automatic developing machine 74. After the film is discharged from the automatic developing machine 74, the post-development film processing device 76 controls the radiographic film imaging device 78.
Supply the film to. After the radiographic film imaging device 78 completes capturing a film image, the determined film processing device 80 classifies the images and transfers them to a storage box (not shown).

【0024】又、ソフトウェアの処理としては、放射線
写真フィルム撮像装置78で撮影したフィルム画像情報
が、画像処理装置84に送信され、判定用の欠陥情報が
作成された後、合否判定装置88に送られ、ここで、該
当する判定基準と比較されて、自動判定が行われる。
又、判定のための規格、基準(仕様)の入力は、別に設
置した入力端末装置92により行われ、前記合否判定装
置88に送られて記憶される。
As software processing, film image information photographed by the radiographic film imaging device 78 is transmitted to the image processing device 84, and defect information for determination is created, and then transmitted to the pass / fail determination device 88. Here, an automatic determination is performed by comparing with a corresponding determination criterion.
The input of standards and standards (specifications) for the determination is performed by an input terminal device 92 installed separately, and is sent to the pass / fail determination device 88 and stored.

【0025】更に、前記画像処理装置84では、図5に
示したように放射線写真フィルム40の所定位置(例え
ばマーカー部)に写し込まれたフィルム番号42の映像
を切出し、フィルム番号読取り装置86に送信する。こ
のフィルム番号読取り装置86では、文字認識処理によ
りフィルム番号42を読取る。
Further, the image processing device 84 cuts out the image of the film number 42 imprinted on a predetermined position (for example, a marker portion) of the radiographic film 40 as shown in FIG. Send. This film number reading device 86 reads the film number 42 by character recognition processing.

【0026】以下、図7を参照して、本発明による合否
自動判定処理の手順を説明する。
Referring now to FIG. 7, the procedure of the pass / fail automatic determination process according to the present invention will be described.

【0027】図7において、100は基準・仕様データ
ベース(DB)、102は、欠陥情報のうち撮影状態情
報を格納する撮影状態情報データベース(DB)、10
4は、同じく純欠陥情報を格納する純欠陥情報データベ
ース(DB)、106は、撮影条件判定結果と合否判定
結果を収納する判定結果データベース(DB)であり、
これらは、いずれも前記合否判定装置88に含まれてい
る。
In FIG. 7, reference numeral 100 denotes a reference / specification database (DB); 102, a photographing state information database (DB) for storing photographing state information among defect information;
Reference numeral 4 denotes a pure defect information database (DB) for storing pure defect information, and reference numeral 106 denotes a judgment result database (DB) for storing photographing condition judgment results and pass / fail judgment results.
These are all included in the pass / fail determination device 88.

【0028】欠陥合否判定に先立って、予め製造規格毎
に決められた合否判定基準を記憶装置にファイルしてお
き、当該ロットに適用される規格・基準情報を判定基準
入力端末装置92を介し指定して読出すか、又は、予め
当該ロットに適用される製造規格・基準に対応した合否
判定基準を判定基準入力端末装置92を介して手入力し
て、前記基準・仕様DB100に格納しておく。
Prior to the defect acceptance / rejection judgment, the acceptance / rejection judgment criteria predetermined for each manufacturing standard are stored in a storage device, and the specification / standard information applied to the lot is designated via the judgment standard input terminal device 92. Then, a pass / fail criterion corresponding to a manufacturing standard / criterion applied to the lot is manually input in advance through the criterion input terminal device 92 and stored in the criterion / specification DB 100.

【0029】処理に際しては、まず、画像処理装置84
の画像処理プログラムにおいて、放射線写真フィルムを
放射線フィルム撮像装置78で基準濃度片と共に分割撮
影し、画像を取込み、画像処理装置84のCPU内で合
成し、公知の画像処理アルゴリズムにより、撮影情報及
び欠陥情報を作成し、合否判定装置88に送信する。
In processing, first, the image processing device 84
In the image processing program, the radiographic film is divided and photographed together with the reference density piece by the radiographic film imaging device 78, the image is captured, and synthesized in the CPU of the image processing device 84. Information is created and transmitted to the pass / fail determination device 88.

【0030】具体的には、撮影された画像から欠陥か否
かの判定を行い、欠陥と識別した場合、学習されたアル
ゴリズムにより欠陥の種類(球状欠陥又は線状欠陥)を
推定すると共に、欠陥の寸法を測定する。例えば個々の
欠陥の位置、大きさに関しては、図8及び図9に示す如
く、欠陥110に外接する方形座標の2点(図8のPA
1、PA2)のXY座標(図9の(x1、y1)(x
2、y2))で表わされる欠陥位置、図8に示す欠陥1
10の慣性主軸110Aに平行する外接長さLで表わさ
れる欠陥長(長径)、前記慣性主軸110Aに直交する
外接長さWで表わされる欠陥幅(短径)、前記長径、短
径と平行に欠陥に外接する方形との接点座標4点(図8
のPB1、PB2、PB3、PB4)のXY座標で表わ
される外接方形接点座標を欠陥位置情報として出力する
ことができる。なお、欠陥位置の座標系は、図9に示す
如く、例えば放射線写真フィルム40の管端に向って左
側に配した場合の左上頂点の座標を原点とする座標系で
表わすことができる。
More specifically, it is determined whether or not a defect is present from a photographed image. If the defect is identified, the type of the defect (spherical defect or linear defect) is estimated by a learned algorithm, and the defect is determined. Measure the dimensions of For example, regarding the position and size of each defect, as shown in FIGS. 8 and 9, two points of the rectangular coordinates circumscribing the defect 110 (PA in FIG. 8)
1, PA2) XY coordinates ((x1, y1) (x
2, y2)), a defect position shown in FIG.
The defect length (major axis) represented by a circumscribed length L parallel to the principal axis of inertia 110A, the defect width (minor axis) represented by a circumscribed length W orthogonal to the principal axis of inertia 110A, and the major axis and minor axis in parallel. Four points of contact coordinates with the rectangle circumscribing the defect (Fig. 8
(PB1, PB2, PB3, PB4) can be output as defect position information. As shown in FIG. 9, the coordinate system of the defect position can be represented by, for example, a coordinate system having the origin at the coordinates of the upper left vertex when arranged on the left side toward the tube end of the radiographic film 40.

