JPH1014859A - Scattering reflection type image pick-up device - Google Patents

Scattering reflection type image pick-up device

Info

Publication number
JPH1014859A
JPH1014859A JP8174857A JP17485796A JPH1014859A JP H1014859 A JPH1014859 A JP H1014859A JP 8174857 A JP8174857 A JP 8174857A JP 17485796 A JP17485796 A JP 17485796A JP H1014859 A JPH1014859 A JP H1014859A
Authority
JP
Japan
Prior art keywords
light
optical system
illumination
deep
scattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8174857A
Other languages
Japanese (ja)
Inventor
Shiro Oikawa
四郎 及川
Koji Kanamori
宏司 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEITAI HIKARI JOHO KENKYUSHO K
SEITAI HIKARI JOHO KENKYUSHO KK
Original Assignee
SEITAI HIKARI JOHO KENKYUSHO K
SEITAI HIKARI JOHO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEITAI HIKARI JOHO KENKYUSHO K, SEITAI HIKARI JOHO KENKYUSHO KK filed Critical SEITAI HIKARI JOHO KENKYUSHO K
Priority to JP8174857A priority Critical patent/JPH1014859A/en
Publication of JPH1014859A publication Critical patent/JPH1014859A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable to obtain an image of a deep position inside an examine from the surface of the examine by providing the device with a display system which displays an image carrying information about the inside of the examine, that is obtained by a deep part scattered light detecting system which obtains the image by receiving light guided to a receiving optical system. SOLUTION: A high-directivity receiving optical system 11 is pointed toward the photographic region 10a of an examine 10, and of light beams emitted from the photographic region 10a, parallel light components that go rightward are guided to the receiving optical system 11 and received by an image pick-up sensor 12, and an image obtained is input to a data processing control part 13, where it is subjected to image processing and displayed on a display part 14. Also, a light source 15 for illuminating deep parts emits deep part illuminating light under control of the data processing control part 13, and the deep part illuminating light is guided to a plurality of optical fibers 16 and emitted from a plurality of illuminating heads 17 to illuminate the examine 10. This light illuminates the examine 10 from a sufficiently wider area than the viewing field of the receiving optical system 11, so that the light which is strong as a whole is emitted and allowed to reach the depth of the examine 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、高散乱性
の媒質、特に生体等を被検体としてその被検体内部の構
造を表面側から画像化する散乱反射型撮像装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scattered-reflection type imaging apparatus for imaging, for example, a medium having a high scattering property, in particular, a living body or the like as an object, from the surface side thereof.

【0002】[0002]

【従来の技術】高散乱媒質である生体等の内部を光で画
像化する事はチャレンジングな領域として種々の研究が
なされている。特に装置を被検体の表面の片側に配置す
るだけですむ散乱反射型装置の研究は、その適用範囲の
広さから精力的に行なわれている。臨床応用の段階まで
進んでいる技術としては、低干渉性の光源を用い被検体
からの反射光を参照光との干渉計測により深さ方向に弁
別する、いわゆるOCT(Optical coher
ence tomgraphy)と呼ばれている方法が
あり、眼科の網膜診断において有意であることが知られ
ている。
2. Description of the Related Art Various studies have been made as a challenging area to image the inside of a living body or the like which is a high scattering medium with light. In particular, research on a scattering-reflection-type device that requires only disposing the device on one side of the surface of the subject has been energetically conducted due to its wide application range. As a technology that has progressed to the stage of clinical application, a so-called OCT (optical coherer) that uses a light source having low coherence to discriminate reflected light from a subject in the depth direction by measuring interference with reference light.
ence tomography, which is known to be significant in ophthalmic retinal diagnosis.

【0003】このOCTの手法は、臨床診断分野におい
ては、例えば乳房診断装置、皮膚科の診断装置およびフ
ァイバスコープと組合せた体腔表在部の診断装置等への
応用が考えられ、臨床診断分野以外においても、例えば
塗装、メッキ等の非破壊検査、美術品鑑定、および果物
の鮮度識別等への応用が考えられる。
[0003] In the field of clinical diagnosis, this OCT technique can be applied to, for example, a breast diagnostic apparatus, a dermatological diagnostic apparatus, and a diagnostic apparatus for a superficial portion of a body cavity combined with a fiberscope. For example, application to non-destructive inspection such as painting and plating, appraisal of art objects, and identification of freshness of fruits can be considered.

【0004】[0004]

【発明が解決しようとする課題】OCTにおける問題点
は、生体のような高散乱媒質の場合、十分な光量の反射
光が得られる深さがせいぜい1mm程度に限られる事で
あり、このことが適用範囲を極めて狭く限定する要因と
なっている。特に臨床応用を考えた場合には、安全面か
ら入射光強度には上限があり、この問題は深刻である。
The problem with OCT is that in the case of a highly scattering medium such as a living body, the depth at which a sufficient amount of reflected light can be obtained is limited to at most about 1 mm. This is a factor that limits the scope of application to be extremely narrow. Particularly when considering clinical applications, the incident light intensity has an upper limit from the viewpoint of safety, and this problem is serious.

【0005】本発明は、上記事情に鑑み、被検体の表面
側から被検体内部の、従来よりも深い位置の画像を得る
ことのできる散乱反射型撮像装置を提供することを目的
とする。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a scattered-reflection type imaging apparatus capable of obtaining an image of the inside of a subject from the surface side of the subject at a deeper position than before.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する本発
明の散乱反射型撮像装置は、 (1)被検体内で散乱し被検体表面から所定方向に向け
て出射した光を選択的に受光する受光光学系 (2)被検体内部を照明するための深部照明光を発する
深部照明用光源 (3)深部照明用光源から発せられた深部照明光で、受
光光学系の視野よりも広い領域から被検体内部に向けて
照明する照明光学系 (4)受光光学系に導かれた光を受光して被検体内部の
情報を担持した画像を得る深部散乱光検出系 (5)深部散乱光検出系で得られた画像を表示する表示
系を備えたことを特徴とする。
According to the present invention, there is provided a scatter-reflection type imaging apparatus which achieves the above object. (1) Selectively receives light scattered in a subject and emitted from a surface of the subject in a predetermined direction. (2) Deep illumination light source that emits deep illumination light for illuminating the inside of the subject (3) Deep illumination light emitted from the deep illumination light source from an area wider than the field of view of the light reception optical system Illumination optical system for illuminating the inside of the subject (4) Deep scattered light detection system that receives light guided to the light receiving optical system and obtains an image bearing information inside the subject (5) Deep scattered light detection system And a display system for displaying the image obtained in step (1).

