JPH10148524A - Buoy-type wave-height meter - Google Patents

Buoy-type wave-height meter

Info

Publication number
JPH10148524A
JPH10148524A JP32363296A JP32363296A JPH10148524A JP H10148524 A JPH10148524 A JP H10148524A JP 32363296 A JP32363296 A JP 32363296A JP 32363296 A JP32363296 A JP 32363296A JP H10148524 A JPH10148524 A JP H10148524A
Authority
JP
Japan
Prior art keywords
buoy
angular velocity
wave
wave height
crest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32363296A
Other languages
Japanese (ja)
Other versions
JP2911840B2 (en
Inventor
Mineo Iwasaki
峯夫 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaijo Corp
Original Assignee
Kaijo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaijo Corp filed Critical Kaijo Corp
Priority to JP32363296A priority Critical patent/JP2911840B2/en
Publication of JPH10148524A publication Critical patent/JPH10148524A/en
Application granted granted Critical
Publication of JP2911840B2 publication Critical patent/JP2911840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Level Indicators Using A Float (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the durability and handling property and realize highly accurate measurement. SOLUTION: The natural frequency period of a buoy 1 is made shorter than the shortest cycle of a wave to be measured for wave height. Two angular velocity sensors 2x and 2y for measuring rotary angular velocity against the horizontal axis mutually crossing at right angles are built in and fixed to the buoy 1. Further, the buoy 1 contains digital filters 31x and 31y which have a specified logical correction property in a range of measuring wave height and remove elements outside the range, and a wave height calculation part 3 is provided to calculate the wave height value within a range of wave height according to the information on rotary angular velocity from the sensors 2x and 2y. Furthermore, a communication device 4 is provided to radiate the information on wave height value from an antenna 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はブイ式波高計に関
し、特に港湾工事施工の際の安全管理、海水浴場の安全
管理等に使用されるブイ式波高計に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a buoy-type wave height meter, and more particularly to a buoy-type wave height meter used for safety management at the time of harbor construction work, safety management of a beach, and the like.

【0002】[0002]

【従来の技術】港湾構造物の設計条件取得のためや港湾
工事施工の際の安全管理のために使用される波高計、海
水浴場の安全管理等に使用される波高計には、通常、ブ
イ式波高計が用いられる。このようなブイ式波高計の従
来の代表的な一例を図7(A),(B)に示す。図7
(A)は係留されて海面に浮くブイ及びその内部の主な
構成要素を示す主要構成配置模式図、図7(B)はブイ
式波高計の電子回路部分を主体としたブロック図であ
る。このブイ式波高計は、アンカー11及び係留索10
により係留されて海面に浮くブイ1aと、このブイ1a
の内部の所定の位置に配置され計測器搭載面を水平に保
つためのジンバル8と、このジンバル8の計測器搭載面
に固定,搭載されてブイ1aの縦方向の変動を垂直加速
度として計測する加速度計9と、積分回路34を含み加
速度計9で計測された垂直加速度から波高値を算出する
波高値算出部3aと、この波高値算出部3aで算出され
た波高値の情報をアンテナ5を介して電波として空中に
放射する通信装置4とを有する構成となっている。
2. Description of the Related Art A wave height meter used for acquiring design conditions of a harbor structure or for safety management during harbor construction work, a wave height meter used for safety management of a beach, and the like are usually buoys. A wave height meter is used. FIGS. 7A and 7B show a typical conventional example of such a buoy-type wave height meter. FIG.
FIG. 7A is a schematic diagram of a main configuration showing moored buoys floating on the sea surface and main components inside the buoy, and FIG. 7B is a block diagram mainly illustrating an electronic circuit portion of the buoy type wave height meter. This buoy-type wave gauge is composed of an anchor 11 and a mooring line 10.
Buoy 1a moored by the sea and floating on the sea surface, and this buoy 1a
A gimbal 8 is disposed at a predetermined position inside the gimbal 8 to keep the measuring instrument mounting surface horizontal, and is fixed and mounted on the measuring instrument mounting surface of the gimbal 8 to measure the vertical fluctuation of the buoy 1a as vertical acceleration. The accelerometer 9, a crest value calculator 3 a including an integration circuit 34 for calculating a crest value from the vertical acceleration measured by the accelerometer 9, and the information of the crest value calculated by the crest value calculator 3 a to the antenna 5. And a communication device 4 that radiates the air as radio waves through the air.

【0003】このブイ式波高計において、加速度計9
は、計測方向を垂直方向とし、静止した状態では重力加
速度1gを計測しており、ブイ1aが縦方向に変動する
とその変動に応じて計測値は変化する。従って、この計
測値から重力加速度1gを差し引き、積分回路34で2
回積分することにより、ブイ1aの変動量を波高値とし
て算出することができる。加速度計9の計測方向が回転
したり傾くと、静止状態のときの1gが低く計測され誤
差を生じるので、計測方向を垂直に保持するため、ジン
バル8が用いられ、しかも、ジンバル8自身の動揺を押
さえるため、これを油漬けしている。
In this buoy-type wave height meter, an accelerometer 9
Has a vertical measurement direction, and measures a gravitational acceleration of 1 g in a stationary state. When the buoy 1 a fluctuates in the vertical direction, the measurement value changes in accordance with the fluctuation. Therefore, the gravitational acceleration 1 g is subtracted from this measured value, and the integration circuit 34 calculates
By performing the time integration, the fluctuation amount of the buoy 1a can be calculated as the peak value. If the measuring direction of the accelerometer 9 rotates or tilts, the 1 g in the stationary state is measured low and an error occurs. Therefore, the gimbal 8 is used to maintain the measuring direction vertical, and the gimbal 8 itself shakes. This is soaked in oil to hold down.