【0031】このようにして、放射線フィルム撮像装置
78で取込まれた放射線写真フィルム画像の画像情報
に、予め決められた画像処理を行うことによって検出さ
れた欠陥情報は、図7に示した如く、撮影状態情報と純
欠陥情報に分別され、前記撮影状態情報DB102と純
欠陥情報DB104にそれぞれ格納される。
As described above, the defect information detected by performing predetermined image processing on the image information of the radiographic film image captured by the radiation film imaging device 78 is as shown in FIG. , And photographing state information and pure defect information, which are stored in the photographing state information DB 102 and pure defect information DB 104, respectively.

【0032】このようにして合否自動判定の準備が終了
した段階で、図7に示した自動判定フロー1000のス
テップ1010入り、前記基準・仕様DB100にファ
イルされた合否判定基準のうち、当該ロットの製造規格
に対応した撮影条件判定基準と、前記撮影状態情報DB
102にファイルされた当該製造のロットの撮影状態情
報とを比較して、全ての撮影条件についての合否判定が
行われる。
When the preparation for the automatic pass / fail judgment is completed in this way, the process enters step 1010 of the automatic judgment flow 1000 shown in FIG. A photographing condition determination criterion corresponding to a manufacturing standard and the photographing state information DB;
By comparing the shooting status information of the production lot stored in the file 102 with the shooting status information, a pass / fail judgment is made for all shooting conditions.

【0033】具体的には、透過写真の溶接部の濃度、ワ
イヤ型透過度計で識別可能な最小線径、又は、該最小線
径と溶接厚(透過厚)から計算した透過度計識別度
(%)、ホール型透過度計で識別可能なホール数、階調
計中央部分の濃度と階調計近傍の母材部濃度の濃度差の
割合(濃度差率)等の撮影状態評価条件のうち、当該規
格で要求されている項目をチェックし、全ての条件を満
足していた場合のみ、ステップ1030の欠陥合否判定
が行われるようにし、一方、いずれかの条件を満足して
いなかった場合には、自動欠陥合否判定不能として、処
理を終了する。
More specifically, the density of the welded portion of the transmission photograph, the minimum wire diameter that can be identified by the wire type transmittance meter, or the transmittance meter discrimination calculated from the minimum wire diameter and the welding thickness (transmission thickness). (%), The number of holes that can be identified by the Hall-type transmissometer, and the ratio of the density difference between the density at the center of the tone meter and the density of the base material near the tone meter (density difference rate). Of these, items required by the standard are checked, and only when all the conditions are satisfied, the pass / fail judgment of step 1030 is performed. On the other hand, when any of the conditions is not satisfied In this case, the automatic defect acceptance / rejection determination is impossible, and the process ends.

【0034】ステップ1020の判定結果がOKであ
り、前記フィルム画像が全ての撮影条件を満足している
場合には、ステップ1030に進み、前記基準・仕様D
B100にファイルされた合否判定基準のうち、当該ロ
ットの製造規格に対応した欠陥合否判定基準と、前記純
欠陥情報DB104にファイルされた当該製造ロットの
純欠陥情報とを比較して欠陥合否判定を行う。具体的に
は、対象範囲内の欠陥有無を調べ、当該鋼管規格の持つ
判定条件で、画像処理情報より出力された欠陥種別を認
識し、その種別毎の判定基準に応じて欠陥位置・欠陥長
さ等から合否判定を行い、判定結果を出力する。
If the result of the determination in step 1020 is OK and the film image satisfies all of the photographing conditions, the flow advances to step 1030, where the reference / specification D
Of the pass / fail judgment criteria filed in B100, the defect pass / fail judgment criterion corresponding to the production standard of the lot is compared with the pure defect information of the production lot filed in the pure defect information DB 104 to make the defect pass / fail judgment. Do. Specifically, the presence or absence of a defect within the target range is checked, the defect type output from the image processing information is recognized based on the determination conditions of the steel pipe standard, and the defect position / defect length is determined according to the determination criterion for each type. The pass / fail judgment is performed based on the result, and the judgment result is output.

【0035】ステップ1030で行われる欠陥合否判定
の概略フローを図10に示す。
FIG. 10 shows a schematic flow of the defect pass / fail judgment performed in step 1030.

【0036】判定基準は欠陥個々についてのみで判定を
行うのではなく、個別欠陥や群欠陥等で規定されてい
る。このため判定は図10に示すように、個別欠陥、群
欠陥、全体制約規定の3つに分類し、それぞれで判定を
行い、そのうちの一番管端部より内側にある不合格を代
表の欠陥として判定を行う。これらの規定は全てのロッ
トについて規定されるものではなく、ロットによって種
々異なる。従って放射線判定仕様によって規定される項
目について判定を行う。
The criterion is not limited to individual defects, but is determined by individual defects, group defects and the like. For this reason, as shown in FIG. 10, the judgment is classified into three types: individual defect, group defect, and overall constraint rule, and judgment is performed for each of them. Is determined. These rules are not specified for all lots, and vary from lot to lot. Therefore, the judgment is performed on the items specified by the radiation judgment specification.