【0007】ここで、上記(3)の照明光学系は、深部
照明用光源から発せられた照明光を、受光光学系の視野
を囲む環状領域を経由させて、被検体を照明するもので
あってもよい。また、本発明の散乱反射型撮像装置にお
いて、上記(4)の深部散乱光検出系は、受光光学系の
視野内の二次元画像を得る二次元撮像素子を備えたもの
であってもよい。
Here, the illumination optical system of (3) illuminates the subject with the illumination light emitted from the light source for deep illumination through an annular region surrounding the field of view of the light receiving optical system. You may. In the scattering / reflection imaging apparatus of the present invention, the deep scattered light detection system of (4) may include a two-dimensional imaging element for obtaining a two-dimensional image in the field of view of the light receiving optical system.

【0008】また、上記本発明の散乱反射型撮像装置に
おいて、 (6)被検体表面の、受光光学系の視野を含む領域を照
明する表面照明光を発する表面照明用光源 (7)表面照明用光源から発せられ、被検体表面で散乱
した表面照明光を受光することにより、その被検体表面
の、受光光学系の視野を含む領域の画像を得る表面散乱
光検出系を備え、上記(5)の表示系が、深部散乱光検
出系で得られた画像と上記(7)の表面散乱光検出系で
得られた画像を互いに重畳させて表示するものであるこ
とが好ましい。
In the above-mentioned scattered reflection type imaging apparatus according to the present invention, (6) a surface illumination light source for emitting surface illumination light for illuminating an area including a field of view of a light receiving optical system on the surface of the subject; A surface scattered light detection system for receiving an image of a region including a field of view of a light receiving optical system on the surface of the object by receiving surface illumination light emitted from the light source and scattered on the surface of the object; It is preferable that the display system of (1) displays an image obtained by the deep scattered light detection system and an image obtained by the surface scattered light detection system (7) so as to overlap each other.

【0009】さらに、上記本発明の散乱反射型撮像装置
において、上記(2)の深部照明用光源が所定の低干渉
光を発するものであり、上記(3)の照明光学系が、深
部照明用光源から発せられた低干渉光を、被検体を照明
する照明光と所定の参照光ビームとに二分する光路分割
手段を備え、上記(1)の受光光学系が、その受光光学
系の視野内の二次元的な広がりの中の任意の点に対応す
る、被検体内部で散乱した光の光路と、光路分割手段で
深部照明光から分かれた参照光ビームの光路とを重畳さ
せる光路重畳手段を備え、 (8)上記光路分割手段と上記光路重畳手段との間の、
参照光ビームの光路上に配置された、参照光ビームの光
路長を調整する光路長調整機構、および参照光ビームの
光路が、受光光学系の視野内の二次元的な広がりの中の
異なる各点に対応する、被検体内部で散乱した光の光路
と順次重畳されるように、その参照光ビームを走査する
走査手段を含む参照光学系を備えたものであることも好
ましい形態である。
Further, in the scattering / reflection type imaging apparatus of the present invention, the light source for deep illumination of the above (2) emits predetermined low interference light, and the illumination optical system of the above (3) is used for the deep illumination. An optical path splitting unit for splitting the low interference light emitted from the light source into an illumination light for illuminating the subject and a predetermined reference light beam, wherein the light receiving optical system of the above (1) is provided within the field of view of the light receiving optical system. Corresponding to an arbitrary point in the two-dimensional spread of the optical path of the light scattered inside the subject and the optical path superimposing means for superimposing the optical path of the reference light beam split from the deep illumination light by the optical path dividing means. (8) between the optical path dividing means and the optical path superimposing means;
An optical path length adjustment mechanism arranged on the optical path of the reference light beam, which adjusts the optical path length of the reference light beam, and the optical path of the reference light beam is different from each other in the two-dimensional spread within the field of view of the light receiving optical system. It is also a preferable embodiment to provide a reference optical system including a scanning unit that scans the reference light beam so as to be sequentially superimposed on the optical path of the light scattered inside the subject corresponding to the point.

【0010】さらに、上記本発明の散乱反射型撮像装置
において、上記(3)の照明光学系が、受光光学系の視
野の外縁と上記環状領域の内縁との間の深部照明光を遮
光する、その外縁からその内縁までの間隔の調整が自在
な光遮蔽板を備えることが好ましい。従来のOCTにお
いては、被検体に面する対物レンズを経由して、被検体
内に向けて照射される入射光、および被検体内で散乱し
て戻ってきた反射光が往来する。このため、入射量およ
び反射光量を大きくするために、口径の大きな対物レン
ズを用い大きな開口角を得ることが考えられる。しかし
ながら口径の大きな対物レンズを用いると被検体内の複
雑な屈折率分布によって波面が歪む程度が大きくなり、
位相の揃った干渉信号成分がかえって減少してしまう結
果となる。従って、従来のOCTでは開口角0.1程度
で収集せざるを得ず、このことが、表面光強度の安全限
界との関係も含めて、被検体内の情報を得ることのでき
る深さを1mm程度に制限している。
Further, in the scattering / reflection imaging apparatus of the present invention, the illumination optical system of (3) blocks deep illumination light between the outer edge of the field of view of the light receiving optical system and the inner edge of the annular region. It is preferable to provide a light shielding plate capable of adjusting the distance from the outer edge to the inner edge. In the conventional OCT, incident light irradiated toward the inside of the subject via the objective lens facing the subject and reflected light scattered back inside the subject come and go. Therefore, in order to increase the amount of incident light and the amount of reflected light, it is conceivable to obtain a large aperture angle using an objective lens having a large aperture. However, the use of a large-aperture objective lens increases the degree to which the wavefront is distorted due to the complex refractive index distribution in the subject,
As a result, the interference signal components having the same phase are reduced. Therefore, in the conventional OCT, it is necessary to collect at an aperture angle of about 0.1, which means that the depth at which information within the subject can be obtained including the relationship with the safety limit of the surface light intensity is 1 mm. Limited to the extent.

