JPH10148502A - Position detecting method - Google Patents

Position detecting method

Info

Publication number
JPH10148502A
JPH10148502A JP31857096A JP31857096A JPH10148502A JP H10148502 A JPH10148502 A JP H10148502A JP 31857096 A JP31857096 A JP 31857096A JP 31857096 A JP31857096 A JP 31857096A JP H10148502 A JPH10148502 A JP H10148502A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
excitation
exciting
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31857096A
Other languages
Japanese (ja)
Other versions
JP3063027B2 (en
Inventor
Takumi Sano
拓美 佐野
Akira Hasegawa
彰 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKASAGO SEISAKUSHO KK
Kandenko Co Ltd
Takasago Ltd
Original Assignee
TAKASAGO SEISAKUSHO KK
Kandenko Co Ltd
Takasago Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKASAGO SEISAKUSHO KK, Kandenko Co Ltd, Takasago Ltd filed Critical TAKASAGO SEISAKUSHO KK
Priority to JP8318570A priority Critical patent/JP3063027B2/en
Publication of JPH10148502A publication Critical patent/JPH10148502A/en
Application granted granted Critical
Publication of JP3063027B2 publication Critical patent/JP3063027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide such a position detecting method that can suppress influences of noises, magnetic field of the earth, magnetic field of commercial- use a.c. current radiating from underground line, etc., and realize more accurate detection. SOLUTION: A horizontal magnetic field 21 and a vertical magnetic field coil 22 which generate a magnetic field in different direction as single or a plurality of exciting coils, are provided to a point to be measured, and these exciting coils are alternately excited by a driving circuit 23 so as to generate an a.c. current magnetic field having a different element alternately. A magnetic field detector (receiver 25) having signal or a plurality of receiving coils 24 as a detecting coil is moved at measuring point, thus detecting a.c. current magnetic field and directional element at desired points to the respective exciting timing, and they are converted into voltage signal. Then this signal is separated into two signals through a switch that is synchronized with the exciting timing of the exciting circuit, and the two signals is amplified by a differential amplifier so as to obtain a point of exciting coil according to such a pint where the output of the differential amplifier becomes zero.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、トンネルを掘削
する推進機や、非金属性配管などの管内監視装置などの
先端に発信器を設け、この発信器の発する磁界を地上か
ら検出してその位置を特定しようとする位置検出方法に
関するものであり、さらにこの原理を応用して、移動す
る車両の位置を検出したり、同時に発信器や検出器のコ
イルを利用して、道路側には車両の接近を非接触で感知
したり、道路側から車両に任意の信号を送ることができ
るものである。
BACKGROUND OF THE INVENTION The present invention relates to a transmitter provided at a tip of a propulsion device for excavating a tunnel or a monitoring device for a pipe such as a nonmetallic pipe, and detects a magnetic field generated by the transmitter from the ground. The present invention relates to a position detection method that attempts to specify a position. Further, by applying this principle, the position of a moving vehicle is detected, and at the same time, a vehicle is mounted on the road side by using a coil of a transmitter and a detector. It is possible to detect the approach of a vehicle in a non-contact manner or to send an arbitrary signal to the vehicle from the road side.

【0002】[0002]

【従来の技術】洞道や地中の配管に任意の装置を入れた
場合、この装置の位置を地上から測定する方法として、
ジャイロスコープを用いた方法などがあり、商品化も行
われている。しかし、この方法では、緩い傾斜や曲がり
に対してはジャイロが正確に作動しなかったり、ジャイ
ロの出力を積分する積分器の誤差などが重なり、正確に
位置を特定することは困難であった。この問題を解決す
るために、電磁的方法や音響を利用する方法などが試さ
れた。
2. Description of the Related Art When an arbitrary device is placed in a tunnel or underground pipe, a method of measuring the position of the device from the ground is as follows.
There is a method using a gyroscope and the like, and commercialization is being performed. However, in this method, the gyro does not operate accurately for a gentle inclination or bend, and an error of an integrator for integrating the output of the gyro overlaps, and it is difficult to specify the position accurately. In order to solve this problem, an electromagnetic method and a method using sound were tried.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、音響に
よる方法は音響の伝搬が複雑で減衰も多く、位置の特定
が不可能であった。また従来の電磁的方法は、単一磁界
の磁界分布を利用したもので、この場合の磁界強度のヌ
ル点では、磁界強度が極めて微弱であり、ヌル点の位置
が正確に特定できなかったり、磁界の最大値を得る方法
は、そのピークの位置を特定するのが困難であったり、
地球磁場の影響で磁界強度を検出する目的のサーチコイ
ルを移動した場合に予期しない出力が現わるトラブル
や、商用交流電力供給用の地中線から発生する交流磁界
の影響を受けて誤動作するなどの多くの問題点があり、
実用化が困難であった。
However, in the method using sound, the propagation of sound is complicated and the attenuation is large, so that the position cannot be specified. In addition, the conventional electromagnetic method uses a magnetic field distribution of a single magnetic field.In this case, at the null point of the magnetic field strength, the magnetic field strength is extremely weak, and the position of the null point cannot be specified accurately, The method of obtaining the maximum value of the magnetic field is difficult to locate the peak,
Trouble that unexpected output appears when moving the search coil to detect the magnetic field strength under the influence of the earth's magnetic field, malfunction due to the influence of the AC magnetic field generated from the underground wire for commercial AC power supply, etc. There are many problems,
Practical application was difficult.

【0004】この発明はこれらの点に鑑みてなされたも
のであり、雑音の影響、地球磁場の影響、地中線などか
ら放射される商用交流磁場の影響等を抑えて、より正確
な検出ができる位置検出方法を提供して上記課題を解決
しようとするものである。
[0004] The present invention has been made in view of these points, and suppresses the influence of noise, the influence of the earth's magnetic field, the influence of a commercial AC magnetic field radiated from an underground wire, and the like, thereby achieving more accurate detection. An object of the present invention is to provide a position detection method capable of solving the above problems.

