JPH1014595A - Observation of microbial sample - Google Patents

Observation of microbial sample

Info

Publication number
JPH1014595A
JPH1014595A JP17638196A JP17638196A JPH1014595A JP H1014595 A JPH1014595 A JP H1014595A JP 17638196 A JP17638196 A JP 17638196A JP 17638196 A JP17638196 A JP 17638196A JP H1014595 A JPH1014595 A JP H1014595A
Authority
JP
Japan
Prior art keywords
lysine
microorganism
microbial sample
brewing
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17638196A
Other languages
Japanese (ja)
Inventor
Koichi Kojima
浩一 児嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP17638196A priority Critical patent/JPH1014595A/en
Publication of JPH1014595A publication Critical patent/JPH1014595A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate the observation of a microorganism such as the one derived from urine, blood or feces, the one used in the food industry, e.g. Sake (Japanese fermented mildly alcoholic beverage made from rice wine) brewing or brewing or chemical industry by dispersing a microbial sample in an aqueous solvent and observing the microbial sample under a scanning type probe microscope. SOLUTION: An aqueous solvent comprising an aqueous solution, etc., containing polyL-lysine or the polyL-lysine and paraformaldehyde is dropped onto a glass substrate such as a cover glass for a microscope having 15mm diameter and air-dried and a suspension of a microorganism is then dropped thereonto and air-dried to prepare a microbial sample and the dispersion state of the microbial sample is observed under a scanning type probe microscope. Thereby, the infectivity of the microorganism is attenuated and a microorganism derived from various test materials such as urine, blood or feces, a yeast, etc., utilized in the field of food industry such as Sake brewing or brewing or the chemical industry in the microbial sample can readily be observed in a state of a high density and high dispersion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、尿、血液、糞便等
の各種検査材料に由来する微生物や酒造、醸造等の食品
工業や化学工業の分野において利用される酵母等を走査
型プローブ顕微鏡で観察する方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a scanning probe microscope for analyzing microorganisms derived from various test materials such as urine, blood, and feces, and yeasts used in the fields of food and chemical industries such as sake brewing and brewing. Related to how to observe.

【0002】[0002]

【従来の技術】従来、各種検査材料から分離された微生
物等の検査をする代表的なものとしてディスク検査法が
知られている。これは、一定量の抗生物質を吸収したろ
紙ディスクを被検菌が塗布された寒天培地上におき、培
養を行う。もし被検菌がその抗生物質に耐性を有するも
のである場合は、寒天培地上一面に被検菌が増殖する。
一方、被検菌がその抗生物質に感受性を有する場合に
は、ろ紙ディスクと同心円状に「阻止円」と呼ばれる被
検菌が増殖しなかった部域が形成される。この阻止円の
直径はその被検菌の最小発育阻止濃度と相関があるとさ
れるので、この阻止円直径の計測を行って、その大小又
は有無をもって被検菌が感受性菌か耐性菌かを判定して
いる。また、酵母等の測定法としては、酵母の菌量測
定、酵素活性など酵母の生化学的性状の試験測定などが
知られている。
2. Description of the Related Art Conventionally, a disk inspection method has been known as a representative method for inspecting microorganisms and the like separated from various inspection materials. In this method, a filter paper disk having absorbed a certain amount of an antibiotic is placed on an agar medium coated with a test bacterium and cultured. If the test bacterium is resistant to the antibiotic, the test bacterium grows over the entire surface of the agar medium.
On the other hand, when the test bacterium is sensitive to the antibiotic, an area called a "blocking circle" where the test bacterium does not grow is formed concentrically with the filter paper disk. Since the diameter of this inhibition circle is considered to be correlated with the minimum growth inhibitory concentration of the test bacterium, the diameter of this inhibition circle is measured, and whether the test bacterium is a susceptible or resistant bacterium is determined by its size or presence or absence. Has been determined. Further, as a method for measuring yeast and the like, measurement of yeast biomass, test measurement of biochemical properties of yeast such as enzyme activity, and the like are known.