【0004】[0004]

【発明が解決しようとする課題】この従来のブイ式波高
計では、加速度計9の搭載面を水平に保つためにジンバ
ル8が使用され、かつこのジンバル8自身の動揺を押さ
えるために油漬けされているものの、ブイ1aに回転動
揺や傾きが生じると、ジンバル8自身が必ずしも即時に
水平にならず、位相の遅れが生じ、加速度計9による計
測加速度中に動揺等による誤差が含まれるため、高精度
の波高計測ができないという問題点があり、この誤差
は、2回積分すると長い周期をもつ誤差として現れるた
め、周期の長い成分を除去するフィルタを設けたものも
あるが、このようなフィルタを設けると、長い周期をも
つ波の成分をも除去することになり、その部分の波高値
を計測することができなくなり、やはり高精度の波高計
測ができないという問題点がある。
In this conventional buoy type wave height meter, a gimbal 8 is used to keep the mounting surface of the accelerometer 9 horizontal, and the gimbal 8 is immersed in oil to suppress the movement of the gimbal 8 itself. However, if the buoy 1a is rotationally swayed or tilted, the gimbal 8 itself is not always immediately horizontal, causing a phase delay, and the acceleration measured by the accelerometer 9 includes an error due to swaying, etc. There is a problem that high-precision wave height measurement cannot be performed. Since this error appears as an error having a long cycle when integrated twice, there is a filter provided with a filter for removing a component having a long cycle. , The wave component having a long period is also removed, and it is impossible to measure the peak value of that portion, which also makes it impossible to measure the peak value with high accuracy There is a problem point.

【0005】また、ジンバル8には機械的可動部がある
ため、短い期間での保守が必要となり、かつ、移動時に
はジンバル8の動揺を押さえるためのクランプが必要と
なるため、耐久性及び取扱い性が悪いという問題点があ
る。更に、ブイ1aを係留する係留索10がブイ1aの
上下方向の追従性を妨げるため、波高計測精度を低下さ
せるという問題点がある。更にまた、この加速度計9の
計測結果には、ブイに対する波の方向を算出するのに必
要な物理的諸元が含まれていないので、港湾及び海水浴
場等における安全管理に必要な波の方向の計測が困難で
あるという欠点がある。
Further, since the gimbal 8 has a mechanically movable portion, maintenance is required for a short period of time, and a clamp for suppressing the movement of the gimbal 8 is required during movement, so that durability and handleability are required. Is bad. Furthermore, since the mooring line 10 mooring the buoy 1a impedes the ability of the buoy 1a to follow up and down, there is a problem in that the accuracy of wave height measurement is reduced. Furthermore, since the measurement results of the accelerometer 9 do not include the physical specifications required for calculating the direction of the wave with respect to the buoy, the direction of the wave required for safety management in ports and beaches, etc. Is difficult to measure.

【0006】本発明の目的は、耐久性及び取扱い性に優
れ、かつ高精度の波高計測が得られるブイ式波高計を提
供することにあり、また、わずかな構成要素を付加する
だけで容易に波の方向が計測できるブイ式波高計を提供
することにある。
An object of the present invention is to provide a buoy-type crest meter which is excellent in durability and handleability and can obtain a high-precision wave height measurement, and can be easily achieved by adding only a few components. It is an object of the present invention to provide a buoy-type wave gauge capable of measuring the direction of a wave.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の目的を
達成するために次の手段構成を有する。即ち本発明のブ
イ式波高計は、波高計測対象の波の最短周期より短い固
有動揺周期をもち所定の位置で係留索によりアンカーに
係留されるブイと、このブイに内蔵され互いに直交する
2つの水平軸それぞれに対する回転角速度を計測する第
1及び第2の角速度センサと、これら第1及び第2の角
速度センサからの回転角速度の情報から前記波の波高計
測範囲内の波高値を算出する波高値算出部と、この波高
値算出部からの波高値の情報をアンテナを介して電波と
して空中に放射する通信装置とを有している。
The present invention has the following means in order to achieve the above object. That is, the buoy-type wave height meter of the present invention has a natural oscillating cycle shorter than the shortest cycle of a wave to be measured and is moored to an anchor by a mooring line at a predetermined position. First and second angular velocity sensors for measuring rotational angular velocities with respect to each of the horizontal axes, and a peak value for calculating a peak value within a pulse height measuring range from information on rotational angular velocities from the first and second angular velocity sensors. It has a calculating unit and a communication device that radiates the peak value information from the peak value calculating unit to the air as radio waves via an antenna.