【0037】このように、本発明における欠陥合否判定
は、 個別の欠陥の種類、大きさ又は長さ、位置、欠陥濃度
等の個別欠陥情報を、欠陥要因(種類)規定232、個
別欠陥長規定234、欠陥濃度規定236等を含む個別
欠陥規定230と比較して合否を判定する個別欠陥合否
判定(個々の欠陥の判定で合否が決定)、 複数の欠陥の相互関係、即ち、合計欠陥長さ、欠陥間
隔、群欠陥の数量、合計面積、合計欠陥点数、欠陥面積
率等の群欠陥情報を、合計欠陥長規定242、欠陥間隔
規定244、クラスタ欠陥規定246、合計欠陥点数規
定248、欠陥面積率規定250等を含む群欠陥規定2
40と比較して合否を判定する群欠陥合否判定(複数ま
とめた判定で合否が決定)、 溶接線長手方向の管端に最も近い欠陥の管端からの距
離、溶接線のオフシーム量を、管端無欠陥規定262、
オフシーム規定264等の、全体的な制約条件を持つ全
体制約規定260と比較して合否を判定する全体制約的
欠陥合否判定(全体的な制約条件で合否が決定)、の少
なくとも1つを含み、更に、 上記の合否判定により、少なくとも1つ以上の不合格
判定が出た場合に、これらの中で溶接線長手方向端部よ
り最も内部側の不合格要因で総合不合格とし、上記の合
否判定のいずれにおいても合格判定が出た場合に、総合
合格とする最終合格判定270、を含む。
As described above, the defect acceptance / rejection determination in the present invention is performed by determining the individual defect information such as the type, size or length, position, and defect density of an individual defect by using the defect factor (type) definition 232 and the individual defect length definition. 234, individual defect acceptance / rejection judgment (pass / fail judgment based on individual defect judgment) to determine pass / fail by comparing with individual defect regulation 230 including defect density regulation 236, etc., correlation of a plurality of defects, ie, total defect length Group defect information such as the number of group defects, the number of group defects, the total area, the total number of defect points, and the defect area ratio, are defined by a total defect length rule 242, a defect interval rule 244, a cluster defect rule 246, a total defect point rule 248, and a defect area. Group defect regulation 2 including rate regulation 250 etc.
A group defect pass / fail judgment (pass / fail decision is made by judging a plurality of judgments) in comparison with 40, the distance from the pipe end of the defect closest to the pipe end in the longitudinal direction of the weld line, and the off-seam amount of the weld line, End defect-free regulation 262,
Including at least one of a global constraint defect pass / fail decision (pass / fail decision based on global constraints) that determines pass / fail by comparing with a global constraint rule 260 having global constraints, such as an off-seam rule 264; Further, when at least one rejection is determined by the above pass / fail judgment, the rejection is determined as a total rejection due to a rejection factor which is the innermost side from the end in the longitudinal direction of the weld line among these, and the above pass / fail judgment is made. , And a final pass judgment 270, which is regarded as an overall pass when a pass judgment is made in any of the above cases.

【0038】前出ステップ1010における撮影条件判
定結果と、ステップ1030における合否判定結果は、
共に、判定結果DB106に収納される。
The result of the photographing condition determination in step 1010 and the result of the pass / fail determination in step 1030 are as follows.
Both are stored in the determination result DB 106.

【0039】なお、欠陥の合否判定基準は、欠陥の形状
(球状欠陥又は線状欠陥)で異なり、欠陥の種類(要
因)、長径と短径の長さの比率、長径と短径の長さ等に
よって分類するが、該当する鋼管規格において要求され
ている分類方法を選択する。
The criterion for determining whether a defect is acceptable or not depends on the shape of the defect (spherical defect or linear defect), and includes the type (factor) of the defect, the ratio of the length of the major axis to the minor axis, and the length of the major axis and the minor axis. Etc., and select the classification method required by the applicable steel pipe standard.

【0040】前記欠陥要因規定232は、鋼管の全規格
共通に合否判定し、個別欠陥の欠陥種別が、割れ、溶込
不足(IP)、融合不良(LF)のいずれかであった場
合には、欠陥の形状や大きさに関係なく不合格とする。
The defect factor specification 232 determines pass / fail of all steel pipe standards. If the defect type of the individual defect is any of crack, insufficient penetration (IP), and defective fusion (LF), , Regardless of the shape and size of the defect.

【0041】前記個別欠陥長規定234では、個別欠陥
長(長径)が上限値を越える場合に、その欠陥を不合格
とする。
In the individual defect length specification 234, when the individual defect length (major axis) exceeds the upper limit, the defect is rejected.

【0042】前記欠陥濃度規定236では、母材部の濃
度より欠陥部の濃度が高い欠陥を、その部分で厚みが少
ないか又は空洞が存在すると判断して、濃度不良により
不合格とする。
In the defect concentration regulation 236, a defect having a higher concentration in the defect portion than the concentration in the base material portion is judged as having a small thickness or a cavity at that portion, and is rejected due to a defective concentration.