【0003】しかし、上記の方法はいずれも微生物の培
養を伴うため検査に長時間を要する等の課題があった。
そこで、本件出願人は、酵母等を原子間力顕微鏡(AF
M)などの走査型プローブ顕微鏡で観察する手法を提案
している(特願平7−276401号)。この方法は、
冷凍保存されていた酵母等を解凍したものを、そのまま
ガラス板に載せ、乾燥させて試料とし、走査型プローブ
顕微鏡で観察するものである。
However, all of the above methods involve the cultivation of microorganisms, so that there is a problem that the test requires a long time.
Therefore, the applicant of the present application has proposed that the yeast and the like be replaced with an atomic force microscope (AF).
M), etc. (Japanese Patent Application No. 7-276401). This method
Thawed yeast or the like that has been frozen and stored is placed on a glass plate as it is, dried to obtain a sample, and observed with a scanning probe microscope.

【0004】[0004]

【発明が解決しようとする課題】一般に走査型プローブ
顕微鏡は観察視野が非常に狭く、かつ観察位置はプロー
ブが偶然に降りた場所になり、観察者が意図的に見たい
場所を見るということができない。このような走査型プ
ローブ顕微鏡を使って微生物を観察する場合には、観察
対象である微生物が、どこにでも、たくさんある、とい
う状況が望ましい。すなわち、高密度で、かつ高分散の
微生物試料を調整することが望ましい。
In general, the scanning probe microscope has a very narrow observation field of view, and the observation position is a place where the probe accidentally descends. Can not. When observing microorganisms using such a scanning probe microscope, it is desirable that there be many microorganisms to be observed everywhere. That is, it is desirable to prepare a high-density and highly dispersed microorganism sample.

【0005】そこで、本発明は、高密度、高分散の微生
物試料を調整して走査型プローブ顕微鏡で観察する方法
を提供することを目的とする。
Accordingly, an object of the present invention is to provide a method for preparing a microorganism sample of high density and high dispersion and observing the sample with a scanning probe microscope.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するため、水系溶媒に微生物試料を分散させて走査型
プローブ顕微鏡で微生物試料を観察することを特徴とす
る。ここで、水系溶媒としては、塩基性のR基をもつア
ミノ酸、例えばポリLリジンを含む水溶液を用いること
ができるが、これに限定されない。また、ポリLリジン
等は単独で用いても、活性を強くする溶媒を加えて用い
ても良い。活性を強くする溶媒としては、例えば、パラ
ホルムアルデヒド、グルタルアルデヒド、ホルマリンを
用いることができるが、これらに限定されない。添加す
るポリLリジン溶液の濃度は、0.001%〜0.1
%、好ましくは0.01%である。0.001%以下だ
と微生物分散の効果がなく、0.1%以上だと分散させ
た試料の表面が平滑にならないからである。また、パラ
ホルムアルデヒド等の活性を強くする溶媒は、ポリLリ
ジン溶液の濃度の100倍程度が好ましい。
In order to solve the above-mentioned problems, the present invention is characterized in that a microorganism sample is dispersed in an aqueous solvent and the microorganism sample is observed with a scanning probe microscope. Here, as the aqueous solvent, an aqueous solution containing an amino acid having a basic R group, for example, poly-L-lysine can be used, but is not limited thereto. Further, poly-L-lysine or the like may be used alone or may be used by adding a solvent for enhancing the activity. Examples of the solvent that enhances the activity include, but are not limited to, paraformaldehyde, glutaraldehyde, and formalin. The concentration of the poly-L-lysine solution to be added is 0.001% to 0.1%.
%, Preferably 0.01%. If the content is 0.001% or less, there is no effect of dispersing microorganisms, and if the content is 0.1% or more, the surface of the dispersed sample is not smooth. Further, the solvent for enhancing the activity such as paraformaldehyde is preferably about 100 times the concentration of the poly-L-lysine solution.

【0007】水系溶媒に微生物試料を分散させる方法と
しては、水系溶媒を含む溶液を基板にコートした後、微
生物試料を滴下させて分散させる方法、予め水系溶媒を
微生物試料に添加する方法のいずれでも良い。基板とし
ては、ガラス、ポリアクリルアミド等の透明板を用いる
ことができる。
As a method of dispersing a microorganism sample in an aqueous solvent, a method of coating a substrate with a solution containing the aqueous solvent and then dropping and dispersing the microorganism sample or a method of adding an aqueous solvent to the microorganism sample in advance is used. good. As the substrate, a transparent plate such as glass or polyacrylamide can be used.

【0008】本発明で使用される走査型プローブ顕微鏡
としては、原子間力顕微鏡(AFM)、走査トンネル顕
微鏡(STM)、レーザー力型顕微鏡(LFM)、磁気
力顕微鏡(MFM)、走査型イオンコンダクタンス顕微
鏡(SICM)等を挙げることができるが、これらに限
定されない。ここで、AFMは、試料と探針間に働く原
子間力を検出し、これが一定になるように試料表面を走
査するものをいい、同じようにSTMは試料と探針間に
流れるトンネル電流を、LFMは探針の共振周波数を、
MFMは試料と探針間に磁力を、SICMは試料と探針
間のイオン電流を各々検出し、これらが一定になるよう
に試料表面を走査するものをいう。これら装置につい
て、市販のものを用いることができる。
The scanning probe microscope used in the present invention includes an atomic force microscope (AFM), a scanning tunnel microscope (STM), a laser force microscope (LFM), a magnetic force microscope (MFM), and a scanning ion conductance. Examples include, but are not limited to, a microscope (SICM). Here, the AFM detects the interatomic force acting between the sample and the probe and scans the surface of the sample so that the force becomes constant. Similarly, the STM determines the tunnel current flowing between the sample and the probe. , LFM indicates the resonance frequency of the probe,
MFM detects a magnetic force between the sample and the probe, and SICM detects an ion current between the sample and the probe, and scans the surface of the sample so that these are constant. Commercially available devices can be used for these devices.

【0009】なお、本発明で観察の対象となる微生物試
料は、尿、血液、糞便等の各種検査材料に由来する微生
物や酒造、醸造等の食品工業や化学工業の分野において
利用される酵母等のあらゆるものを含む。
The microorganism samples to be observed in the present invention include microorganisms derived from various test materials such as urine, blood and feces, yeasts used in the fields of food and chemical industries such as sake brewing and brewing, and the like. Including everything.

【0010】[0010]

【実施例】【Example】

<実施例1:ポリLリジン水溶液を用いた場合>先ず、
0.01%のポリLリジン(シグマ社製)水溶液20μ
lを直径15mmのガラス基板(顕微鏡のカバーグラ
ス)に滴下して、風乾(室温で1時間放置)させた。そ
こに、寒天培地で培養した酵母(ATCC287)の懸
濁液10μlを滴下、風乾(室温で1時間放置)させ、
微生物試料を調整した。この試料の分散状態を、光学顕
微鏡にて観察した結果を図1(a)に示す。比較のた
め、ポリLリジン水溶液をカバーグラスに滴下せず、菌
体のみを光学顕微鏡にて観察した結果を図1(b)に示
す。
<Example 1: When using an aqueous solution of poly-L-lysine>
20 μl of 0.01% poly-L-lysine (Sigma) aqueous solution
1 was dropped on a glass substrate (cover glass of a microscope) having a diameter of 15 mm and air-dried (left at room temperature for 1 hour). To this, 10 μl of a suspension of yeast (ATCC287) cultured on an agar medium was dropped and air-dried (left at room temperature for 1 hour).
Microbial samples were prepared. FIG. 1A shows the result of observing the dispersion state of this sample with an optical microscope. For comparison, FIG. 1 (b) shows the result of observing only the cells with an optical microscope without dropping the aqueous solution of poly-L-lysine onto the cover glass.

【0011】図1(a)(b)より明らかなように、ポ
リLリジン水溶液をコートしない場合は、黒く見える酵
母が中心部で凝集しているのに対して、コートした場合
は均一に分散しているのが分かる。なお、ポリLリジン
を含む溶液を予めカバーグラスに滴下せず、酵母を含む
溶液に最終濃度が0.01%になるようにポリLリジン
を加えても同様な結果が得られた。
As is clear from FIGS. 1 (a) and 1 (b), when the aqueous solution of poly-L-lysine is not coated, the yeast which looks black is agglomerated at the center, whereas when coated, the yeast is uniformly dispersed. You can see that it is doing. The same results were obtained when the solution containing poly-L-lysine was not added dropwise to the cover glass in advance, and poly-L-lysine was added to the solution containing yeast so that the final concentration was 0.01%.