【0005】[0005]

【課題を解決するための手段】そこでこの発明は、複数
の励磁コイルを設け、それぞれの励磁コイルを時分割に
励磁し、この励磁コイルの駆動信号と同期を取った増幅
器でそれぞれの励磁コイルの発生する磁界を検出し、そ
れぞれの出力の割合から励磁コイルの位置を測定しよう
とするものである。この方法では磁界のヌル点ではな
く、相互の磁界強度の強い点で磁界強度の割合を利用す
るので測定点の磁界強度が高く、雑音の影響を少なくで
きるだけでなく、それぞれの信号を差動増幅器に加える
方法によって地球磁場の影響や地中線等から放射される
商用交流磁場の影響を極力抑えることができるものであ
る。以下この発明を具体的に説明する。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a plurality of exciting coils, excites each exciting coil in a time-division manner, and uses an amplifier synchronized with a drive signal of the exciting coil to control each exciting coil. The purpose is to detect the generated magnetic field and measure the position of the exciting coil from the ratio of each output. In this method, the ratio of the magnetic field strength is used not at the null point of the magnetic field but at the point where the mutual magnetic field strength is strong, so that the magnetic field strength at the measurement point is high, so that not only can the effect of noise be reduced, but also each signal is amplified by a differential amplifier. In this method, the influence of the earth's magnetic field and the influence of the commercial AC magnetic field radiated from the underground wire can be minimized. Hereinafter, the present invention will be described specifically.

【0006】請求項1項の発明は、被測定点に、交互に
異なる方向の磁界を発生させる単一又は複数の励磁コイ
ルを設け、これらの励磁コイルを励磁回路によって交互
に励磁して交互に異なる成分の交流磁界を発生させ、測
定点では、単一又は複数の検出コイルを有する磁界検出
器を移動させて上記それぞれの励磁タイミングに対する
任意の点における交流磁場と方向成分を検出してこれを
電圧信号に変換し、この信号を上記励磁回路の励磁タイ
ミングと同期を取ったスイッチで二つの信号に分離し、
この二つの信号を差動増幅器にかけ、この差動増幅器の
出力が零になる位置により励磁コイルの位置を求める、
位置検出方法とした。
According to a first aspect of the present invention, at a point to be measured, a single or a plurality of exciting coils for generating magnetic fields in different directions are provided alternately, and these exciting coils are alternately excited by an exciting circuit to be alternately provided. At the measurement point, an AC magnetic field having a different component is generated, and a magnetic field detector having a single or a plurality of detection coils is moved to detect an AC magnetic field and a directional component at an arbitrary point with respect to the respective excitation timings. Converted into a voltage signal, this signal is separated into two signals by a switch synchronized with the excitation timing of the excitation circuit,
The two signals are applied to a differential amplifier, and the position of the exciting coil is determined from the position where the output of the differential amplifier becomes zero.
The position detection method was used.

【0007】また請求項2項の発明は、被測定点から任
意の距離に置かれ、交互に異なる方向の磁界を発生させ
る複数の励磁コイルを設け、それぞれの励磁コイルを励
磁回路によって異なるタイミングで励磁し、時間的に異
なる成分の交流磁界を発生させ、測定点では、単一又は
複数の検出コイルを有する磁界検出器を移動させて上記
それぞれの励磁タイミングに対する任意の点における交
流磁場と方向成分を検出し、この信号を上記励磁回路の
励磁タイミングと同期を取った同期増幅器で増幅し、そ
れぞれの励磁コイルによる任意の点の磁界強度を求め、
それぞれの磁界強度の比から上記励磁コイルの位置を求
める、位置検出方法とした。
According to a second aspect of the present invention, a plurality of exciting coils are provided at an arbitrary distance from a point to be measured and alternately generate magnetic fields in different directions, and each exciting coil is provided at a different timing by an exciting circuit. Excitation to generate an AC magnetic field having a temporally different component.At the measurement point, the magnetic field detector having a single or a plurality of detection coils is moved to change the AC magnetic field and the directional component at any point with respect to the respective excitation timings. , And amplify this signal with a synchronous amplifier synchronized with the excitation timing of the excitation circuit, and determine the magnetic field strength at an arbitrary point by each excitation coil,
The position of the exciting coil was determined from the ratio of the respective magnetic field strengths.

【0008】また請求項3項の発明は、被測定点から任
意の距離に置かれ、単一又は交互に異なる方向の磁界を
発生させる単一又は複数の励磁コイルを設け、それぞれ
の励磁コイルを励磁回路によって異なるタイミングで励
磁し、時間的に異なる成分の交流磁界を発生させ、測定
点では、それぞれの上記励磁コイルを遮断した直後に励
磁コイルの近傍の導体から発生する渦電流による磁界を
励磁コイルと同期を取った同期増幅器で選択的に検出し
て、上記導体を検出するとともに、任意の点における交
流磁場と方向成分を励磁コイルの端子電圧又は励磁コイ
ル近傍に設けた検出コイルを有する磁界検出器で検出
し、この信号を上記励磁回路と同期を取った同期増幅器
で増幅し、それぞれの励磁コイルによる任意の点の磁界
強度を求め、それぞれの磁界強度の比から上記励磁コイ
ルの位置を求める、位置検出方法とした。
According to a third aspect of the present invention, there is provided one or a plurality of excitation coils which are placed at an arbitrary distance from a point to be measured and which generate magnetic fields in a single direction or alternately in different directions. Excitation is performed at different timings by the excitation circuit to generate AC magnetic fields of different components in time.At the measurement point, the magnetic field due to the eddy current generated from the conductor near the excitation coil immediately after the excitation coil is cut off A magnetic field having an AC magnetic field and a directional component at an arbitrary point at a terminal voltage of the exciting coil or a detecting coil provided in the vicinity of the exciting coil, while selectively detecting the conductor and detecting the conductor by a synchronous amplifier synchronized with the coil. This signal is detected by a detector, this signal is amplified by a synchronous amplifier synchronized with the excitation circuit, and the magnetic field strength at an arbitrary point by each excitation coil is obtained. Determining the position of the exciting coil from the ratio of magnetic field strength, and a position detecting method.