【0043】前記合計欠陥長規定242では、図11に
示す如く、任意の位置における鋼管の長手方向規定長L
Sに含まれる欠陥の長さL1、L2、L3の合計が、上
限値を越える場合に、不合格にする。
In the total defect length regulation 242, as shown in FIG. 11, the prescribed length L in the longitudinal direction of the steel pipe at an arbitrary position is determined.
If the sum of the lengths L1, L2, L3 of the defects included in S exceeds the upper limit, the test is rejected.

【0044】前記欠陥間隔規定244では、図12に示
す如く、2つの個別欠陥112と114があった場合
に、例えば欠陥112の外接方形接点座標4点(Pa1
〜Pa4)と欠陥114の外接方形接点座標4点(Pb
1〜Pb4)の間隔の中で、最端となる間隔を、両欠陥
間の間隔とし、その最小間隔が規定値未満のものを不合
格とする。
According to the defect interval regulation 244, as shown in FIG. 12, when there are two individual defects 112 and 114, for example, four points (Pa1
To Pa4) and four points of circumscribed rectangular contact coordinates of the defect 114 (Pb
Among the intervals of 1 to Pb4), the interval at the end is defined as the interval between the two defects, and the one having the minimum interval less than the specified value is rejected.

【0045】前記クラスタ欠陥規定246では、基準長
さ未満の大きさの小さい欠陥が、基準間隔未満でまとま
って存在した場合に、まとまった1つの欠陥として捕
え、クラスタの大きさ、他欠陥との間隔をチェックし、
例えば各クラスタに含まれる欠陥の欠陥長の合計を用い
て、個別欠陥と同様な方法でクラスタ欠陥長や、クラス
タ最小間隔を合否判定する。このクラスタ欠陥規定の判
定は、欠陥の組合せを検索することになるので、処理対
象とする欠陥数を極力減らすために、個別欠陥判定や群
欠陥判定の後に、不合格で切断予定の欠陥以外を対象と
して判定することができる。
According to the cluster defect definition 246, when small defects having a size less than the reference length are collectively present at a distance less than the reference interval, they are caught as one collective defect, and the size of the cluster and the other defects are compared. Check the interval,
For example, using the sum of the defect lengths of the defects included in each cluster, the pass / fail judgment of the cluster defect length and the minimum cluster interval is performed in the same manner as the individual defect. Since the determination of the cluster defect definition involves searching for a combination of defects, in order to reduce the number of defects to be processed as much as possible, after the individual defect determination or the group defect determination, a defect other than a rejected defect to be cut is determined. It can be determined as a target.

【0046】前記合計欠陥点数規定248では、任意の
規定長範囲内に含まれる欠陥の個数が上限値を越える場
合に不合格とする。
In the total defect point specification 248, if the number of defects included in an arbitrary specified length range exceeds the upper limit value, the test is rejected.

【0047】前記欠陥面積率規定250では、図13に
示す如く、鋼管長手方向の基準長範囲にかかる球状欠陥
f(n)、f(n+2)、f(n+4)の欠陥面積の合
計が、その基準範囲面積に占める比率(欠陥面積率)が
上限値を越えていた場合に不合格とする。なお、球状欠
陥の面積は、長径L/短径Wに接する楕円としてL・W
・π/4で計算することができる。図13において、f
(n+1)、f(n+3)は線状欠陥であるため、計算
に入れない。
In the defect area ratio regulation 250, as shown in FIG. 13, the sum of the defect areas of the spherical defects f (n), f (n + 2), and f (n + 4) over the reference length range in the longitudinal direction of the steel pipe is obtained. If the ratio (defect area ratio) to the reference area exceeds the upper limit, the test is rejected. The area of the spherical defect is represented by an ellipse L · W which is in contact with the major axis L / minor axis W.
-It can be calculated by π / 4. In FIG. 13, f
(N + 1) and f (n + 3) are not considered because they are linear defects.

【0048】前記管端無欠陥規定262では、図14に
示す如く、不合格欠陥がなかった場合は管端位置から規
定長範囲まで、不合格欠陥があった場合は、最も管端か
ら離れた欠陥位置直後から規定長範囲までをチェック
し、欠陥が存在していた場合は、その欠陥も不合格とす
る。欠陥が検出された場合には、その欠陥位置を管端と
規定して、欠陥がなくなるまで繰返す。
In the pipe end defect-free specification 262, as shown in FIG. 14, when there is no rejection defect, the pipe end position is within a specified length range. When there is a rejection defect, the pipe is furthest from the pipe end. The defect is checked from the position immediately after the defect position to the specified length range. If a defect exists, the defect is also rejected. When a defect is detected, the position of the defect is defined as a pipe end, and the process is repeated until no defect is found.

【0049】前記オフシーム規定264では、図15に
示す如く、管端からオフシーム量を順次チェックして、
連続n点でオフシーム上限値を越えた場合に、一番管端
から離れたオフシームをオフシーム外れで不合格とす
る。
In the off-seam regulation 264, as shown in FIG. 15, the off-seam amount is sequentially checked from the pipe end,
When the off-seam upper limit value is exceeded at the continuous n points, the off-seam farthest from the pipe end is determined to be off-seam and rejected.