【0011】本発明は、上記のような構成を備え、撮像
領域の周囲の広い照明領域から被検体を照射するもので
あるため、撮像領域の、被検体表面から従来よりも深い
所定深さ(例えば深さ10mm)の部分に、入射光の、
被検体内での多重散乱の結果としての等価的な光源群が
生成される。本発明は、その等価光源群から発せられた
光のうちの受光光学系に向かって被検体表面から略平行
に出射した光を受光して透過光強度分布を得る。このよ
うに、本発明では、撮像領域の周囲の広い照明領域から
被検体を照射するため、深さ弁別能力は多少犠牲にはな
るものの、表面光強度の安全性を満足した上で被検体内
の一層深い部分を照明することができる。
Since the present invention has the above-described configuration and irradiates the subject from a wide illumination area around the imaging area, the imaging area has a predetermined depth (from the surface of the object) that is deeper than before. For example, at a depth of 10 mm),
An equivalent set of light sources is generated as a result of multiple scattering within the subject. According to the present invention, of the light emitted from the equivalent light source group, light emitted from the surface of the subject substantially parallel to the light receiving optical system toward the light receiving optical system is received to obtain a transmitted light intensity distribution. As described above, in the present invention, since the subject is irradiated from a wide illumination area around the imaging area, the depth discrimination ability is somewhat sacrificed, but the safety of the surface light intensity is satisfied and the inside of the subject is satisfied. It is possible to illuminate a deeper part.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態について
説明する。図1は、本発明の散乱反射型撮像装置の第1
の実施形態の模式図である。ここでは乳房検査の例を挙
げており、被検体10である乳房の撮像領域10aに向
けて高指向性の受光光学系11が配置されており、その
撮像領域10aからの出射光のうち図の右方に向かう平
行光成分が受光光学系11に導かれ撮像センサ12で受
光される。この撮像センサ12で得られた画像はデータ
処理・制御部13に入力されて適切な画像処理が施さ
れ、表示部14でその画像が表示される。
Embodiments of the present invention will be described below. FIG. 1 shows a first embodiment of a scattered reflection type imaging apparatus according to the present invention.
It is a schematic diagram of the embodiment. Here, an example of a breast examination is given, in which a light receiving optical system 11 having high directivity is arranged toward an imaging region 10a of the breast which is the subject 10, and out of the light emitted from the imaging region 10a, The rightward parallel light component is guided to the light receiving optical system 11 and received by the image sensor 12. The image obtained by the image sensor 12 is input to the data processing / control unit 13 and subjected to appropriate image processing, and the image is displayed on the display unit 14.

【0013】また、この図1に示す散乱反射型撮像装置
には、被検体10の深部にまで光をあてるための深部照
明用光源15が備えられており、この深部照明用光源1
5は、データ処理・制御部13による制御を受けて深部
照明光を発する。深部照明用光源15から発せられた深
部照明光は、本発明にいう照明光学系を構成する複数の
光ファイバ16に導かれ、やはり本発明にいう照明光学
系を構成する複数の照明ヘッド17から出射して被検体
10を照明する。ここでは、この照明は、受光光学系1
1の視野、すなわち被検体10の撮影領域表面10aよ
りも十分に広い領域から被検体10を照明しており、し
たがって被検体10の表面の単位面積あたりの光強度は
緩和され、その分全体として強い光を照射することがで
き、被検体10の深部にまで光が到達する。
The diffuse reflection type imaging apparatus shown in FIG. 1 is provided with a deep illumination light source 15 for irradiating light to a deep portion of the subject 10.
5 emits deep illumination light under the control of the data processing / control unit 13. The deep illumination light emitted from the deep illumination light source 15 is guided to a plurality of optical fibers 16 constituting an illumination optical system according to the present invention, and from a plurality of illumination heads 17 also constituting an illumination optical system according to the present invention. The emitted light illuminates the subject 10. Here, this illumination is performed by the light receiving optical system 1.
1, the subject 10 is illuminated from a region sufficiently larger than the imaging region surface 10a of the subject 10, so that the light intensity per unit area of the surface of the subject 10 is reduced, and as a whole, Intense light can be emitted, and the light reaches the deep part of the subject 10.

【0014】図2は、本発明の散乱反射型撮像装置の第
2の実施形態の模式図、図3は、被検体表面の照明領
域、撮像領域を示す模式図である。深部照明用光源15
から発せられた深部照明光15aは凹レンズ21により
広げられ、中央に受光光学系11を配置するための開口
を有する、径の大きな集光レンズ22により、撮像領域
の深部の所定点に集光する方向に、被検体10の照明領
域10bを照明する。
FIG. 2 is a schematic view of a second embodiment of the scattered reflection type imaging apparatus according to the present invention, and FIG. 3 is a schematic view showing an illumination area and an imaging area on the surface of the subject. Light source 15 for deep illumination
The deep illumination light 15a emitted from the lens is expanded by the concave lens 21 and condensed at a predetermined point in the deep part of the imaging region by the large diameter condensing lens 22 having an opening for disposing the light receiving optical system 11 in the center. The illumination area 10b of the subject 10 is illuminated in the direction.

【0015】被検体10の内部に入射した光は、被検体
10の内部で散乱を受け、散乱光のうち、図2に斜線を
付して示す撮像領域10aを通過し撮像領域表面から、
受光光学系11の光軸に平行に出射した光(高指向性散
乱光)のみが受光光学系11に導かれ撮像センサ12で
受光されて画像信号に変換される。受光光学系11の視
野の周囲には、深部照明光と、受光光学系11に入射す
る光の通路とを隔てるリング状の光遮蔽板23が備えら
れている。この光遮蔽板23の詳細については後述す
る。
The light incident on the inside of the subject 10 is scattered inside the subject 10, and among the scattered light, it passes through the imaging region 10 a indicated by oblique lines in FIG.
Only light (highly directional scattered light) emitted parallel to the optical axis of the light receiving optical system 11 is guided to the light receiving optical system 11, received by the image sensor 12, and converted into an image signal. A ring-shaped light shielding plate 23 is provided around the field of view of the light receiving optical system 11 for separating the deep illumination light from the path of light incident on the light receiving optical system 11. The details of the light shielding plate 23 will be described later.

【0016】この図2に示す実施形態においても、被検
体10は、図3に示すように撮像領域10aよりも十分
に広い照明領域10bから照明されており、したがって
被検体10の表面の単位面積あたりの光強度は緩和され
る。図4は、図2に示す第2実施形態の受光光学系の構
成図、図5は、図4に示す受光光学系に採用されている
ミラーの平面図である。
Also in the embodiment shown in FIG. 2, the subject 10 is illuminated from the illumination area 10b which is sufficiently larger than the imaging area 10a as shown in FIG. The light intensity around is reduced. FIG. 4 is a configuration diagram of the light receiving optical system of the second embodiment shown in FIG. 2, and FIG. 5 is a plan view of a mirror employed in the light receiving optical system shown in FIG.