【0009】また請求項4項の発明は、上記請求項1
項、2項、3項のうちのいずれか一つの位置検出方法に
おいて、励磁コイルの励磁周波数と異なる周波数を励磁
コイルに重畳し、位置検出や導体検出を行いながら励磁
コイルから検出コイルに任意信号を送る、位置検出方法
とした。
Further, the invention of claim 4 provides the above-mentioned claim 1.
In the position detecting method of any one of the paragraphs 2, 2 and 3, a frequency different from the excitation frequency of the excitation coil is superimposed on the excitation coil, and an arbitrary signal is transmitted from the excitation coil to the detection coil while performing position detection and conductor detection. And the position detection method.

【0010】[0010]

【実施の形態例】以下この発明の実施の形態例を説明す
る前に、最も説明の容易な円形ループコイルを励磁コイ
ルと検出コイルに使用した実例を説明する。まず図1に
示すごとく、半径aの円形コイルに電流Iを流した場
合、コイルの半径aに比べて充分に離れた距離rのP点
に生じる磁界を求めると。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing an embodiment of the present invention, an example in which a circular loop coil, which is the easiest to describe, is used for an excitation coil and a detection coil will be described. First, as shown in FIG. 1, when a current I is passed through a circular coil having a radius a, a magnetic field generated at a point P at a distance r sufficiently far from the radius a of the coil is obtained.

【0011】[0011]

【数1】 (Equation 1)

【0012】[0012]

【数2】 (Equation 2)

【0013】[0013]

【数3】 (Equation 3)

【0014】[0014]

【数4】 (Equation 4)

【0015】[0015]

【数5】 (Equation 5)

【0016】[0016]

【数6】 (Equation 6)

【0017】[0017]

【数7】 (Equation 7)

【0018】[0018]

【数8】 (Equation 8)

【0019】[0019]

【数9】 (Equation 9)

【0020】磁界の水平成分と垂直成分をそれぞれ検出
するには、磁界を発生する送信コイルと同じように、そ
れぞれの磁界の成分に対してコイルのループが作る面を
水平又は垂直にした受信コイルによって検出できる。こ
の場合の結果を図示すると図4となる。図4で楕円によ
って示すコイルの図は、送信コイルと受信コイルの相対
方向を示す。
In order to detect the horizontal component and the vertical component of the magnetic field, respectively, like the transmission coil that generates the magnetic field, the receiving coil in which the plane formed by the coil loop for each magnetic field component is made horizontal or vertical. Can be detected by FIG. 4 shows the result in this case. The diagram of the coil indicated by an ellipse in FIG. 4 shows the relative directions of the transmitting coil and the receiving coil.

【0021】図4から、送信コイルが作る磁界の水平成
分と垂直成分をそれぞれ独立に検出し、それぞれの磁界
の相対強度の絶対値が一致する点を求めると、送信コイ
ルと受信コイルとの距離dを求めることができる。この
時図4に示す磁界強度の絶対値は、水平距離xに対して
対称に現われるので、それぞれの磁界強度の絶対値が一
致する点はx軸に対して対称に発生する。そこでこの条
件の適合する二点を求め、この二点間の距離を求め、こ
の距離の1/2が送信コイルと受信コイルの水平距離と
なる。
From FIG. 4, the horizontal component and the vertical component of the magnetic field generated by the transmitting coil are detected independently, and the point where the absolute values of the relative intensities of the respective magnetic fields match is determined. d can be determined. At this time, since the absolute value of the magnetic field strength shown in FIG. 4 appears symmetrically with respect to the horizontal distance x, the point where the absolute value of each magnetic field strength coincides occurs symmetrically with respect to the x-axis. Therefore, two points that satisfy this condition are determined, and the distance between the two points is determined. One half of this distance is the horizontal distance between the transmitting coil and the receiving coil.

【0022】次にこの発明の方法を実現するための具体
的装置を図5に示す。図中Aは受信機を示し、1は受信
機Aの受信コイルであり、このコイルの配置によって異
なるが水平又は垂直成分の磁界を検出する。2は抵抗器
であり、入力インピーダンスと負帰還量を調整する。3
は初段増幅器であり、受信コイル1で受信した電圧を増
幅する。4は同期スイッチであり、他の同期増幅器と同
期を取って交互に切り替わる。5は差動増幅器であり、
水平又は垂直成分の磁界に対応する信号をそれぞれの差
動入力に加えてこの差分を増幅する。6は積分器であ
り、差動増幅器5の出力を平均化して平滑化する。7は
当該受信機Aの出力端子10の出力の一部を負帰還する
ための負帰還量を調整する帰還補償減衰器である。8は
利得−1の反転増幅器であり、上記同期スイッチ4の負
帰還用スイッチに加えて出力信号の一部が負帰還となる
ように抵抗器9を通して初段増幅器3に加えられる。こ
の帰還補償減衰器7、反転増幅器8及び抵抗器9による
負帰還作用は、受信信号が弱い場合や、雑音の多い場合
に効果的に作用するが、受信信号が強い場合は必要とし
ない。
FIG. 5 shows a specific apparatus for realizing the method of the present invention. In the figure, A denotes a receiver, and 1 denotes a receiving coil of the receiver A, which detects a magnetic field of a horizontal or vertical component depending on the arrangement of the coil. Reference numeral 2 denotes a resistor for adjusting the input impedance and the amount of negative feedback. 3
Is a first-stage amplifier, which amplifies the voltage received by the receiving coil 1. Reference numeral 4 denotes a synchronous switch, which is alternately switched in synchronization with another synchronous amplifier. 5 is a differential amplifier,
A signal corresponding to the magnetic field of the horizontal or vertical component is applied to each differential input to amplify this difference. Reference numeral 6 denotes an integrator, which averages and smoothes the output of the differential amplifier 5. Reference numeral 7 denotes a feedback compensation attenuator that adjusts a negative feedback amount for negatively feeding back a part of the output of the output terminal 10 of the receiver A. Reference numeral 8 denotes an inverting amplifier having a gain of -1, which is added to the first-stage amplifier 3 through a resistor 9 so that a part of the output signal becomes negative feedback in addition to the negative feedback switch of the synchronous switch 4. The negative feedback effect of the feedback compensation attenuator 7, the inverting amplifier 8, and the resistor 9 works effectively when the received signal is weak or has a lot of noise, but is not required when the received signal is strong.