【0050】なお前記説明においては、本発明が、UO
E鋼管の管端部放射線透過試験において、現像済放射線
写真フィルム画像を放射線写真フィルム撮像装置によっ
て取込む例について述べていたが、本発明の適用対象
は、これに限定されず、例えばスパイラル溶接鋼管の溶
接部や、他の金属材料溶接部の放射線透過試験画像の自
動合否判定や、金属材料溶接部の放射線透過試験で得ら
れる蛍光増倍管画像を撮像装置を介して取込む場合にも
適用可能である。
In the above description, the present invention relates to a UO
In the pipe end radiation transmission test of the E steel pipe, an example in which a developed radiographic film image is captured by a radiographic film imaging apparatus has been described. However, the application target of the present invention is not limited to this. Automatic pass / fail judgment of radiographic transmission test images of welded parts and other metal material welds, and also when capturing images of fluorescent intensifier tubes obtained in a radiographic test of metal material welds via an imaging device It is possible.

【0051】[0051]

【実施例】仮定の5種類の規格と模擬欠陥図の組合せを
用いて、合否判定プログラムを検証したところ、仕様毎
に的確な判定が行われることが確認できた。
EXAMPLE A pass / fail judgment program was verified using a combination of five hypothetical standards and a simulated defect diagram, and it was confirmed that an accurate judgment was made for each specification.

【0052】[0052]

【発明の効果】本発明によれば、撮影条件不合格の場合
に欠陥の合否判定が省略され、効率の良い検査が可能に
なると共に、撮影条件不合格にも拘らず、無意味な欠陥
合否判定結果が出力されて検査員を紛わすことがなくな
る。
According to the present invention, when the photographing condition is not satisfied, the pass / fail judgment of the defect is omitted, and the inspection can be efficiently performed. The judgment result is output and the inspector is not confused.

【0053】特に、請求項3によれば、合否判定基準
を、自動判定の対象となる放射線透過試験画像毎に、そ
の都度入力するという繁雑な作業が避けられる。
In particular, according to the third aspect, the complicated work of inputting the pass / fail judgment criterion for each radiation transmission test image to be automatically judged is avoided.

【0054】更に、請求項4によれば、従来は欠陥情報
と、それに対応した合否判定基準が複雑且つ多岐に亘
り、自動化が困難であった、例えばUOE鋼管管端溶接
部の放射線透過画像の合否判定をほぼ完全に自動化する
ことが可能となり、検査員の目視判定が不要となる。従
って、疲労に伴う判定ミスや複数の検査員間の判定のば
らつきがなくなると共に、欠陥情報の機械的な検出、測
定の機械化による検出、測定精度の向上と相俟って、検
査の信頼性、安定性が向上し、検査効率の良い自動合否
判定が可能となる。
Further, according to the present invention, the defect information and the pass / fail judgment criteria corresponding to the defect information are complicated and diversified, and it is difficult to automate the defect information. The pass / fail judgment can be almost completely automated, and the visual judgment of the inspector becomes unnecessary. Therefore, the determination error due to fatigue and the variation in the determination among a plurality of inspectors are eliminated, and the reliability of the inspection, along with the mechanical detection of the defect information, the detection by the mechanization of the measurement, and the improvement of the measurement accuracy, are improved. Stability is improved, and automatic pass / fail judgment with high inspection efficiency is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の測定対象であるUOE鋼管
の製造方法を示す正面図
FIG. 1 is a front view showing a method of manufacturing a UOE steel pipe to be measured according to an embodiment of the present invention.

【図2】同じく放射線写真撮影部位を説明するための斜
視図
FIG. 2 is a perspective view for explaining a radiographic imaging site.

【図3】同じく放射線写真の画像イメージを示す線図FIG. 3 is a diagram showing an image of a radiograph.

【図4】UOE鋼管の主な欠陥を説明するための線図FIG. 4 is a diagram for explaining major defects of a UOE steel pipe;

【図5】放射線フィルム画像を模式的に示す線図FIG. 5 is a diagram schematically showing a radiation film image;

【図6】本発明が適用されたフィルム自動判定システム
の全体構成を示す線図
FIG. 6 is a diagram showing an overall configuration of an automatic film determination system to which the present invention is applied.

【図7】本発明による自動判定手順を示す流れ図FIG. 7 is a flowchart showing an automatic determination procedure according to the present invention.

【図8】欠陥位置情報を説明するための線図FIG. 8 is a diagram for explaining defect position information;

【図9】欠陥位置座標系を説明するための線図FIG. 9 is a diagram for explaining a defect position coordinate system;

【図10】本発明による欠陥合否判定の手順を示す流れ
FIG. 10 is a flowchart showing a procedure for determining whether a defect is acceptable according to the present invention.

【図11】前記欠陥合否判定で用いられている合計欠陥
長規定を説明するための線図
FIG. 11 is a diagram for explaining a total defect length regulation used in the defect pass / fail judgment.

【図12】同じく個別欠陥間の間隔の求め方を示す線図FIG. 12 is a diagram showing a method of obtaining an interval between individual defects.

【図13】同じく欠陥面積率規定を説明するための線図FIG. 13 is a diagram for explaining the definition of the defect area ratio.

【図14】同じく管端無欠陥規定を説明するための線図FIG. 14 is a diagram for explaining a pipe end defect-free provision.

【図15】同じくオフシーム規定を説明するための線図FIG. 15 is a diagram for explaining an off-seam rule.