【0008】また、前記ブイのピッチング及びローリン
グの回転動揺の中心部位を、前記ブイの係留索取付け位
置とし、前記波高値算出部に、前記第1及び第2の角速
度センサからの回転角速度の情報に含まれるブイの固有
動揺周期の成分を除去するフィルタを設けて構成され、
更に、前記フィルタに、前記ブイの固有動揺周期の成分
を除去する特性の他に、波高計測範囲外の長周期の成分
を除去する特性と、前記波高計測範囲に対する所定の論
理補正特性とを持たせるようにして構成され、更にま
た、前記フィルタをディジタルフィルタとして構成され
る。
[0008] The center of the buoy pitching and rolling sway is referred to as the buoy mooring cable attachment position, and the crest value calculating section transmits information on the rotational angular velocity from the first and second angular velocity sensors. Is provided with a filter that removes the component of the natural oscillation period of the buoy included in
Furthermore, in addition to the characteristic of removing the component of the natural oscillation period of the buoy, the filter has a characteristic of removing a component of a long period outside the peak height measurement range and a predetermined logic correction characteristic for the peak height measurement range. And the filter is configured as a digital filter.

【0009】また、前記ブイに、方位を計測する方位コ
ンパスを内蔵固定し、この方位コンパスからの方位の情
報と、前記第1及び第2の角速度センサからの回転角速
度の情報とから前記波の方向を算出する波向き算出手段
を設けて構成される。
An azimuth compass for measuring the azimuth is fixed in the buoy, and the wave information is obtained from the azimuth information from the azimuth compass and the rotational angular velocity information from the first and second angular velocity sensors. Wave direction calculation means for calculating the direction is provided.

【0010】[0010]

【発明の実施の形態】次に本発明の実施の形態について
説明する。まずはじめに、波高値を算出するために必要
な物理的諸元を計測するセンサとして、2つの角速度セ
ンサを用い、これら2つの角速度センサにより計測する
物理的諸元を、互いに直交する水平軸それぞれに対する
回転角速度とする。こうすることにより、角速度センサ
は、ブイの動揺による重力加速度を含む上下左右方向の
加速度の影響を受けない特性を持っているので、完全に
回転成分のみの回転角速度の計測ができ、この回転角速
度の情報から波高値を算出することにより、ブイに回転
動揺があっても、算出した波高値に誤差は含まれず、高
精度の波高計測ができる。
Next, an embodiment of the present invention will be described. First, two angular velocity sensors are used as sensors for measuring physical parameters necessary for calculating a peak value, and the physical parameters measured by these two angular velocity sensors are measured for each horizontal axis orthogonal to each other. Let it be the rotational angular velocity. By doing so, the angular velocity sensor has a characteristic that is not affected by acceleration in the vertical and horizontal directions including gravitational acceleration caused by buoyancy of the buoy, so that it is possible to completely measure the rotational angular velocity of only the rotational component. By calculating the peak value from the above information, even if the buoy has a rotational fluctuation, the calculated peak value does not include an error, and the peak value can be measured with high accuracy.

【0011】次に、この回転角速度の情報から波高値を
算出する原理について説明する。ブイは、ブイ自身のロ
ーリング、ピッチングの固有周波数が、波の周波数より
十分高いと、ブイは、波の水面勾配に追従して、ローリ
ングとピッチングの回転動揺を生じる。従って、ローリ
ング角とピッチング角は、波の水面勾配と一致する。更
に波の水面勾配の時間的変化率(波の水面勾配を時間で
微分したもの)は、ローリング角とピッチング角の時間
的変化率(回転角速度)に一致する。即ちブイの回転角
速度は、波の水面勾配の時間的変化率に一致する。波高
とブイの回転角速度(波の水面勾配の時間的変化率)の
関係は、次の通りである。 ωx (t)=−σ・k(σ,h)・cos(θ)・H(t) ……(1) ωy (t)=−σ・k(σ,h)・sin(θ)・H(t) ……(2) θ= tan-1(ωy (t)/ωx (t)) ………(3) ただし、 波高:H(t) 波の角周波数:σ(=2π/T、Tは波の周期) x方向(ローリング)の回転角速度:ωx(t) y方向(ピッチング)の回転角速度:ωy(t) ブイの基準軸に対する波向きの方向:θ 波数:k(σ,h)=2π/Lで、Lは波長で次の式か
ら求められる。
Next, the principle of calculating the peak value from the information on the rotational angular velocity will be described. When the buoy's own rolling and pitching natural frequency is sufficiently higher than the frequency of the wave, the buoy follows the wave surface gradient of the wave and causes rolling and pitching fluctuations. Therefore, the rolling angle and the pitching angle match the water surface gradient. Furthermore, the temporal change rate of the water surface gradient of the wave (the derivative of the water surface gradient of the wave with respect to time) matches the temporal change rate (rotational angular velocity) of the rolling angle and the pitching angle. That is, the rotational angular velocity of the buoy matches the temporal change rate of the water surface gradient. The relationship between the wave height and the rotational angular velocity of the buoy (the rate of change of the water surface gradient over time) is as follows. ω x (t) = − σ · k (σ, h) · cos (θ) · H (t) (1) ω y (t) = − σ · k (σ, h) · sin (θ) H (t) (2) θ = tan −1y (t) / ω x (t)) (3) where, wave height: H (t) wave angular frequency: σ (= 2π / T, T is the cycle of the wave) Rotational angular velocity in the x direction (rolling): ω x (t) Rotational angular velocity in the y direction (pitching): ω y (t) Direction of the wave direction with respect to the buoy reference axis: θ Wave number : K (σ, h) = 2π / L, where L is a wavelength and is obtained from the following equation.