【0012】その後、ポリLリジン水溶液に分散させた
微生物試料を原子間力顕微鏡(島津製作所製SPM−9
500)で観察したところ、試料が分散されているので
良好な結果が得られた。
Then, the microorganism sample dispersed in the aqueous solution of poly-L-lysine was subjected to an atomic force microscope (SPM-9 manufactured by Shimadzu Corporation).
Observation at 500) gave good results because the sample was dispersed.

【0013】<実施例2:ポリLリジンとパラホルムア
ルデヒドを含む水溶液を用いた場合>実施例1と同じ酵
母を含む溶液に最終濃度が0.01%となるように、
0.01%のポリLリジン(シグマ社製)水溶液、1%
のパラホルムアルデヒド(ナカライテスク社製)を加え
た。この溶液を10μlサンプリングし、直径15mm
のガラス基板(顕微鏡のカバーグラス)に滴下して、風
乾(室温で1時間放置)させた。この試料を、光学顕微
鏡にて観察した結果を図2(a)に示す。比較のため、
ポリLリジンとパラホルムアルデヒドを含む水溶液をカ
バーグラスに滴下せず、菌体のみを光学顕微鏡にて観察
した結果を図2(b)に示す。
<Example 2: Using an aqueous solution containing poly-L-lysine and paraformaldehyde> The same yeast-containing solution as in Example 1 was used so that the final concentration was 0.01%.
0.01% poly-L-lysine (Sigma) aqueous solution, 1%
Of paraformaldehyde (manufactured by Nacalai Tesque) was added. 10 μl of this solution was sampled, and the diameter was 15 mm.
Was dropped on a glass substrate (cover glass of a microscope) and air-dried (left at room temperature for 1 hour). FIG. 2A shows the result of observing this sample with an optical microscope. For comparison,
FIG. 2B shows the result of observing only the cells using an optical microscope without dropping an aqueous solution containing poly-L-lysine and paraformaldehyde onto the cover glass.

【0014】図2(a)(b)より明らかなように、ポ
リLリジンとパラホルムアルデヒドを酵母を含む溶液に
添加しない場合は、白く見える酵母が凝集しているのに
対して、添加した場合は均一に分散しているのが分か
る。
As apparent from FIGS. 2 (a) and 2 (b), when poly-L-lysine and paraformaldehyde were not added to the yeast-containing solution, the yeast which appeared white was aggregated, whereas It can be seen that are dispersed uniformly.

【0015】その後、ポリLリジンとパラホルムアルデ
ヒドを含む水溶液に分散させた微生物試料を原子間力顕
微鏡(島津製作所製SPM−9500)で観察したとこ
ろ、試料が分散されているので良好な結果が得られた。
Thereafter, when the microorganism sample dispersed in an aqueous solution containing poly-L-lysine and paraformaldehyde was observed with an atomic force microscope (SPM-9500, manufactured by Shimadzu Corporation), good results were obtained because the sample was dispersed. Was done.

【0016】[0016]

【発明の効果】本発明によれば、微生物試料を高密度、
高分散の状態で観察することができる。特にポリLリジ
ンとパラホルムアルデヒドを併用すれば、分散効果が大
きく、しかも微生物の感染性を弱める(滅菌)効果も発
生する。
According to the present invention, a microorganism sample can be prepared at a high density.
It can be observed in a highly dispersed state. In particular, when poly-L-lysine and paraformaldehyde are used in combination, the dispersing effect is large, and the effect of weakening (sterilizing) the infectivity of microorganisms also occurs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)ポリLリジンを含む溶液を予めカバーグ
ラスに滴下して酵母を観察した図 (b)ポリLリジンを使用せずに酵母を観察した図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (a) A diagram in which a solution containing poly-L-lysine was previously dropped onto a cover glass to observe yeast. (B) A diagram in which yeast was observed without using poly-L-lysine.

【図2】(a)ポリLリジンとパラホルムアルデヒドを
酵母を含む溶液に添加して酵母を観察した図 (b)ポリLリジンとパラホルムアルデヒドを使用せず
に酵母を観察した図
FIG. 2 (a) A diagram of yeast observed by adding poly-L-lysine and paraformaldehyde to a solution containing yeast. (B) A diagram of yeast observed without using poly-L-lysine and paraformaldehyde.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水系溶媒に微生物試料を分散させて走査
型プローブ顕微鏡で微生物試料を観察することを特徴と
する微生物試料の観察方法。
1. A method for observing a microorganism sample, comprising dispersing the microorganism sample in an aqueous solvent and observing the microorganism sample with a scanning probe microscope.
【請求項2】 水系溶媒がポリLリジンまたはポリLリ
ジンとパラホルムアルデヒドを含む水溶液である請求項
1記載の微生物試料の観察方法。
2. The method for observing a microorganism sample according to claim 1, wherein the aqueous solvent is poly-L-lysine or an aqueous solution containing poly-L-lysine and paraformaldehyde.
JP17638196A 1996-07-05 1996-07-05 Observation of microbial sample Pending JPH1014595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17638196A JPH1014595A (en) 1996-07-05 1996-07-05 Observation of microbial sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17638196A JPH1014595A (en) 1996-07-05 1996-07-05 Observation of microbial sample

Publications (1)

Publication Number Publication Date
JPH1014595A true JPH1014595A (en) 1998-01-20

Family

ID=16012652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17638196A Pending JPH1014595A (en) 1996-07-05 1996-07-05 Observation of microbial sample

Country Status (1)

Country Link
JP (1) JPH1014595A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019095243A (en) * 2017-11-20 2019-06-20 国立大学法人金沢大学 Method for preparing sample for observation of organelle by high speed atomic force microscopy
JP2022511399A (en) * 2019-03-14 2022-01-31 株式会社日立ハイテク Drug susceptibility testing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019095243A (en) * 2017-11-20 2019-06-20 国立大学法人金沢大学 Method for preparing sample for observation of organelle by high speed atomic force microscopy
JP2022511399A (en) * 2019-03-14 2022-01-31 株式会社日立ハイテク Drug susceptibility testing method

Similar Documents

Publication Publication Date Title
Gfeller et al. Rapid biosensor for detection of antibiotic-selective growth of Escherichia coli
Pecher et al. On the redox control of synthesis of anaerobically induced enzymes in enterobacteriaceae
Ahimou et al. Real‐time imaging of the surface topography of living yeast cells by atomic force microscopy
Nugaeva et al. An antibody-sensitized microfabricated cantilever for the growth detection of Aspergillus niger spores
US9441204B2 (en) Compositions and methods for detecting Yersinia pestis bacteria
CN102119227A (en) Method and system for detecting and/or quantifying bacteriophages that can infect a predetermined bacterial host strain, use of a microelectronic sensor device for detecting said bacteriophages and microelectronic sensor device for implementing said
NZ268957A (en) Method and kit for the detection, identification and/or quantification of a target bacteriophage
Hofherr et al. FluidFM as a tool to study adhesion forces of bacteria-Optimization of parameters and comparison to conventional bacterial probe Scanning Force Spectroscopy
CN106053586A (en) Rapid test for microbial resistances by mass spectrometry
Beringer et al. The isolation of conditional ineffective mutants of Rhizobium leguminosarum
Sullivan et al. Comparison of the indentation and elasticity of E. coli and its spheroplasts by AFM
US5792617A (en) Cell proliferation-based amplified detection of analytes
JPH1014595A (en) Observation of microbial sample
US4246349A (en) Stabilization of immobilized bacteria
Dufrêne Refining our perception of bacterial surfaces with the atomic force microscope
EP2261379A1 (en) Method and system for detecting and/or quantifying bacteriophages, use of a microelectronic sensor device for detecting said bacteriophages and microelectronic sensor device for implementing said method
US6531293B1 (en) Immobilized microbial consortium useful for rapid and reliable BOD estimation
JPS5955183A (en) Apparatus and method of culturing three-phase micoplasma strain
US20050277169A1 (en) Active microcosm: screening antimicrobial producing microorganisms
Ho et al. Potentiometric system for selective formate measurement and improvement of response characteristics by permeation of cells
JP2869860B2 (en) Early determination method and determination kit for beer-grown lactic acid bacteria
Wahl et al. A fast screening method for surface layers on Gram-positive bacteria
WO1991019003A1 (en) Detection process
Praderio et al. Microbiological and calorimetric investigations on degraded marbles from the Cà d'Oro facade (Venice)
JPS59120099A (en) Diagnostic test probe and study of enzyme present in specimen byusing same