【0023】Bは駆動回路を示し、11は水晶発振器
で、この水晶発振器11で発生されたパルス信号を分周
器12を介してタイミング発生器13に送り、このタイ
ミング発生器13から上記受信機Aの同期スイッチ4及
び後述の送信機Cの水平垂直切り替え器14に切り替え
信号を送り、また当該水平垂直切り替え器14に励磁信
号を送る。また上記受信機Aの初段増幅器3にマスク信
号を送る。Cは送信機であり、上記励磁信号をこの送信
機Cの水平垂直切り替え器14で入力し、上記切り替え
信号により垂直駆動回路15又は水平駆動回路16を動
かす。これらの垂直駆動回路15及び水平駆動回路16
の出力に相互に垂直位置となった垂直磁界コイル17及
び水平磁界コイル18をそれぞれ励磁する。
B denotes a drive circuit, and 11 denotes a crystal oscillator, which sends a pulse signal generated by the crystal oscillator 11 to a timing generator 13 via a frequency divider 12, and outputs the pulse signal from the timing generator 13 to the receiver. A switching signal is sent to the synchronous switch 4 of A and a horizontal / vertical switch 14 of the transmitter C described later, and an excitation signal is sent to the horizontal / vertical switch 14. Further, a mask signal is sent to the first-stage amplifier 3 of the receiver A. C is a transmitter, and the excitation signal is input to the horizontal / vertical switch 14 of the transmitter C, and the vertical drive circuit 15 or the horizontal drive circuit 16 is operated by the switch signal. These vertical drive circuit 15 and horizontal drive circuit 16
, The vertical magnetic field coil 17 and the horizontal magnetic field coil 18 which are positioned vertically with respect to each other are excited.

【0024】図6は図5の回路の動作を説明するもの
で、T1の期間に水平磁界コイル18を励磁し、この磁
界による受信コイルの電圧を受信コイル1で受信し、こ
の電圧を初段増幅器3及び同期スイッチ4で増幅して差
動増幅器5の一方の端子に加える。T1の終わりでは、
水平磁界コイル18の電流を遮断する。T2はマスクす
る期間である。時間T3では上記垂直磁界コイル17を
励磁する。この時、増幅された受信電圧も同期スイッチ
4により差動増幅器5の他方の端子に加えられる。T3
の終期には垂直磁界コイルの電流も遮断する。T4は過
渡電圧のマスク期間である。同様にしてT5、T6、T
7、T8と繰り返し、受信コイルで受信した水平磁界コ
イル18による成分と垂直磁界コイル17による成分の
受信電圧の差分を増幅し、両者の値が一致する点で図5
の受信機Aの出力端子10の出力が零となる様に動作さ
せる。
FIG. 6 explains the operation of the circuit shown in FIG. 5. In the period T1, the horizontal magnetic field coil 18 is excited, the voltage of the receiving coil due to this magnetic field is received by the receiving coil 1, and this voltage is supplied to the first-stage amplifier. 3 and the signal is amplified by the synchronous switch 4 and applied to one terminal of the differential amplifier 5. At the end of T1,
The current of the horizontal magnetic field coil 18 is cut off. T2 is a period for masking. At time T3, the vertical magnetic field coil 17 is excited. At this time, the amplified reception voltage is also applied to the other terminal of the differential amplifier 5 by the synchronous switch 4. T3
At the end of the period, the current of the vertical magnetic field coil is also cut off. T4 is a transient voltage mask period. Similarly, T5, T6, T
7 and T8 are repeated, and the difference between the received voltage of the component of the horizontal magnetic field coil 18 and the received voltage of the component of the vertical magnetic field coil 17 received by the receiving coil is amplified.
Is operated so that the output of the output terminal 10 of the receiver A becomes zero.

【0025】図4のHvy又はHhyによる磁界は励磁
コイルの真上で零になり、極性が反転する。従って実際
の回路では、励磁コイルの励磁方向を逆転させ、受信信
号の極性が同一方向になるように切り替えるか、受信機
Cの同期スイッチ4の出力に極性切り替えスイッチを設
け、互いに水平磁界と垂直磁界による、受信電圧の絶対
値を比較できるようにするが、図面ではこれを省略し
た。
The magnetic field due to Hvy or Hhy in FIG. 4 becomes zero immediately above the exciting coil, and the polarity is reversed. Therefore, in an actual circuit, the direction of excitation of the exciting coil is reversed and the polarity of the received signal is switched so as to be in the same direction, or a polarity switch is provided at the output of the synchronization switch 4 of the receiver C, and the horizontal magnetic field and the vertical Although it is possible to compare the absolute value of the reception voltage due to the magnetic field, it is omitted in the drawings.