【0012】 L=(2πg/σ2 ) tanh(2πh/L) ………(4) ただし、hは水深、gは重力加速度である。結局、波数
kは、水深hと角周波数σの関数である。ここで、Gを
次のように定義すると、次式のようになる。 G(σ,h)=−[σ・k(σ,h)]-1 …………(5) また、式(1)、(2)は次の式で表すことができる。 H(t)・ cos(θ)=G(σ,h)・ωx (t) ……(6) H(t)・ sin(θ)=G(σ,h)・ωy (t) ……(7)
L = (2πg / σ 2 ) tanh (2πh / L) (4) where h is water depth and g is gravitational acceleration. After all, the wave number k is a function of the water depth h and the angular frequency σ. Here, if G is defined as follows, the following equation is obtained. G (σ, h) = − [σ · k (σ, h)] −1 (5) Equations (1) and (2) can be expressed by the following equations. H (t) · cos (θ) = G (σ, h) · ω x (t) (6) H (t) · sin (θ) = G (σ, h) · ω y (t) … (7)

【0013】ここで、G(σ,h)は水深hの関数でも
あるが、一般に設置水深は変化しない。従って、波の角
周波数σの関数である。設置水深に合わせて事前にG
(σ,h)の特性をもつディジタルフィルタを作成して
おき、角速度センサで計測したωx ,ωy をこのフィル
タに通すと、H(t)・ cos(θ)とH(t)・ sin
(θ)が得られ、波の方向θが式(3)で計算でき、最
終的に波高H(t)が求められる。
Here, G (σ, h) is also a function of the water depth h, but generally the installed water depth does not change. Therefore, it is a function of the angular frequency σ of the wave. G in advance according to the installation water depth
When a digital filter having the characteristic of (σ, h) is created and ω x and ω y measured by the angular velocity sensor are passed through this filter, H (t) · cos (θ) and H (t) · sin
(Θ) is obtained, the wave direction θ can be calculated by the equation (3), and finally the wave height H (t) is obtained.

【0014】また、上述の式から分かるように、これら
の式にはブイに対する波向きの方向θが含まれている。
従って、ブイ内に磁気コンパス等の方位コンパスを設置
してこのθを計測することにより、上述の式から容易に
波の方向を算出することができる。
As can be seen from the above equations, these equations include the direction θ of the wave direction with respect to the buoy.
Therefore, by installing an azimuth compass such as a magnetic compass in the buoy and measuring this θ, the direction of the wave can be easily calculated from the above equation.

【0015】[0015]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1(A),(B)は本発明の第1の実施
例の係留されて海面に浮くブイ及びその内部配置を示す
模式側面図、並びに電子回路部分のブロック図である。
この第1の実施例は、波高計測対象の波の最短周期より
短い固有動揺周期をもち、ピッチングおよびローリング
の回転動揺の中心部位で係留索10に接続してアンカー
11に係留されるブイ1と、このブイに内蔵固定され互
いに直交する2つの水平軸それぞれに対する回転角速度
を計測する光ジャイロ,振動ジャイロ等の角速度センサ
2x,2yと、ディジタルフィルタ31x,31y及び
波高値演算部32を含み角速度センサ2x,2yからの
回転角速度の情報から上記波の波高計測範囲内の波高値
を算出する波高値算出部3と、この波高値算出部3から
の波高値の情報をアンテナ5を介して電波として空中に
放射する通信装置4とを有する構成となっている。
Next, embodiments of the present invention will be described with reference to the drawings. 1A and 1B are a schematic side view showing a moored buoy floating on the sea surface and its internal arrangement according to a first embodiment of the present invention, and a block diagram of an electronic circuit portion.
The first embodiment has a buoy 1 which has a natural oscillation period shorter than the shortest period of the wave to be measured and which is connected to the mooring line 10 at the center of the pitching and rolling rotation and is moored to the anchor 11. An angular velocity sensor 2x, 2y such as an optical gyro or a vibrating gyro, which is built in and fixed to the buoy and measures the rotational angular velocity with respect to each of two horizontal axes orthogonal to each other; an angular velocity sensor including digital filters 31x, 31y and a peak value calculating unit 32 A crest value calculator 3 for calculating a crest value within the crest measurement range of the wave from the rotation angular velocity information from 2x and 2y, and the crest value information from the crest value calculator 3 as radio waves via the antenna 5 And a communication device 4 that radiates into the air.