【符号の説明】[Explanation of symbols]

12…UOE鋼管 12B…溶接ビード部 12M…母材部 12E…管端 12K…管端開先加工部 14…透過撮影範囲 20…割れ 22…溶込不良(IP) 24…融合不良(LF) 26…ブローホール 28…スラグ巻込 30…オフシーム 40…放射線写真フィルム 42…フィルム番号 44…透過度計画像 50…鋼管搬送装置 52、56、64、82…シーケンサ 54…放射線写真撮影装置 60…放射線撮影室 70…フィルム自動現像室 74…自動現像機 78…放射線写真フィルム撮像装置 84…画像処理装置 88…合否判定装置 92…判定基準入力端末装置 100…基準・仕様データベース(DB) 102…撮影状態情報データベース(DB) 104…純欠陥情報データベース(DB) 106…判定結果データベース(DB) 110、112、114…欠陥 230…個別欠陥規定 232…欠陥要因(種類)規定 234…個別欠陥長規定 236…欠陥濃度規定 240…群欠陥規定 242…合計欠陥長規定 244…欠陥間隔規定 246…クラスタ欠陥規定 248…合計欠陥点数規定 250…欠陥面積率規定 260…全体制約規定 262…管端無欠陥規定 264…オフシーム規定 270…最終合格判定 1000…自動判定フロー DESCRIPTION OF SYMBOLS 12 ... UOE steel pipe 12B ... Weld bead part 12M ... Base material part 12E ... Pipe end 12K ... Pipe end groove processing part 14 ... Transmission imaging range 20 ... Crack 22 ... Penetration defect (IP) 24 ... Poor fusion (LF) 26 ... Blowhole 28 ... Slag entrainment 30 ... Off-seam 40 ... Radiographic film 42 ... Film number 44 ... Permeability meter image 50 ... Steel pipe conveying device 52,56,64,82 ... Sequencer 54 ... Radiographic photographing device 60 ... Radiography Room 70: Automatic film developing room 74: Automatic developing machine 78: Radiographic film imaging device 84: Image processing device 88: Pass / fail judgment device 92: Judgment reference input terminal device 100: Reference / specification database (DB) 102: Shooting state information Database (DB) 104: Pure defect information database (DB) 106: Judgment result database (DB) 10, 112, 114 ... defect 230 ... individual defect specification 232 ... defect factor (type) specification 234 ... individual defect length specification 236 ... defect concentration specification 240 ... group defect specification 242 ... total defect length specification 244 ... defect interval specification 246 ... cluster Defect stipulation 248: Total defect point stipulation 250: Defect area ratio stipulation 260: Overall constraint stipulation 262: Tube end defect-free stipulation 264: Off-seam stipulation 270: Final pass judgment 1000: Automatic judgment flow