【0026】図7は地中19に埋設又は掘削された推進
管20のなかに、水平磁界コイル21と垂直磁界コイル
22を設置し、駆動回路23によって交互にこれらのコ
イル21又は22を励磁し、地上に設置された受信機2
5に受信コイル24を取付け、洞道の深さyと位置を計
測する場合の略図を示す。ここで、受信機25の同期増
幅器と励磁回路は、有線又は無線による励磁信号の受信
回路とPLL回路によって同期をとる。
FIG. 7 shows that a horizontal magnetic field coil 21 and a vertical magnetic field coil 22 are installed in a propulsion pipe 20 buried or excavated in the underground 19, and these coils 21 or 22 are alternately excited by a drive circuit 23. , Receiver 2 installed on the ground
5 shows a schematic diagram when the receiving coil 24 is attached and the depth y and the position of the sinus are measured. Here, the synchronization amplifier and the excitation circuit of the receiver 25 are synchronized by a wired or wireless excitation signal reception circuit and a PLL circuit.

【0027】この状態で地上にある受信コイル24を這
わせて探索し、水平磁界コイル21の水平成分と垂直磁
界コイル22の垂直成分とが等しくなるヌル点は、水平
コイルの励磁極性を切り替えると水平コイルの面と一致
する面に対して対称になった場合は、上記(18)式の
条件となり、この面に対して対称に求まる。この二点間
の最小距離を1/2にし、この距離を0.281で割る
と、地表面にある受信コイル24から洞道内の磁界コイ
ル21又は22までの距離を求めることが可能となり、
この位置を確定できる。
In this state, the search is performed by creeping the receiving coil 24 on the ground, and the null point where the horizontal component of the horizontal magnetic field coil 21 is equal to the vertical component of the vertical magnetic field coil 22 is obtained by switching the excitation polarity of the horizontal coil. If the plane is symmetric with respect to the plane coinciding with the plane of the horizontal coil, the condition of the above equation (18) is satisfied, and the condition is obtained symmetrically with respect to this plane. If the minimum distance between these two points is halved and this distance is divided by 0.281, the distance from the receiving coil 24 on the ground surface to the magnetic field coil 21 or 22 in the sinus can be obtained.
This position can be determined.

【0028】なおこの実施の形態例では中心が共通な励
磁コイルである水平磁界コイル21と垂直磁界コイル2
2を直交させて互いに直交させた磁界を発生させ、地上
では地面に対して水平な面を持つ受信コイル24を使用
したが、垂直な面の受信コイルを使用してもよく、図4
に示すように、この組合せは任意である。さらに励磁コ
イルを一つにし、受信コイルを直交させ、このそれぞれ
の出力を差動増幅器に加えても同一目的を達成できる。
またさらに励磁コイルの形状や受信コイルの形状は任意
であり、その配置中心部を共通にせず、任意の位置に配
置したり、励磁コイルや受信コイルの数も任意である。
これらの場合上記実施の形態例とは異なる磁束分布とな
って、位置を求める数式は別になるが、この配置に対し
て磁束分布を求めれば同一の目的を達成できる。
In this embodiment, the horizontal magnetic field coil 21 and the vertical magnetic field coil
2 are orthogonal to each other to generate a magnetic field orthogonal to each other, and the receiving coil 24 having a plane parallel to the ground is used on the ground, but a receiving coil having a plane perpendicular to the ground may be used.
This combination is optional, as shown in FIG. Further, the same object can be achieved by using one excitation coil, making the receiving coils orthogonal, and adding their outputs to a differential amplifier.
Further, the shape of the exciting coil and the shape of the receiving coil are arbitrary, and the arrangement center portion is not common, but may be arranged at an arbitrary position, and the number of the exciting coil and the receiving coil is also arbitrary.
In these cases, the magnetic flux distribution is different from that of the above-described embodiment, and the formula for obtaining the position is different, but if the magnetic flux distribution is obtained for this arrangement, the same object can be achieved.

【0029】また励磁コイルに金属などの導体が接近す
ると、励磁コイルの励磁電流を完全に遮断した後も、こ
の導体に流れる渦電流によって、微小な磁界が発生す
る。この渦電流の減衰時間よりも早く励磁コイルの電流
を遮断し、励磁コイルの電流が完全に遮断するまでの図
6に示すマスク時間T2又はT3を取り、その直後に励
磁コイルに加える励磁電流の立ち上がりタイミングを遅
らせ、それぞれの励磁コイルに励磁を全くしない期間を
設けると、この期間に励磁コイルには近接導体の渦電流
による電圧が発生し、励磁コイルに導体が接近したこと
を検出できる。この場合、検出距離を伸ばすにはこの励
磁コイルに発生した電圧だけをスイッチによって選択的
に受信し、この電圧を差動増幅器に加えて増幅すればよ
い。
When a conductor such as a metal approaches the exciting coil, a minute magnetic field is generated by the eddy current flowing through the conductor even after the exciting current of the exciting coil is completely cut off. The current of the exciting coil is cut off earlier than the decay time of the eddy current, and a mask time T2 or T3 shown in FIG. 6 is taken until the current of the exciting coil is completely cut off. If the start-up timing is delayed and a period during which no excitation is performed on each excitation coil is provided, a voltage is generated in the excitation coil by an eddy current of a nearby conductor, and it is possible to detect that the conductor approaches the excitation coil. In this case, in order to extend the detection distance, only the voltage generated in the excitation coil is selectively received by the switch, and this voltage is applied to the differential amplifier and amplified.

【0030】図5に示す回路では、差動増幅器による差
動効果によって、増幅器の入力に加わる同相電圧に対し
ては強い抑制効果がある。従って励磁コイルに励磁信号
と大きく異なる周波数の同相電圧が加わっても位置測定
の効果は変わらない。それ故励磁コイルに異なる周波数
の信号を重畳し、この重畳した信号に変調をかけ、受信
コイルでフィルタによって分離し、さらにこの信号を復
調する方法によって、励磁コイルから受信コイルに変調
信号を送信し、受信コイル側でこれを復調でき、位置測
定と通信を同時に行うことが可能となる。
The circuit shown in FIG. 5 has a strong suppressing effect on the common mode voltage applied to the input of the amplifier due to the differential effect of the differential amplifier. Therefore, even if an in-phase voltage having a frequency significantly different from that of the excitation signal is applied to the excitation coil, the effect of position measurement does not change. Therefore, a signal of a different frequency is superimposed on the exciting coil, the modulated signal is modulated, separated by a filter by a receiving coil, and further, a modulation signal is transmitted from the exciting coil to the receiving coil by a method of demodulating this signal. This can be demodulated on the receiving coil side, and position measurement and communication can be performed simultaneously.