【0016】ブイ1は、周期3秒以上の波に追従して動
揺するように、動揺(ピッチングとローリング)の固有
周期を1秒以下とする。これは、周期3秒より下の波が
ほとんどなく計測する必要がないからである。こうする
と、ブイは固有周期1秒近辺で固有動揺を発生し角度セ
ンサ2x,2yでも計測されるが、この成分はディジタ
ルフィルタ31x,31yで除去する。このようにし
て、ブイ1固有の動揺の影響をさける。
The buoy 1 has a natural period of oscillation (pitching and rolling) of 1 second or less so that the buoy 1 swings following a wave having a period of 3 seconds or more. This is because there is almost no wave below 3 seconds and there is no need to measure. As a result, the buoy generates a natural oscillation around a natural period of 1 second and is measured by the angle sensors 2x and 2y, but this component is removed by the digital filters 31x and 31y. In this way, the effects of the sway inherent to the buoy 1 are avoided.

【0017】図2は、ブイ1に内蔵,固定されている電
子回路部分の配置図であり、角速度センサ2x,2y
が、互いに直交する水平軸(x軸,y軸)に対する回転
角速度を計測するように配置されている。
FIG. 2 is a layout view of an electronic circuit portion which is built in and fixed to the buoy 1. The angular velocity sensors 2x, 2y
Are arranged to measure the rotational angular velocities with respect to horizontal axes (x axis, y axis) orthogonal to each other.

【0018】図3は波高値算出部3の外観図であり、こ
の波高値算出部3は、角速度センサ2x,2yからの信
号を入力するセンサ用端子T31,T32と、算出した
波高値の情報等を出力するRS232C規格のシリアル
通信用の出力コネクタ322と、水深を設定する水深設
定部321とを備えている。
FIG. 3 is an external view of the peak value calculating section 3. The peak value calculating section 3 includes sensor terminals T31 and T32 for inputting signals from the angular velocity sensors 2x and 2y, and information on the calculated peak value. And the like, and an output connector 322 for serial communication of the RS232C standard for outputting the same, and a water depth setting unit 321 for setting the water depth.

【0019】図4は、波高値算出部3に含まれるディジ
タルフィルタ31x,31yの周波数に対する利得の特
性を示す特性図であり、図5はディジタルフィルタ31
x,31yの周期に対する利得の特性を示す特性図であ
る。
FIG. 4 is a characteristic diagram showing gain characteristics with respect to frequency of the digital filters 31x and 31y included in the peak value calculating section 3, and FIG.
FIG. 9 is a characteristic diagram showing a characteristic of a gain with respect to periods of x and 31y.

【0020】ディジタルフィルタ31x,31yの特性
は、a区間の周波数範囲では、波高計測範囲外であるの
で、角速度センサ2x,2yのドリフトを考慮して利得
が低くなるようにし、b区間の周波数範囲は波高計測範
囲であり、波の角周波数及び水深等で定まる論理補正特
性となっており、c区間の周波数範囲では、波高計測範
囲外であり、ブイ1の固有動揺周期の成分を除去するた
め、利得が低くなるように設定してある。
The characteristics of the digital filters 31x and 31y are outside the peak height measurement range in the frequency range of section a. Therefore, the gain is reduced in consideration of the drift of the angular velocity sensors 2x and 2y, and the frequency range of section b is set. Is a wave height measurement range, which is a logical correction characteristic determined by the angular frequency of the wave, the water depth, and the like. In the frequency range of the section c, the wave height measurement range is outside the wave height measurement range, and the component of the natural oscillation period of the buoy 1 is removed. , The gain is set to be low.

【0021】このような構成とすることにより、ブイ1
の動揺による重力加速度を含む上下左右方向の加速度の
影響、ブイ1の固有振動の影響、及び角速度センサ2
x,2yのドリフトの影響を受けないようにすることが
でき、かつ波高計測範囲内の成分を除去することもない
ので、高精度の波高計測が可能となり、また、ジンバル
のような機械的可動部が不要となるので、耐久性及び取
扱い性の優れたブイ式波高計が得られる。
With such a configuration, the buoy 1
Of the vertical and horizontal accelerations including the gravitational acceleration due to the swaying motion, the natural vibration of the buoy 1, and the angular velocity sensor 2
Since it is possible to prevent the influence of the drift of x and 2y and to eliminate the components within the wave height measurement range, the wave height can be measured with high accuracy, and mechanical movement such as a gimbal can be performed. Since no part is required, a buoy-type crest meter having excellent durability and handleability can be obtained.

【0022】また、ブイ1の係留索取付け位置が、ブイ
1のピッチング,ローリングの回転動揺の中心部位とな
っているので、係留索10の引っ張り力による回転動揺
に対する影響が殆どなく、回転角速度の計測精度、従っ
て波高計測精度を高くすることができる。
Further, since the mooring line mounting position of the buoy 1 is a central portion of the pitching and rolling rotation of the buoy 1, the pulling force of the mooring line 10 has almost no effect on the rotation fluctuation, and the rotation angular velocity is reduced. The measurement accuracy, and thus the wave height measurement accuracy, can be increased.