───────────────────────────────────────────────────── フロントページの続き (72)発明者 楠 光裕 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 長谷川 壽男 兵庫県神戸市中央区東川崎町三丁目1番1 号 川崎重工業株式会社神戸工場内 (72)発明者 川野 征士郎 兵庫県神戸市中央区東川崎町三丁目1番1 号 川崎重工業株式会社神戸工場内 (72)発明者 杉本 幸治 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 井内 貞夫 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Mitsuhiro Kusunoki 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Chiba Works, Ltd. (72) Inventor Toshio Hasegawa 3-1-1 Higashi-Kawasaki-cho, Chuo-ku, Kobe-shi, Hyogo No. 1 Kawasaki Heavy Industries, Ltd.Kobe Plant (72) Inventor Seishiro Kawano 3-1-1, Higashi Kawasaki-cho, Chuo-ku, Kobe City, Hyogo Prefecture Kawasaki Heavy Industries, Ltd.Kobe Plant (72) Inventor Koji Sugimoto Kawasaki, Akashi, Hyogo Prefecture No. 1-1, Kawasaki Heavy Industries, Akashi Factory (72) Inventor Sadao Inuchi 1-1, Kawasaki-cho, Akashi City, Hyogo Prefecture, Kawasaki Heavy Industries, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】溶接部の放射線透過試験画像を画像入力手
段により取り込み、該取り込まれた画像情報に予め決め
られた画像処理を行って欠陥情報を検出し、該欠陥情報
を予め決められた合否判定基準と比較して前記溶接部の
合否を自動的に判定する溶接部放射線透過試験画像の自
動合否判定方法において、 前記合否判定基準を撮影条件判定基準と欠陥合否判定基
準とに、前記欠陥情報を撮影状態情報と純欠陥情報と
に、それぞれ分類し、 まず、前記撮影状態情報を前記撮影条件判定基準と比較
して、 全ての撮影条件が合格する場合のみ、前記純欠陥情報を
前記欠陥合否判定基準とを比較して欠陥合否判定を行
い、 いずれかの撮影条件が不合格の場合には、欠陥合否判定
不可とすることを特徴とする溶接部放射線透過試験画像
の自動合否判定方法。
An image input means captures a radiation transmission test image of a welded part, performs predetermined image processing on the captured image information, detects defect information, and determines whether the defect information has a predetermined pass / fail status. In an automatic pass / fail judgment method of a welded part radiographic transmission test image that automatically judges pass / fail of the welded part by comparing with a judgment criterion, the pass / fail judgment criterion is a photographing condition judgment criterion and a defect pass / fail judgment criterion; Are classified into photographing state information and pure defect information, respectively. First, the photographing state information is compared with the photographing condition determination criteria, and only when all photographing conditions pass, the pure defect information is compared with the defect pass / fail. Automatic pass / fail judgment of the radiographic transmission test image of a weld, characterized in that a defect pass / fail judgment is made by comparing with a judgment criterion, and if any of the photographing conditions is unsuccessful, the defect pass / fail judgment cannot be made. Method.
【請求項2】請求項1において、前記撮影状態情報は、
フィルム濃度、透過度計識別度、階調計濃度差の中の少
なくとも一つを含み、前記撮影条件判定基準は、フィル
ム濃度規定、透過度計識別度規定、階調計濃度差規定の
中の該当規定を含むものであることを特徴とする溶接部
放射線透過試験画像の自動合否判定方法。
2. The photographing state information according to claim 1, wherein
Film density, transparency meter discrimination, including at least one of the tone meter density difference, the shooting condition determination criteria, the film density regulation, transparency meter discrimination regulation, tone meter density difference regulation An automatic pass / fail judgment method for a radiographic examination image of a welded part, which includes a relevant rule.
【請求項3】請求項1又は2において、前記合否判定基
準は、予め規格・基準毎に決められたものを記憶装置に
ファイルしておき、当該ロットに適用される規格・基準
を入力手段を介し指定して読み出すようにし、 一方、前記記憶装置にファイルされていない規格・基準
の場合、あるいは、需要家の追加仕様がある場合は、そ
の合否判定基準を入力手段を介して前記記憶装置に手入
力するようにしたことを特徴とする溶接部放射線透過試
験画像の自動合否判定方法。
3. The pass / fail judgment criterion according to claim 1, wherein the pass / fail judgment criterion is a file determined in advance for each standard / criterion, stored in a storage device, and a standard / criterion applied to the lot is input by input means. On the other hand, in the case of standards / standards not filed in the storage device, or when there is an additional specification of the customer, the pass / fail judgment criterion is stored in the storage device via input means. An automatic pass / fail determination method for a radiographic examination image of a welded part, which is manually input.
【請求項4】請求項1乃至3のいずれかにおいて、前記
欠陥合否判定は、 個別の欠陥の種類、大きさ又は長さ、位置、欠陥の濃度
等の個別欠陥情報を、欠陥要因(種類)規定、個別欠陥
長規定、欠陥濃度規定等を含む個別欠陥規定と比較して
合否を判定する個別欠陥合否判定と、 複数の欠陥の相互関係、即ち、合計欠陥長さ、欠陥間
隔、群欠陥の数量、合計面積、合計欠陥点数、欠陥面積
率等の群欠陥情報を、合計欠陥長規定、欠陥間隔規定、
クラスタ欠陥規定、合計欠陥点数規定、欠陥面積率規定
等を含む群欠陥規定と比較して合否を判定する群欠陥合
否判定と、 溶接線長手方向の材料端縁に最も近い欠陥の前記材料端
縁からの距離、溶接線オフシーム量等を、材料端部無欠
陥規定、オフシーム規定等の全体制約規定と比較して合
否を判定する全体制約的欠陥合否判定の少なくとも一つ
を含み、 更に、前記の合否判定により少なくとも一つ以上の不合
格判定が出た場合に、これらの中で溶接線長手方向端部
より最も内部側の不合格要因で総合不合格とし、前記の
合否判定のいずれにおいても合格判定が出た場合に、総
合合格とする最終合否判定を含むことを特徴とする溶接
部放射線透過試験画像の自動合否判定方法。
4. The defect acceptance / rejection determination according to claim 1, wherein the individual defect information such as the type, size or length, position, and density of the individual defect is determined by a defect factor (type). Individual defect pass / fail judgment, which determines pass / fail by comparing with individual defect provisions including regulations, individual defect length regulations, defect density regulations, etc., and the interrelationship of multiple defects, that is, total defect length, defect interval, group defect Group defect information such as quantity, total area, total number of defect points, defect area ratio, etc.
Group defect acceptance / rejection judgment which determines pass / fail by comparing with group defect regulations including cluster defect regulations, total defect point regulations, defect area ratio regulations, etc., and the material edge of the defect closest to the material edge in the longitudinal direction of the welding line The distance from the welding line off-seam amount, etc., including at least one of the overall constraint defect pass / fail determination to determine pass / fail by comparing with the overall constraint definition such as material end no defect definition, off-seam definition, etc. If at least one rejection is determined by the pass / fail judgment, a rejection is made as a total rejection due to a rejection factor that is the innermost side from the weld line longitudinal end portion among these, and it passes in any of the above pass / fail judgments An automatic pass / fail judgment method for a welded part radiographic transmission test image, which includes a final pass / fail judgment to determine a total pass when a judgment is made.
【請求項5】溶接部の放射線透過試験画像を取り込むた
めの画像入力手段と、 該画像入力手段により取り込まれた画像情報に、予め決
められた画像処理を行って欠陥情報を検出する画像処理
手段と、 予め決められた合否判定基準を、撮影条件判定規定と欠
陥合否判定基準に分類して記憶する判定基準記憶手段
と、 前記欠陥情報を撮影状態情報と純欠陥情報に分類し、ま
ず、前記撮影状態情報を前記撮影条件判定基準と比較し
て、全ての撮影条件が合格する場合のみ、前記純欠陥情
報を前記欠陥合否判定基準と比較して欠陥合否判定を行
い、いずれかの撮影条件が不合格の場合には、欠陥合否
判定不可とする判定手段と、 を備えたことを特徴とする溶接部放射線透過試験画像の
自動合否判定装置。
5. An image input means for taking in a radiation transmission test image of a weld, and an image processing means for performing predetermined image processing on the image information taken in by the image input means to detect defect information. A determination criteria storage unit that classifies and stores a predetermined pass / fail determination criterion into a shooting condition determination rule and a defect pass / fail determination criterion; and classifies the defect information into shooting state information and pure defect information. The photographing state information is compared with the photographing condition criterion, and only when all the photographing conditions pass, a defect pass / fail decision is made by comparing the pure defect information with the defect pass / fail decision criterion. An automatic pass / fail determination apparatus for a welded part radiographic transmission test image, comprising: a determination unit for determining a failure pass / fail determination in the case of rejection.
JP30662596A 1996-11-18 1996-11-18 Method and device for automatically judging accept/ reject of welded part radiation transmission test image Pending JPH10148622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30662596A JPH10148622A (en) 1996-11-18 1996-11-18 Method and device for automatically judging accept/ reject of welded part radiation transmission test image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30662596A JPH10148622A (en) 1996-11-18 1996-11-18 Method and device for automatically judging accept/ reject of welded part radiation transmission test image