【0031】[0031]

【発明の効果】請求項1項及び2項の発明は、複数の磁
界の成分差に対する差動効果によって、極めて高い検出
感度と、地磁気等の外乱や雑音に対する高い耐性を得る
ことが可能となり、1ターンのループ又は帰線をアース
とした単線による励磁コイルでも、移動自在な磁気検出
器でこの磁界を容易に検出することが可能である。従っ
て地下等の不可視な部分にある励磁コイルの位置を地上
から容易かつ正確に求めることが可能となり、地下埋設
管を目標に向かって正確に推進したり、無人の推進機の
位置を地上からトレースできる。さらに励磁コイルを道
路に沿って長い矩形又は楕円にして地下に埋設し、この
磁界を自動車などの移動体に設けた検出器で検出し、こ
の出力で自動車の方向を制御すると、自動車をこのコイ
ルに沿って走行するように制御が可能となる。この様に
この発明は不可視部分にある励磁コイルの位置を特定す
る以外に、その構成を利用して、車両の誘導や検出の目
的にも利用可能である。
According to the first and second aspects of the present invention, it is possible to obtain an extremely high detection sensitivity and a high resistance to disturbances such as terrestrial magnetism and noise by a differential effect with respect to a plurality of component differences of a magnetic field. This magnetic field can be easily detected by a movable magnetic detector even with a single-turn loop or a single-wire excitation coil with the return line grounded. Therefore, it is possible to easily and accurately determine the position of the excitation coil in the invisible part such as underground from the ground, accurately propell the underground pipe toward the target, and trace the position of the unmanned propulsion machine from the ground. it can. Furthermore, the exciting coil is laid underground in the shape of a long rectangle or ellipse along the road, and this magnetic field is detected by a detector provided on a moving body such as an automobile, and the output is used to control the direction of the automobile. Can be controlled so as to travel along. As described above, the present invention can be used not only for specifying the position of the exciting coil in the invisible portion but also for the purpose of guiding and detecting the vehicle by using the configuration.

【0032】また請求項3項の発明は、上記請求項1項
及び2項の発明の効果に加え、励磁コイルの近くに導体
が接近したことを検出でき、これを車両検出器として利
用することが可能となる。
According to a third aspect of the present invention, in addition to the effects of the first and second aspects of the present invention, it is possible to detect that a conductor has approached the vicinity of an exciting coil, and to use this as a vehicle detector. Becomes possible.

【0033】また請求項4項の発明は、上記請求項1項
及び2項の発明の効果に加え、励磁コイルの励磁周波数
と異なる周波数を励磁コイルに重畳することにより位置
測定に際して測定点と被測定点とで通信を行うことがで
き、より正確に位置検出ができる。また励磁コイルを安
全な車間距離の間隔になるように道路に埋設し、それぞ
れの励磁コイルの一つ前方の励磁コイルが車両を検出し
ているか否かを、励磁信号と異なる周波数を重畳して伝
送し、この信号を車両に非接触で伝達すると、衝突防止
装置としても機能する。
According to a fourth aspect of the present invention, in addition to the effects of the first and second aspects of the present invention, a frequency different from the exciting frequency of the exciting coil is superimposed on the exciting coil so that the measuring point and the measuring point can be measured at the time of position measurement. Communication can be performed with the measurement point, and position detection can be performed more accurately. In addition, the excitation coil is buried in the road so as to have a safe inter-vehicle distance, and whether or not the excitation coil in front of each excitation coil detects the vehicle is superimposed with a frequency different from the excitation signal. When transmitted and transmitted in a non-contact manner to the vehicle, it also functions as a collision prevention device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態例の第1原理説明図であ
る。
FIG. 1 is a diagram illustrating a first principle of an embodiment of the present invention.

【図2】この発明の実施の形態例の第2原理説明図であ
る。
FIG. 2 is an explanatory diagram of a second principle of the embodiment of the present invention.

【図3】この発明の実施の形態例の第3原理説明図であ
る。
FIG. 3 is an explanatory diagram of a third principle of the embodiment of the present invention.

【図4】この発明の実施の形態例の送信コイルにより発
生させた磁界の垂直成分及び水平成分を受信コイルで検
出した際の中心軸からの移動距離xに対する磁界強度を
表わすグラフ図である。
FIG. 4 is a graph showing a magnetic field intensity with respect to a moving distance x from a central axis when a vertical direction component and a horizontal direction component of a magnetic field generated by a transmission coil according to an embodiment of the present invention are detected by a reception coil;

【図5】この発明の実施の形態例に使用した装置の概略
構成図である。
FIG. 5 is a schematic configuration diagram of an apparatus used in an embodiment of the present invention.

【図6】この発明の実施の形態例の装置の各動作を説明
する出力波形図である。
FIG. 6 is an output waveform chart for explaining each operation of the device according to the embodiment of the present invention.

【図7】この発明の実施の形態例における地中に埋設ま
た掘削された推進管の先端の位置を地上から検出する例
を示す概要説明図である。
FIG. 7 is a schematic explanatory diagram showing an example in which the position of the tip of a propulsion pipe buried or excavated in the ground according to the embodiment of the present invention is detected from the ground.

【符号の説明】[Explanation of symbols]

A 受信機 B 駆動回路 C 送信機 1 受信コイル 2 抵抗 3 初段増幅器 4 同期スイッチ 5 差動増幅器 6 積分器 7 帰還補正減
衰器 8 反転増幅器(利得−1) 9 抵抗器 10 出力端子 11 水晶発振
器 12 分周器 13 タイミン
グ発生器 14 水平垂直切換え器 15 垂直軸駆
動回路 16 水平軸駆動回路 17 垂直磁界
コイル 18 水平磁界コイル 19 地中 20 推進管 21 垂直磁界
コイル 22 水平磁界コイル 23 駆動回路 24 受信コイル 25 受信機
Reference Signs List A Receiver B Drive circuit C Transmitter 1 Receiving coil 2 Resistor 3 First stage amplifier 4 Synchronous switch 5 Differential amplifier 6 Integrator 7 Feedback correction attenuator 8 Inverting amplifier (gain-1) 9 Resistor 10 Output terminal 11 Crystal oscillator 12 Frequency divider 13 Timing generator 14 Horizontal / vertical switch 15 Vertical axis drive circuit 16 Horizontal axis drive circuit 17 Vertical magnetic field coil 18 Horizontal magnetic field coil 19 Underground 20 Propulsion pipe 21 Vertical magnetic field coil 22 Horizontal magnetic field coil 23 Drive circuit 24 Receiving coil 25 Receiver

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被測定点に、交互に異なる方向の磁界を
発生させる単一又は複数の励磁コイルを設け、これらの
励磁コイルを励磁回路によって交互に励磁して交互に異
なる成分の交流磁界を発生させ、測定点では、単一又は
複数の検出コイルを有する磁界検出器を移動させて上記
それぞれの励磁タイミングに対する任意の点における交
流磁場と方向成分を検出してこれを電圧信号に変換し、
この信号を上記励磁回路の励磁タイミングと同期を取っ
たスイッチで二つの信号に分離し、この二つの信号を差
動増幅器にかけ、この差動増幅器の出力が零になる位置
から励磁コイルの位置を求めることを特徴とする、位置
検出方法。
At least one excitation coil for generating magnetic fields in different directions is provided at a point to be measured, and these excitation coils are alternately excited by an excitation circuit to generate alternating magnetic fields of different components. At the measurement point, the magnetic field detector having a single or a plurality of detection coils is moved to detect an AC magnetic field and a directional component at an arbitrary point with respect to the respective excitation timings, and convert this to a voltage signal,
This signal is separated into two signals by a switch synchronized with the excitation timing of the excitation circuit, and the two signals are applied to a differential amplifier. From the position where the output of the differential amplifier becomes zero, the position of the excitation coil is determined. A position detection method characterized by determining the position.
【請求項2】 被測定点から任意の距離に置かれ、交互
に異なる方向の磁界を発生させる複数の励磁コイルを設
け、それぞれの励磁コイルを励磁回路によって異なるタ
イミングで励磁し、時間的に異なる成分の交流磁界を発
生させ、測定点では、単一又は複数の検出コイルを有す
る磁界検出器を移動させて上記それぞれの励磁タイミン
グに対する任意の点における交流磁場と方向成分を検出
し、この信号を上記励磁回路の励磁タイミングと同期を
取った同期増幅器で増幅し、それぞれの励磁コイルによ
る任意の点の磁界強度を求め、それぞれの磁界強度の比
から上記励磁コイルの位置を求めることを特徴とする、
位置検出方法。
2. A plurality of exciting coils which are placed at an arbitrary distance from a point to be measured and alternately generate magnetic fields in different directions are provided, and each exciting coil is excited at a different timing by an exciting circuit, and is different in time. A magnetic field detector having a single or a plurality of detection coils is moved at a measurement point to detect an AC magnetic field and a directional component at an arbitrary point with respect to each of the excitation timings. Amplification is performed by a synchronous amplifier synchronized with the excitation timing of the excitation circuit, a magnetic field intensity at an arbitrary point by each excitation coil is obtained, and a position of the excitation coil is obtained from a ratio of each magnetic field intensity. ,
Position detection method.
【請求項3】 被測定点から任意の距離に置かれ、単一
又は交互に異なる方向の磁界を発生させる単一又は複数
の励磁コイルを設け、それぞれの励磁コイルを励磁回路
によって異なるタイミングで励磁し、時間的に異なる成
分の交流磁界を発生させ、測定点では、それぞれの上記
励磁コイルを遮断した直後に励磁コイルの近傍の導体か
ら発生する渦電流による磁界を励磁コイルと同期を取っ
た同期増幅器で選択的に検出して、上記導体を検出する
とともに、任意の点における交流磁場と方向成分を励磁
コイルの端子電圧又は励磁コイル近傍に設けた検出コイ
ルを有する磁界検出器で検出し、この信号を上記励磁回
路と同期を取った同期増幅器で増幅し、それぞれの励磁
コイルによる任意の点の磁界強度を求め、それぞれの磁
界強度の比から上記励磁コイルの位置を求めることを特
徴とする、位置検出方法。
3. A single or plural excitation coils which are placed at an arbitrary distance from a point to be measured and generate single or alternate magnetic fields in different directions are provided, and the respective excitation coils are excited at different timings by an excitation circuit. Then, an AC magnetic field having a temporally different component is generated, and at a measurement point, a magnetic field due to an eddy current generated from a conductor near the excitation coil is synchronized with the excitation coil immediately after the excitation coil is cut off. While selectively detecting with an amplifier and detecting the conductor, an AC magnetic field and a directional component at an arbitrary point are detected with a terminal voltage of an exciting coil or a magnetic field detector having a detecting coil provided near the exciting coil. The signal is amplified by a synchronous amplifier synchronized with the excitation circuit, and the magnetic field strength at any point by each excitation coil is obtained. A position detecting method, wherein a position of an exciting coil is obtained.
【請求項4】 励磁コイルの励磁周波数と異なる周波数
を励磁コイルに重畳し、位置検出や導体検出を行いなが
ら励磁コイルから検出コイルに任意信号を送ることを特
徴とする、上記請求項1項、2項、3項のうちのいずれ
か一つの位置検出方法。
4. The apparatus according to claim 1, wherein a frequency different from the excitation frequency of the excitation coil is superimposed on the excitation coil, and an arbitrary signal is transmitted from the excitation coil to the detection coil while performing position detection and conductor detection. 2. The position detecting method according to any one of the items 2 and 3.
JP8318570A 1996-11-15 1996-11-15 Position detection method Expired - Lifetime JP3063027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8318570A JP3063027B2 (en) 1996-11-15 1996-11-15 Position detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8318570A JP3063027B2 (en) 1996-11-15 1996-11-15 Position detection method