【0023】図6(A),(B)は本発明の第2の実施
例を示す電子回路部分のブロック図及びそのブイ内部の
配置図である。この第2の実施例が第1の実施例と相違
する点は、ブイ1内部に、ブイ1に対する波向きの方向
θを計測する方位コンパスとしての磁気コンパス7を配
置,固定し、波高値演算部32に、磁気コンパス7から
のθの情報とディジタルフィルタ31x,31yの出力
信号とからブイ1に対する波の方向を算出する波向き演
算手段を付加して波高値・波向き演算部33とし、波高
値算出部3を、波高値・波向き算出部30とした点にあ
る。
FIGS. 6A and 6B are a block diagram of an electronic circuit portion and a layout diagram inside the buoy according to a second embodiment of the present invention. The second embodiment is different from the first embodiment in that a magnetic compass 7 as an azimuth compass for measuring a wave direction θ with respect to the buoy 1 is arranged and fixed inside the buoy 1, and the peak value calculation is performed. A wave direction calculating means for calculating the wave direction with respect to the buoy 1 from the information of θ from the magnetic compass 7 and the output signals of the digital filters 31x and 31y to the unit 32 to obtain a crest value / wave direction calculating unit 33; The point is that the peak value calculating section 3 is replaced by a peak value / wave direction calculating section 30.

【0024】この第2の実施例は、第1の実施例に、磁
気コンパス7と波向き演算手段というわずかな構成要素
を付加するだけで、ブイ1に対する波の方向を算出する
ことができ、港湾及び海水浴場等における安全管理をよ
り一層向上させることができる。なお、これら実施例に
おいては、ブイ1の内部に電子回路部分を配置,固定す
る構成としたが、ピッチング及びローリングの固有周期
が1秒以下の容器であればブイ1に代えることができ
る。例えば、固有周期1秒以下の船舶をブイとして利用
することもできる。
In the second embodiment, the wave direction with respect to the buoy 1 can be calculated only by adding a few components such as the magnetic compass 7 and the wave direction calculating means to the first embodiment. Safety management in harbors and beaches can be further improved. In these embodiments, the electronic circuit portion is arranged and fixed inside the buoy 1. However, the buoy 1 can be replaced with a container having a natural period of pitching and rolling of 1 second or less. For example, a ship having a natural period of 1 second or less can be used as a buoy.

【0025】[0025]

【発明の効果】以上説明したように本発明は、重力加速
度や上下左右方向の加速度の影響を受けない、互いに直
交する水平軸に対する回転角速度を計測してこの回転角
速度から波高値を算出するとともに、ブイの固有振動成
分が波高計測範囲外となるようにし、かつ波高計測範囲
内を所定の論理補正特性として波高計測範囲外の成分を
除去する構成とすることにより、ブイの動揺による加速
度の影響、ブイの固有振動の影響、及び角速度センサの
ドリフトの影響を受けることなく、かつ、波高計測範囲
内の成分を除去することなく波高値を算出することがで
きるので、高精度の波高計測ができ、また、ジンバルの
ような機械的可動部分が不要となるので、耐久性及び取
扱い性が向上するという効果があり、更に、ブイの係留
索取付け位置をブイのピッチング,ローリングの回転動
揺の中心部位とすることにより、係留索の引っ張り力に
より回転動揺に対する影響をなくして高精度の波高計測
ができる、という効果がある。更に、方位コンパスを含
むわずかな構成要素を付加するだけで、容易に波の方向
を算出することができ、港湾及び海水浴場等における安
全管理をより一層向上させることができる、という効果
がある。
As described above, the present invention measures the rotational angular velocities with respect to the horizontal axes orthogonal to each other and is not affected by the gravitational acceleration or the vertical and horizontal accelerations, and calculates the peak value from the rotational angular velocities. , The buoy's natural vibration component is outside the crest height measurement range, and the inside of the crest height measurement range is removed as a predetermined logical correction characteristic to remove the components outside the crest height measurement range, thereby affecting the acceleration due to the buoy's oscillation. The peak value can be calculated without being affected by the natural vibration of the buoy and the drift of the angular velocity sensor, and without removing the components within the peak height measurement range. In addition, since a mechanically movable part such as a gimbal is not required, durability and handleability are improved, and the mooring line mounting position of the buoy can be reduced. Pitching, by a center portion of the rotation upset rolling, it is height measurement precision by eliminating the influence on the rotational upset by the tension force of the mooring lines, there is an effect that. Furthermore, there is an effect that the direction of the wave can be easily calculated only by adding a few components including the azimuth compass, and the safety management in the harbor and the beach can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の係留されて海面に浮く
ブイ及びその内部配置を示す模式側面図、並びに電子回
路部分のブロック図である。
FIG. 1 is a schematic side view showing a moored buoy floating on the sea surface and its internal arrangement according to a first embodiment of the present invention, and a block diagram of an electronic circuit portion.