【0017】被検体10の撮像領域10a(図2参照)
から出射した光は、受光光学系11に入射し、対物レン
ズ111を通過する。対物レンズ111の焦点位置に
は、図5に示すように、中央のピンポイント112aの
み光を反射するように構成された反射ミラー112が備
えられており、したがって、この受光光学系11に入射
した光のうち、対物レンズ111の光軸に平行に入射し
た光のみが反射ミラー112で反射される。この反射ミ
ラー112で反射した光はコリメートレンズ113で平
行光に変換され、撮像センサ12に入射する。この図4
に示す受光光学系11では、反射ミラー112の工夫に
より被検体10から光軸に平行に出射した光のみを選択
的に撮像センサ12(図2参照)に導いている。
An imaging area 10a of the subject 10 (see FIG. 2)
The light emitted from the optical system enters the light receiving optical system 11 and passes through the objective lens 111. At the focal position of the objective lens 111, as shown in FIG. 5, a reflection mirror 112 configured to reflect light only at the center pinpoint 112a is provided. Of the light, only light incident parallel to the optical axis of the objective lens 111 is reflected by the reflection mirror 112. The light reflected by the reflection mirror 112 is converted into parallel light by the collimator lens 113 and enters the image sensor 12. This figure 4
In the light receiving optical system 11 shown in FIG. 2, only light emitted from the subject 10 in parallel to the optical axis is selectively guided to the image sensor 12 (see FIG. 2) by devising the reflection mirror 112.

【0018】図6は、図2に示す第2実施形態におい
て、図4に示す受光光学系に代えて採用することのでき
る、もう1つの受光光学系の構成図である。対物レンズ
111の焦点面に、対物レンズ111の光軸に平行に入
射した光のみを通過させるピンホール114aが形成さ
れたピンホール板114が備えられており、そのピンホ
ール114aを通過した光がコリメートレンズ113で
平行光に変換され、さらに反射ミラー115で反射して
撮像センサ12(図2参照)に導かれる。尚、この反射
ミラー115は図5に示す反射ミラーとは異なり、入射
光をその全面で反射する反射ミラーである。
FIG. 6 is a block diagram of another light receiving optical system which can be employed in the second embodiment shown in FIG. 2 instead of the light receiving optical system shown in FIG. On the focal plane of the objective lens 111, there is provided a pinhole plate 114 having a pinhole 114a for passing only light incident parallel to the optical axis of the objective lens 111, and light passing through the pinhole 114a is provided. The light is converted into parallel light by the collimator lens 113, is further reflected by the reflection mirror 115, and is guided to the image sensor 12 (see FIG. 2). The reflecting mirror 115 is different from the reflecting mirror shown in FIG. 5, and is a reflecting mirror that reflects incident light on the entire surface.

【0019】この図6に示す受光光学系では、ピンホー
ル板114の配置により、被検体10から光軸に平行に
出射した光のみを選択的に撮像センサに導いている。こ
こで、生体のような高散乱媒質を被検体とした場合の、
照射光の被検体内での振る舞いについて説明する。図7
は、照明光の多重散乱軌跡の概念図である。
In the light receiving optical system shown in FIG. 6, only the light emitted from the subject 10 in parallel to the optical axis is selectively guided to the image sensor by the arrangement of the pinhole plate 114. Here, when a high scattering medium such as a living body is used as a subject,
The behavior of the irradiation light in the subject will be described. FIG.
FIG. 3 is a conceptual diagram of a multiple scattering locus of illumination light.

【0020】ここには、代表例として、受光光学系11
の光軸に平行な戻り光として被検体10から出射される
光のうち、点A1で1回だけ散乱して受光光学系11に
入射する光線Aと、点B1,B2,B3で合計3回散乱
して受光光学系11に入射する光線Bとの2本の光線
A,Bが示されている。ここに示す例のように、照明光
側の対物レンズ22から出射した照明光が向かう仮想光
収束点0までの距離が被検体10内に入射した光の平均
自由工程より十分長い場合、被検体10内の特定の位置
の情報を担持した一回散乱光、すなわち図に斜線を付し
て示した領域内でのみ散乱して受光光学系11に入射す
る光は非常に少ない。
Here, as a representative example, the light receiving optical system 11
Of the light emitted from the subject 10 as return light parallel to the optical axis of the light beam A, which is scattered only once at the point A1 and is incident on the light receiving optical system 11, and a total of three times at the points B1, B2, and B3. Two light beams A and B, which are scattered and incident on the light receiving optical system 11, and a light beam B are shown. As in the example shown here, when the distance to the virtual light convergence point 0 to which the illumination light emitted from the illumination light-side objective lens 22 travels is sufficiently longer than the mean free path of the light incident on the subject 10, There is very little once-scattered light carrying information on a specific position in 10, that is, light that is scattered only in the hatched area in FIG.

【0021】図8は、被検体内での多重散乱の軌跡頻度
分布の模式図、図9は、等価光源群の模式図である。図
8の斜線部は、種々の生体試料での実測やシミュレーシ
ョンの結果として一般的に知られている、多重散乱の頻
度の高い領域を示している。このような散乱頻度分布を
持つ多重散乱の結果、光軸に沿って撮像領域10aを戻
る光線群は、見方を考えれば、図9に示すように、図8
における最大頻度の位置(図8の斜線部分)に等価的な
光源群(等価光源群)20が並んでおり、その等価光源
群20から発せられた光が被検体表在部10cを透過し
て被検体10から出射した光であると見なすことができ
る。この透過光源群20が配置される深さ位置は、図7
に示す光遮蔽板23の幅によって変化する。したがって
この光遮蔽板23として可変幅の光遮蔽板を用い等価光
源群10の深さ位置を調整できるように構成することが
好ましい。
FIG. 8 is a schematic diagram of a trajectory frequency distribution of multiple scattering in a subject, and FIG. 9 is a schematic diagram of an equivalent light source group. The hatched portions in FIG. 8 indicate regions where the frequency of multiple scattering is high, which is generally known as a result of actual measurement or simulation of various biological samples. As a result of multiple scattering having such a scattering frequency distribution, a group of light rays returning to the imaging region 10a along the optical axis, as shown in FIG.
The equivalent light source group (equivalent light source group) 20 is arranged at the position of the maximum frequency (the hatched portion in FIG. 8), and the light emitted from the equivalent light source group 20 passes through the subject surface portion 10c. It can be considered that the light is emitted from the subject 10. The depth position at which the group of transmitted light sources 20 is arranged is shown in FIG.
Varies depending on the width of the light shielding plate 23 shown in FIG. Therefore, it is preferable that a variable width light shielding plate is used as the light shielding plate 23 so that the depth position of the equivalent light source group 10 can be adjusted.