Publications (1)

Publication Number Publication Date
JPH10148622A true JPH10148622A (en) 1998-06-02

Family

ID=17959347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30662596A Pending JPH10148622A (en) 1996-11-18 1996-11-18 Method and device for automatically judging accept/ reject of welded part radiation transmission test image

Country Status (1)

Country Link
JP (1) JPH10148622A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168805A (en) * 2000-11-28 2002-06-14 Anritsu Corp X-ray foreign matter detector
KR20030003155A (en) * 2002-11-15 2003-01-09 (주)뉴트란 Automatic Radio Graphic Teting System
JP2016061782A (en) * 2014-09-16 2016-04-25 アービンメリトール・テクノロジー,エルエルシー System and method of making welded assembly
JP2019095247A (en) * 2017-11-21 2019-06-20 千代田化工建設株式会社 Inspection assisting system, learning device, and determination device
JPWO2022014019A1 (en) * 2020-07-16 2022-01-20
KR102391957B1 (en) * 2021-01-18 2022-04-28 케이티이 주식회사 The method to read a radiographic film
JP2022071596A (en) * 2020-10-28 2022-05-16 パナソニックIpマネジメント株式会社 Appearance inspection method and appearance inspection device
KR102421050B1 (en) * 2021-01-18 2022-07-13 김윤길 A Method of Radiographic Film Reading Using Artificial Intelligence
KR102421047B1 (en) * 2021-01-18 2022-07-14 케이더블유큐이(주) To measure film concentration
WO2022259290A1 (en) * 2021-06-07 2022-12-15 日揮グローバル株式会社 Welding data processing device and welding data processing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168805A (en) * 2000-11-28 2002-06-14 Anritsu Corp X-ray foreign matter detector
KR20030003155A (en) * 2002-11-15 2003-01-09 (주)뉴트란 Automatic Radio Graphic Teting System
JP2016061782A (en) * 2014-09-16 2016-04-25 アービンメリトール・テクノロジー,エルエルシー System and method of making welded assembly
JP2019095247A (en) * 2017-11-21 2019-06-20 千代田化工建設株式会社 Inspection assisting system, learning device, and determination device
JPWO2022014019A1 (en) * 2020-07-16 2022-01-20
JP2022071596A (en) * 2020-10-28 2022-05-16 パナソニックIpマネジメント株式会社 Appearance inspection method and appearance inspection device
KR102391957B1 (en) * 2021-01-18 2022-04-28 케이티이 주식회사 The method to read a radiographic film
KR102421050B1 (en) * 2021-01-18 2022-07-13 김윤길 A Method of Radiographic Film Reading Using Artificial Intelligence
KR102421047B1 (en) * 2021-01-18 2022-07-14 케이더블유큐이(주) To measure film concentration
WO2022259290A1 (en) * 2021-06-07 2022-12-15 日揮グローバル株式会社 Welding data processing device and welding data processing method

Similar Documents

Publication Publication Date Title
JP6560220B2 (en) Method and apparatus for inspecting inspection system for detection of surface defects
JP2968442B2 (en) Evaluation system for welding defects
CN110097547B (en) Automatic detection method for welding seam negative film counterfeiting based on deep learning
JPS5999338A (en) Method and device for inspecting image
Aoki et al. Application of artificial neural network to discrimination of defect type in automatic radiographic testing of welds
JP7403907B2 (en) System and method for analyzing welding quality
JPH10148622A (en) Method and device for automatically judging accept/ reject of welded part radiation transmission test image
KR20230013206A (en) Welding area inspection system and method thereof for assessing the risk based on artificial intelligence
KR20080003719A (en) Semiconductor substrate defects detection device and method of detection of defects
KR20230114182A (en) Classification condition setting support apparatus
CN110084807B (en) Detection method for false detection of welding seam flaw detection negative image
CN117120951A (en) Abnormal sign detection device of production line method, program, manufacturing apparatus, and inspection apparatus
CN113469991B (en) Visual online detection method for laser welding spot of lithium battery tab
KR20220046824A (en) Inspection method for welding portion in lithium secondary battery
KR20080028278A (en) Optical inspection system
KR102391957B1 (en) The method to read a radiographic film
CN111738991A (en) Method for creating digital ray detection model of weld defects
JPH11211674A (en) Method and apparatus for inspection of flaw on surface
CN115705645A (en) Method and apparatus for determining defect size during surface modification process
Brzeskot et al. Development of the automatic method of detection and grouping of external welding imperfections
JP2009264882A (en) Visual inspection device
CN110287968B (en) Detection method for welding line flaw detection negative image counterfeiting based on LBP texture
KR102421050B1 (en) A Method of Radiographic Film Reading Using Artificial Intelligence
CN115830019B (en) Three-dimensional point cloud calibration processing method and device for steel rail detection
CZ194397A3 (en) Optical test equipment for evaluation of on-line welds or soldered seams