【図2】図1に示された実施例のブイ内部の配置図であ
る。
FIG. 2 is a layout diagram of the inside of the buoy of the embodiment shown in FIG. 1;

【図3】図1に示された実施例の波高値算出部の外観図
である。
FIG. 3 is an external view of a peak value calculating unit of the embodiment shown in FIG.

【図4】図1に示された実施例の波高値算出部に含まれ
るディジタルフィルタの周波数に対する利得の特性図で
ある。
FIG. 4 is a characteristic diagram of a gain with respect to frequency of a digital filter included in the peak value calculating unit of the embodiment shown in FIG. 1;

【図5】図1に示された実施例の波高値算出部に含まれ
るディジタルフィルタの周期に対する利得の特性図であ
る。
FIG. 5 is a characteristic diagram of a gain with respect to a period of a digital filter included in the peak value calculating unit of the embodiment shown in FIG. 1;

【図6】本発明の第2の実施例を示す電子回路部分のブ
ロック図及びそのブイ内部の配置図である。
FIG. 6 is a block diagram of an electronic circuit portion showing a second embodiment of the present invention and a layout diagram inside the buoy.

【図7】従来のブイ式波高計の一例の係留されて海面に
浮くブイ及びその内部の主要構成要素を示す主要構成配
置模式図、並びにその電子回路部分のブロック図であ
る。
FIG. 7 is a schematic diagram of a main configuration showing an example of a conventional buoy-type wavemeter moored and floating on the sea surface and main components inside the buoy, and a block diagram of an electronic circuit portion thereof.

【符号の説明】[Explanation of symbols]

1,1a ブイ 2x,2y 角速度センサ 3,3a 波高値算出部 4 通信装置 5 アンテナ 6 電源回路 7 磁気コンパス 8 シンバル 9 加速度計 10 係留索 11 アンカー 30 波高値・波向き算出部 31x,31y ディジタルフィルタ 32 波高値演算部 33 波高値・波向き演算部 34 積分回路 Reference Signs List 1, 1a buoy 2x, 2y angular velocity sensor 3, 3a peak value calculating unit 4 communication device 5 antenna 6 power supply circuit 7 magnetic compass 8 cymbal 9 accelerometer 10 mooring line 11 anchor 30 peak value / wave direction calculating unit 31x, 31y digital filter 32 Crest value calculation unit 33 Crest value / wave direction calculation unit 34 Integration circuit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 波高計測対象の波の最短周期より短い固
有動揺周期をもち所定の位置で係留索によりアンカーに
係留されるブイと、このブイに内蔵され互いに直交する
2つの水平軸それぞれに対する回転角速度を計測する第
1及び第2の角速度センサと、これら第1及び第2の角
速度センサからの回転角速度の情報から前記波の波高計
測範囲内の波高値を算出する波高値算出部と、この波高
値算出部からの波高値の情報をアンテナを介して電波と
して空中に放射する通信装置とを有することを特徴とす
るブイ式波高計。
1. A buoy having a natural oscillating cycle shorter than the shortest cycle of a wave whose wave height is to be measured and moored at a predetermined position to an anchor by a mooring line, and a rotation built in the buoy about each of two horizontal axes orthogonal to each other. A first and a second angular velocity sensor for measuring an angular velocity, a crest value calculation unit for calculating a crest value within a crest measurement range of the wave from information of the rotational angular velocity from the first and the second angular velocity sensors, A buoy-type crest meter, comprising: a communication device that radiates the crest value information from the crest value calculation unit as radio waves into the air via an antenna.
【請求項2】 ブイのピッチング及びローリングの回転
動揺の中心部位を、前記ブイの係留索取付け位置とした
請求項1記載のブイ式波高計。
2. The buoy-type crest meter according to claim 1, wherein a central portion of the pitching of the buoy and the rotational fluctuation of the rolling is a position where the mooring line of the buoy is attached.
【請求項3】 波高値算出部に、第1及び第2の角速度
センサからの回転角速度の情報に含まれるブイの固有動
揺周期の成分を除去するフィルタを設けた請求項1記載
のブイ式波高計。
3. The buoy-type peak height according to claim 1, wherein the peak value calculating unit is provided with a filter for removing a component of a buoy's natural oscillation period included in the information on the rotational angular velocity from the first and second angular velocity sensors. Total.
【請求項4】 フィルタに、ブイの固有動揺周期の成分
を除去する特性の他に、波高計測範囲外の長周期の成分
を除去する特性と、前記波高計測範囲に対する所定の論
理補正特性とを持たせるようにした請求項3記載のブイ
式波高計。
4. A filter having a characteristic of removing a component of a natural oscillation period of a buoy, a characteristic of removing a component of a long period outside a peak height measurement range, and a predetermined logical correction characteristic for the peak height measurement range. The buoy-type wave height meter according to claim 3, wherein the buoy-type wave height meter is provided.
【請求項5】 フィルタをディジタルフィルタとした請
求項3又は請求項4記載のブイ式波高計。
5. The buoy-type crest meter according to claim 3, wherein the filter is a digital filter.
【請求項6】 ブイに、方位を計測する方位コンパスを
内蔵固定し、この方位コンパスからの方位の情報と、第
1及び第2の角速度センサからの回転角速度の情報とか
ら波の方向を算出する波向き算出手段を設けた請求項1
記載のブイ式波高計。
6. A buoy has a built-in azimuth compass for measuring an azimuth, and calculates a wave direction from azimuth information from the azimuth compass and rotational angular velocity information from the first and second angular velocity sensors. 2. A wave direction calculating means for calculating a wave direction.
A buoy-type wave height meter as described.
JP32363296A 1996-11-19 1996-11-19 Buoy-type wave height meter Expired - Fee Related JP2911840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32363296A JP2911840B2 (en) 1996-11-19 1996-11-19 Buoy-type wave height meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32363296A JP2911840B2 (en) 1996-11-19 1996-11-19 Buoy-type wave height meter