Publications (2)

Publication Number Publication Date
JPH10148502A true JPH10148502A (en) 1998-06-02
JP3063027B2 JP3063027B2 (en) 2000-07-12

Family

ID=18100616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8318570A Expired - Lifetime JP3063027B2 (en) 1996-11-15 1996-11-15 Position detection method

Country Status (1)

Country Link
JP (1) JP3063027B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350103A (en) * 2001-05-23 2002-12-04 Hitachi Kokusai Electric Inc Moving body detecting system
JP2003513260A (en) * 1999-10-29 2003-04-08 アセンション テクノロジー コーポレイション AC magnetic position measurement system with reduced error due to eddy current
JP2008275395A (en) * 2007-04-26 2008-11-13 Asahi Kasei Electronics Co Ltd Position attitude detection system, its detection method, and position attitude detection device
JP2009532684A (en) * 2006-04-06 2009-09-10 ライカ ジオシステムズ アクチェンゲゼルシャフト Calibration method and calibration apparatus for hand-held positioning device
CN102272557A (en) * 2009-03-02 2011-12-07 微-埃普西龙测量技术有限两合公司 Position sensor
CN113008434A (en) * 2021-02-07 2021-06-22 中国人民解放军国防科技大学 Orthogonal differential flexible electromagnetic sensor for residual stress detection
CN115012915A (en) * 2022-06-02 2022-09-06 中国石油天然气集团有限公司 Magnetic field positioning method, system, device, equipment and medium based on straight wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104515462A (en) * 2014-12-23 2015-04-15 柳州柳工叉车有限公司 Displacement detection device and method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003513260A (en) * 1999-10-29 2003-04-08 アセンション テクノロジー コーポレイション AC magnetic position measurement system with reduced error due to eddy current
JP2002350103A (en) * 2001-05-23 2002-12-04 Hitachi Kokusai Electric Inc Moving body detecting system
JP4615762B2 (en) * 2001-05-23 2011-01-19 株式会社日立国際電気 Moving object detection system
JP2009532684A (en) * 2006-04-06 2009-09-10 ライカ ジオシステムズ アクチェンゲゼルシャフト Calibration method and calibration apparatus for hand-held positioning device
JP2008275395A (en) * 2007-04-26 2008-11-13 Asahi Kasei Electronics Co Ltd Position attitude detection system, its detection method, and position attitude detection device
CN102272557A (en) * 2009-03-02 2011-12-07 微-埃普西龙测量技术有限两合公司 Position sensor
JP2012519287A (en) * 2009-03-02 2012-08-23 マイクロ−エプシロン・メステヒニク・ゲーエムベーハー・ウント・コンパニー・カー・ゲー Position sensor
US8941389B2 (en) 2009-03-02 2015-01-27 Micro-Epsilon Messtechnik Gmbh & Co. Kg Position sensor
JP2015092176A (en) * 2009-03-02 2015-05-14 マイクロ−エプシロン・メステヒニク・ゲーエムベーハー・ウント・コンパニー・カー・ゲーMicro−Epsilon Messtechnik Gesellschaft Mit Beschrankter Haftung & Compagnie Kommanditgesellschaft Position sensor
CN113008434A (en) * 2021-02-07 2021-06-22 中国人民解放军国防科技大学 Orthogonal differential flexible electromagnetic sensor for residual stress detection
CN115012915A (en) * 2022-06-02 2022-09-06 中国石油天然气集团有限公司 Magnetic field positioning method, system, device, equipment and medium based on straight wire

Also Published As

Publication number Publication date
JP3063027B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
EP0122899B1 (en) Apparatus and method employing extraneous field compensation for locating current-carrying objects
US10845497B1 (en) Phase-synchronized buried object transmitter and locator methods and apparatus
US4818944A (en) Magnetic locating and tracing system and method using dual-antenna transmitter to distinguish between concealed adjacent objects
US9747792B2 (en) Vehicle or moving object detection
KR20180020166A (en) Systems, methods and apparatuses for guidance and alignment in electric vehicles wireless inductive charging systems
JP2018531568A6 (en) System, method and apparatus for induction and alignment in a wireless electromagnetic induction charging system of an electric vehicle
JPH0271145A (en) Improvement in cable flaw detection system
JP2009503471A (en) Distance measuring method and apparatus using capacitive or inductive sensor
JP3063027B2 (en) Position detection method
JP2003167064A (en) Metal detector
CN110989004B (en) Self-compensation three-component dragging transient electromagnetic exploration device and exploration method
JP3072304B2 (en) Metal detection method
JPH10269493A (en) Mobile body supporting system
JP3035724B2 (en) Metal detection method
US5136225A (en) Device for guiding vehicles on a virtual track
JP2663318B2 (en) Speed detector
US6906528B2 (en) Electronic non-contacting linear position measuring system
JP2002181955A (en) Embedded object probing device
JP3352549B2 (en) Position detection method
SU1092453A1 (en) Device for detecting and tracing metal lines
JPH04313097A (en) Measuring device for position of buried cable and measuring method
JPH03162693A (en) Method and device for position detection
JP2590578B2 (en) Magnetic detector
JP2001235549A (en) Active metal sensor and stabilizing method therefor
JPH0126512B2 (en)