【0022】図10〜図13は、それぞれ、光遮蔽板2
3の、幅を広げた状態の平面図、光遮蔽板の、幅を狭め
た状態の平面図、光遮蔽板を構成するベース円環部の平
面図、および図10のA−A’に沿う断面図である。こ
の光遮蔽板23は、ベース円環部23aと、そのベース
円環部23aに対し図13に示す矢印方向にスライド自
在に取り付けられた、4分割された可動分割円環部23
bとから構成されている。可動分割円環部23bを図1
0に示すように広げ、あるいは図11に示すように狭め
ることにより、図9に示す等価光源群20の深さ位置を
調整することができる。
FIGS. 10 to 13 show the light shielding plate 2 respectively.
3 is a plan view in a state where the width is widened, a plan view in a state where the width of the light shielding plate is reduced, a plan view of a base annular portion constituting the light shielding plate, and AA ′ in FIG. 10. It is sectional drawing. The light shielding plate 23 includes a base annular portion 23a, and a movable split annular portion 23 divided into four parts, which is slidably attached to the base annular portion 23a in a direction indicated by an arrow in FIG.
b. FIG. 1 shows the movable split annular portion 23b.
The depth position of the equivalent light source group 20 shown in FIG. 9 can be adjusted by expanding as shown in FIG. 9 or narrowing as shown in FIG.

【0023】図14は、本発明の散乱反射型撮像装置の
第3実施形態の受光光学系の部分の模式図である。ここ
には、図4に示す受光光学系を構成する各光学部品およ
び被検体10の内部の画像を得る撮像センサ12のほ
か、被検体10の撮像領域10aの表面を照明するため
の表面照明用光源31、その表面照明用光源31から出
射した光をコリメートするコリメートレンズ32、ハー
フミラー33、ダイクロイックミラー34、および被検
体10の表面を撮像する表面撮像センサ35が備えられ
ている。
FIG. 14 is a schematic view of a light receiving optical system according to a third embodiment of the scattered reflection type image pickup apparatus of the present invention. Here, in addition to the optical components constituting the light receiving optical system shown in FIG. 4 and the imaging sensor 12 for obtaining an image of the inside of the subject 10, a surface illumination for illuminating the surface of the imaging region 10a of the subject 10 is provided. A light source 31, a collimating lens 32 for collimating light emitted from the surface illumination light source 31, a half mirror 33, a dichroic mirror 34, and a surface imaging sensor 35 for imaging the surface of the subject 10 are provided.

【0024】表面照明用光源13から発せられる光の波
長は、深部照明用光源15(図2参照)から発せられる
深部照明光の波長とは異なっており、その表面照明用光
源31から発せられた光はコリメートレンズ32でコリ
メートされ、ハーフミラー33を透過し、さらにダイク
ロイックミラーを透過し、レンズ113、反射ミラー1
12、およびレンズ111を経由して被検体10の撮像
領域10aの表面を照明する。
The wavelength of light emitted from the light source 13 for surface illumination is different from the wavelength of deep illumination light emitted from the light source 15 for deep illumination (see FIG. 2), and is emitted from the light source 31 for surface illumination. The light is collimated by the collimating lens 32, passes through the half mirror 33, further passes through the dichroic mirror, and passes through the lens 113 and the reflecting mirror 1.
The surface of the imaging area 10a of the subject 10 is illuminated via the lens 12 and the lens 111.

【0025】表面照明用光源31から発せられ被検体1
0の表面で反射した光は、レンズ111,反射ミラー1
12,レンズ113を経由し、ダイクロイックミラー3
4を透過し、ハーフミラー33で反射された成分が表面
撮像センサ35により受光され、被検体10の表面の画
像が得られる。図2に示す深部照明用光源15から発せ
られ被検体10の内部に入射し被検体10の内部で反射
して撮像領域10aから出射した光は、前述と同様に、
レンズ111,反射ミラー112,レンズ113を経由
し、ダイクロイックミラー34で反射して深部撮像用の
撮像センサ12に入力される。
The subject 1 emitted from the surface illumination light source 31
The light reflected on the surface of the lens 111 and the reflection mirror 1
12, via the lens 113, the dichroic mirror 3
4 and reflected by the half mirror 33 are received by the surface imaging sensor 35, and an image of the surface of the subject 10 is obtained. Light emitted from the deep illumination light source 15 shown in FIG. 2, incident on the inside of the subject 10, reflected inside the subject 10, and emitted from the imaging region 10 a is, as described above,
The light is reflected by the dichroic mirror 34 via the lens 111, the reflection mirror 112, and the lens 113 and is input to the imaging sensor 12 for deep imaging.

【0026】2つの撮像センサ12,35で得られた2
つの画像は、データ処理・制御部13に入力され、デー
タ処理・制御部13では、それら2つの画像が互いに重
畳され、表示部14において重畳された画像が表示され
る。この実施形態に示すように被検体10の表面の画像
を得、被検体10の内部の画像と重畳させて表示するこ
とにより、被検体10のどの表面部分の奥の画像を観察
しているのかが一見して明らかとなり、装置の使い勝手
が向上する。
2 obtained by the two image sensors 12 and 35
The two images are input to the data processing / control unit 13, where the two images are superimposed on each other, and the superimposed image is displayed on the display unit 14. As shown in this embodiment, by obtaining an image of the surface of the subject 10 and displaying the image superimposed on the image of the inside of the subject 10, which surface part of the subject 10 is being observed in the back image Is apparent at a glance, and the usability of the device is improved.

【0027】図15は、本発明の散乱反射型撮像装置の
第4実施形態の模式図である。従前の実施形態を構成す
る各要素に対応する要素には同一の符号を付して示し相
違点について説明する。また、図16は、深部照明光と
表面照明光による照明のタイミングを示す図である。
FIG. 15 is a schematic view of a fourth embodiment of the scattered reflection type image pickup apparatus according to the present invention. Elements corresponding to the elements constituting the previous embodiment are denoted by the same reference numerals, and different points will be described. FIG. 16 is a diagram showing the timing of illumination by the deep illumination light and the surface illumination light.

【0028】図15に示すように、この実施形態には、
深部照明用光源15から発せられた深部照明光をチョッ
ピングするチョッパ41と、表面照明用光源31から発
せられた表面照明光をチョッピングするチョッパ42
と、それら2つのチョッパ41,42のチョッピングの
タイミングを制御するとともにそれらのチョッパ41,
42を駆動するチョッパ制御・駆動部43が備えられて
おり、このチョッパ制御・駆動部43は、図16に示す
ように、深部照明用光源15から発せられた深部照明光
と表面照明用光源31から発せられた表面照明光が交互
に被検体10に照射されるように2つのチョッパ41,
42を制御・駆動する。撮像センサ12には、深部照明
光で照明され被検体10の内部で散乱した光と表面照明
光で照明され被検体10の表面で散乱した光が交互に入
射し、この撮像センサ12では被検体10の深部の画像
と表面の画像が交互に得られる。
As shown in FIG. 15, in this embodiment,
Chopper 41 for chopping deep illumination light emitted from light source 15 for deep illumination, and chopper 42 for chopping surface illumination light emitted from light source 31 for surface illumination.
And control the chopping timing of the two choppers 41 and 42 and
As shown in FIG. 16, the chopper control / drive unit 43 drives the deep illumination light source 15 and the surface illumination light source 31 emitted from the deep illumination light source 15. The two choppers 41 and 42 are so arranged that the surface illumination light emitted from the
42 is controlled and driven. Light illuminated with deep illumination light and scattered inside the subject 10 and light illuminated with surface illumination light and scattered on the surface of the subject 10 are alternately incident on the imaging sensor 12. 10 deep images and surface images are obtained alternately.

【0029】この実施形態に示すように深部照明光によ
る照明と表面照明光による照明を時分割的に行なうと、
撮像センサ12を共用することができる。図17は、本
発明の散乱反射型撮像装置の第5実施形態の模式図であ
る。本実施形態では、深部照明用光源15として所定の
低干渉性の光を発する光源(例えばSLD)が用いられ
ており、その深部照明用光源15が発せられた深部照明
光はガラス板51によりその一部が反射され参照光ビー
ムとなる。ガラス板51を透過した深部照明光は光の周
波数をシフトする音響光学素子(AOM)52を経由
し、凹レンズ21で広げられ、集光レンズ22を経由し
て被検体10を照明する。
As shown in this embodiment, when illumination by deep illumination light and illumination by surface illumination light are performed in a time-sharing manner,
The imaging sensor 12 can be shared. FIG. 17 is a schematic view of a fifth embodiment of the scatter reflection type imaging device of the present invention. In the present embodiment, a light source (e.g., SLD) that emits predetermined low coherence light is used as the deep illumination light source 15, and the deep illumination light emitted by the deep illumination light source 15 is A part is reflected and becomes a reference light beam. The deep illumination light transmitted through the glass plate 51 passes through an acousto-optic element (AOM) 52 that shifts the frequency of light, is spread by a concave lens 21, and illuminates the subject 10 via a condenser lens 22.

【0030】一方ガラス板51で反射した参照光ビーム
はもう1つのAOM53を経由し、ミラー54で反射
し、さらにミラー55で反射し、走査光学系56で、そ
の参照光ビームが、光軸との平行性を保つ状態を維持し
つつ走査され、ハーフミラー57を経由し、さらに集光
レンズ58を経由して光センサ121に導かれる。一
方、被検体10内部で散乱し、撮像領域10aから出射
して受光光学系11に入射した光は、レンズ111,反
射ミラー112(図5参照)、およびレンズ113を経
由し、ハーフミラー57を透過し、レンズ58で集光さ
れて光センサ121に入射する。光センサ121は空間
的に分割されておらずそこに入射した光の全体としての
光量を検出するセンサである。この光センサ121で
は、被検体10の内部で散乱し撮像領域10aから出射
した平行光のうち、参照光ビームと重畳する(図17に
破線で示す光(線))の光量が、2つのAOM52,5
3によりシフトされた周波数どうしの差の周波数の信号
として検出される。参照光ビームは走査光学系56によ
り走査されているため、走査光学系56による参照光ビ
ームの走査と同期して、撮像領域10aから出射した光
の空間的な光量分布が時系列的に検出される。また、ミ
ラー55は、図示の矢印の方向に移動自在であり、これ
を移動させることにより、OCTの原理により、被検体
10の、表面からの異なる深さの画像を得ることができ
る。
On the other hand, the reference light beam reflected by the glass plate 51 passes through another AOM 53, is reflected by a mirror 54, is further reflected by a mirror 55, and is scanned by a scanning optical system 56 so that the reference light beam The laser beam is scanned while maintaining the parallelism, and is guided to the optical sensor 121 via the half mirror 57 and further via the condenser lens 58. On the other hand, the light scattered inside the subject 10 and emitted from the imaging region 10a and incident on the light receiving optical system 11 passes through the lens 111, the reflection mirror 112 (see FIG. 5), and the lens 113, and passes through the half mirror 57. The light is transmitted, condensed by the lens 58, and enters the optical sensor 121. The optical sensor 121 is a sensor that is not spatially divided and detects the total amount of light incident thereon. In the optical sensor 121, the amount of light (light (line) indicated by a broken line in FIG. 17) of the parallel light scattered inside the subject 10 and emitted from the imaging region 10a is superimposed on the reference light beam (two AOMs 52). , 5
3 is detected as a signal having a difference frequency between the frequencies shifted by 3. Since the reference light beam is scanned by the scanning optical system 56, the spatial light intensity distribution of the light emitted from the imaging region 10a is detected in time series in synchronization with the scanning of the reference light beam by the scanning optical system 56. You. The mirror 55 is movable in the direction of the arrow shown in the figure. By moving the mirror 55, images of the subject 10 at different depths from the surface can be obtained according to the OCT principle.

【0031】[0031]

【発明の効果】以上説明したように、本発明の散乱反射
型撮像装置によれば、被検体の、従来よりも深い領域の
画像を得ることができる。
As described above, according to the scattered reflection type imaging apparatus of the present invention, it is possible to obtain an image of the subject in a deeper area than before.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の散乱反射型撮像装置の第1の実施形態
の模式図である。
FIG. 1 is a schematic view of a first embodiment of a scattered reflection type imaging apparatus according to the present invention.

【図2】本発明の散乱反射型撮像装置の第2の実施形態
の模式図である。
FIG. 2 is a schematic diagram of a second embodiment of the scattering / reflection imaging device of the present invention.

【図3】被検体表面の照明領域、撮像領域を示す模式図
である。
FIG. 3 is a schematic diagram showing an illumination area and an imaging area on the surface of a subject.

【図4】図2に示す第2実施形態の受光光学系の構成図
である。
FIG. 4 is a configuration diagram of a light receiving optical system according to a second embodiment shown in FIG.

【図5】図4に示す受光光学系に採用されているミラー
の平面図である。
FIG. 5 is a plan view of a mirror employed in the light receiving optical system shown in FIG.

【図6】図2に示す第2実施形態において、図4に示す
受光光学系に代えて採用することのできる、もう1つの
受光光学系の構成図である。
FIG. 6 is a configuration diagram of another light receiving optical system that can be adopted in the second embodiment shown in FIG. 2 instead of the light receiving optical system shown in FIG. 4;

【図7】照明光の多重散乱軌跡の概念図である。FIG. 7 is a conceptual diagram of multiple scattering trajectories of illumination light.

【図8】被検体内での多重散乱の頻度分布の模式図であ
る。
FIG. 8 is a schematic diagram of a frequency distribution of multiple scattering in a subject.

【図9】等価光源群の模式図である。FIG. 9 is a schematic diagram of an equivalent light source group.

【図10】光遮蔽板の、幅を広げた状態の平面図であ
る。
FIG. 10 is a plan view of the light shielding plate in a state where the width is increased.

【図11】光遮蔽板の、幅を狭めた状態の平面図であ
る。
FIG. 11 is a plan view of the light shielding plate in a state where the width is reduced.

【図12】光遮蔽板を構成するベース円環部の平面図で
ある。
FIG. 12 is a plan view of a base annular portion constituting the light shielding plate.

【図13】光遮蔽板の、図10のA−A’に沿う断面図
である。
FIG. 13 is a cross-sectional view of the light shielding plate, taken along AA ′ of FIG. 10;

【図14】本発明の散乱反射型撮像装置の第3実施形態
の、受光光学系の模式図である。
FIG. 14 is a schematic diagram of a light-receiving optical system in a third embodiment of the scattering / reflection imaging apparatus of the present invention.

【図15】本発明の散乱反射型撮像装置の第4実施形態
の模式図である。
FIG. 15 is a schematic diagram of a fourth embodiment of the scattering / reflection imaging device of the present invention.

【図16】深部照明光と表面照明光による照明のタイミ
ングを示す図である。
FIG. 16 is a diagram showing the timing of illumination by deep illumination light and surface illumination light.

【図17】本発明の散乱反射型撮像装置の第5実施形態
の模式図である。
FIG. 17 is a schematic diagram of a fifth embodiment of the scattering / reflection imaging device of the present invention.

【符号の説明】[Explanation of symbols]

10 被検体 10a 撮像領域 10b 照明領域 11 受光光学系 12 撮像センサ 13 データ処理・制御部 14 表示部 15 深部照明用光源 16 光ファイバ 17 照明ヘッド 20 等価光源群 21 凹レンズ 22 集光レンズ 23 光遮蔽板 31 表面照明用光源 32 コリメートレンズ 33 ハーフミラー 34 ダイクロイックミラー 35 表面撮像センサ 41,42 チョッパ 43 チョッパ制御・駆動部 51 ガラス板 52,53 AOM 54,55 ミラー 56 走査光学系 57 ハーフミラー 58 レンズ 121 光センサ Reference Signs List 10 subject 10a imaging region 10b illumination region 11 light receiving optical system 12 imaging sensor 13 data processing / control unit 14 display unit 15 deep illumination light source 16 optical fiber 17 illumination head 20 equivalent light source group 21 concave lens 22 condensing lens 23 light shielding plate Reference Signs List 31 light source for surface illumination 32 collimator lens 33 half mirror 34 dichroic mirror 35 surface imaging sensor 41, 42 chopper 43 chopper control / drive unit 51 glass plate 52, 53 AOM 54, 55 mirror 56 scanning optical system 57 half mirror 58 lens 121 light Sensor

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被検体内で散乱し該被検体表面から所定
方向に向けて出射した光を選択的に受光する受光光学系
と、 前記被検体内部を照明するための深部照明光を発する深
部照明用光源と、 前記深部照明用光源から発せられた深部照明光で、前記
受光光学系の視野よりも広い領域から、前記被検体内部
に向けて照明する照明光学系と、 前記受光光学系に導かれた光を受光して前記被検体内部
の情報を担持した画像を得る深部散乱光検出系と、 前記深部散乱光検出系で得られた画像を表示する表示系
とを備えたことを特徴とする散乱反射型撮像装置。
1. A light receiving optical system for selectively receiving light scattered within a subject and emitted from a surface of the subject in a predetermined direction, and a deep part for emitting deep illumination light for illuminating the inside of the subject. A light source for illumination, a deep illumination light emitted from the light source for deep illumination, from a region wider than the field of view of the light receiving optical system, an illumination optical system for illuminating the inside of the subject, and the light receiving optical system. A deep scattered light detection system that receives the guided light to obtain an image carrying information on the inside of the subject; and a display system that displays an image obtained by the deep scattered light detection system. And a scattering reflection type imaging device.
【請求項2】 前記照明光学系が、前記深部照明用光源
から発せられた照明光を、前記受光光学系の視野を囲む
環状領域を経由させて、前記被検体を照明するものであ
ることを特徴とする請求項1記載の散乱反射型撮像装
置。
2. The illumination optical system according to claim 1, wherein the illumination optical system illuminates the subject with illumination light emitted from the deep illumination light source through an annular region surrounding a field of view of the light receiving optical system. The scattered-reflection imaging device according to claim 1.
【請求項3】 前記深部散乱光検出系が、前記受光光学
系の視野内の二次元画像を得る二次元撮像素子を備えた
ことを特徴とする請求項1記載の散乱反射型撮像装置。
3. The scattered reflection imaging apparatus according to claim 1, wherein said deep scattered light detection system includes a two-dimensional imaging device for obtaining a two-dimensional image in a field of view of said light receiving optical system.
【請求項4】 前記被検体表面の、前記受光光学系の視
野を含む領域を照明する表面照明光を発する表面照明用
光源と、 前記表面照明用光源から発せられ、前記被検体表面で散
乱した表面照明光を受光することにより、該被検体表面
の、前記受光光学系の視野を含む領域の画像を得る表面
散乱光検出系とを備え、 前記表示系が、前記深部散乱光検出系で得られた画像と
前記表面散乱光検出系で得られた画像を互いに重畳させ
て表示するものであることを特徴とする請求項1記載の
散乱反射型撮像装置。
4. A surface illumination light source that emits surface illumination light for illuminating a region including a field of view of the light receiving optical system on the surface of the object, and is scattered on the surface of the object emitted from the surface illumination light source. A surface scattered light detection system that receives surface illumination light to obtain an image of a region including the field of view of the light receiving optical system on the surface of the subject, and wherein the display system is obtained by the deep scattered light detection system. The scattered reflection type imaging apparatus according to claim 1, wherein the obtained image and an image obtained by the surface scattered light detection system are displayed so as to be superimposed on each other.
【請求項5】 前記深部照明用光源が所定の低干渉光を
発するものであり、 前記照明光学系が、前記深部照明用光源から発せられた
低干渉光を、前記被検体内部を照明する深部照明光と所
定の参照光ビームとに二分する光路分割手段を備え、 前記受光光学系が、該受光光学系の視野内の二次元的な
広がりの中の任意の点に対応する、前記被検体内部で散
乱した光の光路と、前記光路分割手段で前記深部照明光
から分かれた参照光ビームの光路とを重畳させる光路重
畳手段を備え、 前記光路分割手段と前記光路重畳手段との間の、前記参
照光ビームの光路上に配置された、該参照光ビームの光
路長を調整する光路長調整機構、および該参照光ビーム
の光路が、前記受光光学系の視野内の二次元的な広がり
の中の異なる各点に対応する、前記被検体内部で散乱し
た光の光路と順次重畳されるように、該参照光ビームを
走査する走査手段を含む参照光学系を備えたことを特徴
とする請求項1記載の散乱反射型撮像装置。
5. The deep illumination light source emits predetermined low interference light, and the illumination optical system illuminates the inside of the subject with the low interference light emitted from the deep illumination light source. An optical path splitting unit that bisects the illumination light and a predetermined reference light beam, wherein the light receiving optical system corresponds to an arbitrary point in a two-dimensional spread within a field of view of the light receiving optical system, An optical path superposing means for superposing an optical path of light scattered inside and an optical path of a reference light beam split from the deep illumination light by the optical path splitting means, between the optical path splitting means and the optical path overlapping means, An optical path length adjustment mechanism arranged on the optical path of the reference light beam, for adjusting the optical path length of the reference light beam, and the optical path of the reference light beam has a two-dimensional spread within the field of view of the light receiving optical system. The test corresponding to different points in 2. The scattered reflection imaging apparatus according to claim 1, further comprising a reference optical system including a scanning unit that scans the reference light beam so as to be sequentially overlapped with an optical path of light scattered inside the body.
【請求項6】 前記照明光学系が、前記受光光学系の視
野の外縁と前記環状領域の内縁との間の前記深部照明光
を遮光する、該外縁から該内縁までの間隔の調整が自在
な光遮蔽板を備えたことを特徴とする請求項1記載の散
乱反射型撮像装置。
6. The illumination optical system blocks the deep illumination light between the outer edge of the field of view of the light receiving optical system and the inner edge of the annular region, and the distance from the outer edge to the inner edge can be adjusted freely. The scattered reflection type imaging apparatus according to claim 1, further comprising a light shielding plate.
JP8174857A 1996-07-04 1996-07-04 Scattering reflection type image pick-up device Pending JPH1014859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8174857A JPH1014859A (en) 1996-07-04 1996-07-04 Scattering reflection type image pick-up device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8174857A JPH1014859A (en) 1996-07-04 1996-07-04 Scattering reflection type image pick-up device

Publications (1)

Publication Number Publication Date
JPH1014859A true JPH1014859A (en) 1998-01-20

Family

ID=15985875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8174857A Pending JPH1014859A (en) 1996-07-04 1996-07-04 Scattering reflection type image pick-up device

Country Status (1)

Country Link
JP (1) JPH1014859A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041599A (en) * 2009-08-19 2011-03-03 Olympus Corp Observation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041599A (en) * 2009-08-19 2011-03-03 Olympus Corp Observation device

Similar Documents

Publication Publication Date Title
KR101336048B1 (en) Optical tomographic imaging method and optical tomographic imaging apparatus
JP6262762B2 (en) Space-division multiplexed optical coherence tomography system
US8830483B2 (en) Optical coherence tomography with refractive indexing of object
US9820645B2 (en) Ophthalmologic apparatus
JP5725697B2 (en) Information processing apparatus and information processing method
US8836951B2 (en) Imaging device for optical coherence tomographic image and imaging method
JP2007528500A (en) Methods and systems for tomographic imaging using fluorescent proteins
GB2407155A (en) Spectral interferometry method and apparatus
KR20020027377A (en) Methods and systems using field-based light scattering spectroscopy
US20180160901A1 (en) Apparatus and method for measuring blood flow of vessels
JP7128841B2 (en) OCT inspection device and OCT imaging method
JP2006322767A (en) Optical tomographic imaging system
JP2004191114A (en) Detection point scanning method by optical interferometer integrated driving in optical coherence tomography and optical coherence tomography device
JP2012202774A (en) Observation device and observation method
JPH1014859A (en) Scattering reflection type image pick-up device
JP6917663B2 (en) Optical interference unit for optical coherence tomography equipment
US9835436B2 (en) Wavelength encoded multi-beam optical coherence tomography
JP3387599B2 (en) Fundus blood flow meter
US20140139845A1 (en) Optical coherence tomography system and optical coherence tomography method
EP2565625A1 (en) Optical measurement system and method for operating an optical measurement system
CN213309629U (en) Eyeball imaging device and eyeball blood flow velocity measuring device
EP3901614B1 (en) Optical coherence tomography device
CN217310266U (en) Skin imaging system
US20230349805A1 (en) Image information acquisition device
JP2018102765A (en) Ophthalmologic apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011023