Publications (2)

Publication Number Publication Date
JPH10148524A true JPH10148524A (en) 1998-06-02
JP2911840B2 JP2911840B2 (en) 1999-06-23

Family

ID=18156900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32363296A Expired - Fee Related JP2911840B2 (en) 1996-11-19 1996-11-19 Buoy-type wave height meter

Country Status (1)

Country Link
JP (1) JP2911840B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064957A (en) * 2005-08-30 2007-03-15 Kaiyo Chosa Kyokai Buoy-type wave height meter
CN103712773A (en) * 2014-01-16 2014-04-09 中国石油大学(华东) Wave parameter measuring device for experiment
JP2017181413A (en) * 2016-03-31 2017-10-05 国立研究開発法人 海上・港湾・航空技術研究所 Wave measurement device, wave measurement information transmission system and float
KR20180110650A (en) * 2018-09-19 2018-10-10 주식회사 오션이엔지 Wave height measuring device which is installed to existing floating body on the sea
JP2020079762A (en) * 2018-11-14 2020-05-28 五洋建設株式会社 Wave height calculation method
JP2021133767A (en) * 2020-02-26 2021-09-13 東亜建設工業株式会社 Wave monitor system and wave monitor method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102583028B1 (en) * 2021-03-31 2023-09-26 (주)대한엔지니어링 Marine Weather Observation Equipment Using Satellite Navigation System and Inertial Measurement Device, and Driving Method Thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064957A (en) * 2005-08-30 2007-03-15 Kaiyo Chosa Kyokai Buoy-type wave height meter
CN103712773A (en) * 2014-01-16 2014-04-09 中国石油大学(华东) Wave parameter measuring device for experiment
JP2017181413A (en) * 2016-03-31 2017-10-05 国立研究開発法人 海上・港湾・航空技術研究所 Wave measurement device, wave measurement information transmission system and float
KR20180110650A (en) * 2018-09-19 2018-10-10 주식회사 오션이엔지 Wave height measuring device which is installed to existing floating body on the sea
JP2020079762A (en) * 2018-11-14 2020-05-28 五洋建設株式会社 Wave height calculation method
JP2021133767A (en) * 2020-02-26 2021-09-13 東亜建設工業株式会社 Wave monitor system and wave monitor method

Also Published As

Publication number Publication date
JP2911840B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
Gaiffe et al. Highly compact fiber optic gyrocompass for applications at depths up to 3000 meters
JP4892972B2 (en) Wave height measuring device
Tucker et al. The AN/WSN-7B marine gyrocompass/navigator
US20090231953A1 (en) Methods and Systems for Determining Coordinates of an Underwater Seismic Component in a Reference Frame
CN103754327B (en) A kind of sea condition measurement buoy
CN103245360A (en) Autocollimation method of carrier aircraft rotating type strapdown inertial navigation system under shaking base
US4515013A (en) Apparatus for measuring the vertical acceleration due to the swell
US6382022B1 (en) Shipboard wave measurement system
JP2911840B2 (en) Buoy-type wave height meter
US5778543A (en) Inertial sensor unit
WO2017093166A1 (en) Inertial navigation system with improved accuracy
FI124378B (en) Motion sensor housing
KR102455233B1 (en) System for processing data corrected for motion displacement of marine lidar
RU2561229C1 (en) Buoy for determination of characteristics of sea wind waves
Zhao et al. The experimental study on GPS/INS/DVL integration for AUV
RU163855U1 (en) SOCKET SENSOR, GRAVITY ANGLE AND COURSE ANGLE SPEED
RU2572046C1 (en) Marine self-contained bottom station for seismic survey and seismological monitoring
JP2005241441A (en) Mobile on-water wind observation system
US2497614A (en) Stable vertical
JP7113701B2 (en) MAGNETIC COMPENSATION DEVICE AND MAGNETIC COMPENSATION METHOD
US9671248B2 (en) Method for calibrating an inertial navigation system with a limited mechanical turning range
CN102265113B (en) Method for determining the rotation speed of an axisymmetrical vibrating sensor and inertial device for implementing said method
Williams et al. Vector averaging in a wave field
RU2408843C1 (en) Analytical gyro-compass for quasi-static measurements
JPS60252213A (en) Inclined angle measuring instrument

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees