JPH10144951A - Semiconductor photo-detector - Google Patents

Semiconductor photo-detector

Info

Publication number
JPH10144951A
JPH10144951A JP8312994A JP31299496A JPH10144951A JP H10144951 A JPH10144951 A JP H10144951A JP 8312994 A JP8312994 A JP 8312994A JP 31299496 A JP31299496 A JP 31299496A JP H10144951 A JPH10144951 A JP H10144951A
Authority
JP
Japan
Prior art keywords
protective film
light
thickness
film
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8312994A
Other languages
Japanese (ja)
Inventor
Satoshi Akune
智 阿久根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP8312994A priority Critical patent/JPH10144951A/en
Publication of JPH10144951A publication Critical patent/JPH10144951A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce effects of light interference by a protective film and to supply a correct detecting signal to respond to an incident light by unevenly forming a thickness of the protecting film on a light-receiving surface. SOLUTION: A thickness of a protective film 14 is unevenly formed, to reduce an interference of light at the inner part of the protective film 14 provided on a surface of a light-receiving surface. For example the protective film 14 is formed which is made of dioxide silicon having the film thickness with several step differences in the longitudinal direction of a light-receiving surface 12 of each photodiode 11 which constitutes a photodiode array 10. That is regions L1-L5 each having protecting film 14 with about the same film thickness is provided by crossing plural photodiodes 11. The maximum film thickness d2 is made to be about 2 times the minimum film thickness d1, and each step difference for each regions L2-L4 between two regions L1 and L5 having the film thickness is made to be almost equal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体受光素子に関
し、特に分光光度計等において測定光を検出するために
用いられる単一の受光素子又は受光素子アレイに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light receiving element, and more particularly to a single light receiving element or a light receiving element array used for detecting measurement light in a spectrophotometer or the like.

【0002】[0002]

【従来の技術】例えば、液体クロマトグラフで分離され
た成分を検出するための分光光度計の構成は図4に示す
ようになる。光源20からの光は、図示しないカラムに
より分離された試料が流れるフローセル21を通過する
間に試料に含まれる成分に応じた波長において吸収され
る。フローセル21を通過した光はスリット22で制限
され、回折格子等の波長分散素子23により分光されて
フォトダイオードアレイ24上に照射される。フォトダ
イオードアレイ24は多数のフォトダイオードを分光方
向に配列したものであり、これにより分光スペクトルの
各波長の強度を同時に測定することができる。
2. Description of the Related Art For example, a configuration of a spectrophotometer for detecting components separated by liquid chromatography is as shown in FIG. Light from the light source 20 is absorbed at a wavelength corresponding to the components contained in the sample while passing through the flow cell 21 through which the sample separated by a column (not shown) flows. Light that has passed through the flow cell 21 is restricted by the slit 22, is split by a wavelength dispersion element 23 such as a diffraction grating, and is irradiated onto a photodiode array 24. The photodiode array 24 is formed by arranging a large number of photodiodes in the spectral direction, so that the intensity of each wavelength of the spectral spectrum can be measured at the same time.

【0003】図5は上記フォトダイオードアレイ24の
構成の一例を示す平面図である。約30μm×2000
μmの細長い形状の受光面を有するフォトダイオード2
5が、約20μmの狭いピッチで多数(例えば256個
乃至は1024個)配列されている。1個のフォトダイ
オードの受光面幅は非常に狭いので、上記構成のような
分光光度計では、各フォトダイオードにはそれぞれ或る
特定波長近傍の狭い波長範囲の光が入射する。
FIG. 5 is a plan view showing an example of the structure of the photodiode array 24. About 30μm × 2000
Photodiode 2 having an elongate light receiving surface of μm 2
5 are arranged at a narrow pitch of about 20 μm (for example, 256 to 1024). Since the light receiving surface width of one photodiode is very narrow, in a spectrophotometer with the above configuration, light in a narrow wavelength range near a specific wavelength enters each photodiode.

【0004】[0004]

【発明が解決しようとする課題】上記分光光度計の配置
においてフォトダイオードアレイ24に図6(a)に示
すようなスペクトルを有する光が入射すると、フォトダ
イオードアレイ24で検出されるスペクトルは図6
(b)に示すようになる。すなわち、本来のスペクトル
の形状のほかに波長方向に強弱の波を有する波形が重畳
した形状を呈する。このような現象の原因を図7により
説明する。フォトダイオードの受光部(p型半導体)3
0の表面には劣化を防止するために二酸化シリコン等の
保護膜31が形成されている。この保護膜31は、電極
(ボンディングパッド)等を除いて受光部30表面上に
ほぼ均一の厚さdを有している。このようなフォトダイ
オードに単色光が略垂直に照射されると、入射光の一部
は受光部30表面と保護膜31の表面との間で反射し、
その反射光により干渉を生じる。保護膜31の厚さdが
入射光の波長の偶数倍であると干渉により光は強めら
れ、奇数倍であると干渉により光は弱められる。このた
め、フォトダイオードアレイ24にて検出した分光スペ
クトルは、その保護膜の厚さに応じた波長において強弱
の波(スペクトルでのこの波を以下「干渉波」という)
を有することになる。
When light having a spectrum as shown in FIG. 6A is incident on the photodiode array 24 in the above arrangement of the spectrophotometer, the spectrum detected by the photodiode array 24 is as shown in FIG.
The result is as shown in FIG. That is, it has a shape in which a waveform having strong and weak waves in the wavelength direction is superimposed on the original spectrum shape. The cause of such a phenomenon will be described with reference to FIG. Photodiode light receiving part (p-type semiconductor) 3
A protective film 31 of silicon dioxide or the like is formed on the surface of No. 0 to prevent deterioration. The protective film 31 has a substantially uniform thickness d on the surface of the light receiving section 30 except for electrodes (bonding pads) and the like. When such a photodiode is irradiated with the monochromatic light substantially vertically, a part of the incident light is reflected between the surface of the light receiving unit 30 and the surface of the protective film 31,
The reflected light causes interference. If the thickness d of the protective film 31 is an even multiple of the wavelength of the incident light, the light is enhanced by the interference, and if the thickness d is an odd multiple, the light is weakened by the interference. For this reason, the spectral spectrum detected by the photodiode array 24 has a strong or weak wave at a wavelength corresponding to the thickness of the protective film (this wave in the spectrum is hereinafter referred to as “interference wave”).
Will have.

【0005】このような光干渉による一種のノイズは、
特に高精度の測定に影響を与える。更には、フォトダイ
オードの保護膜の厚さdは温度により変化するため、干
渉波の形状も温度により変動し高精度の測定を一層困難
にする。
[0005] One type of noise due to such optical interference is:
In particular, it affects high-precision measurement. Furthermore, since the thickness d of the protective film of the photodiode changes with temperature, the shape of the interference wave also changes with temperature, making high-precision measurement more difficult.

【0006】本発明はこのような課題を解決するために
成されたものであり、その目的とするところは、保護膜
における光の干渉の影響を軽減し、入射光に対して正確
な検出信号を出力することのできる半導体受光素子を提
供することにある。
The present invention has been made to solve such a problem, and an object of the present invention is to reduce the influence of light interference on a protective film and to accurately detect a detection signal with respect to incident light. It is an object of the present invention to provide a semiconductor light receiving element capable of outputting a light.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に成された本発明は、受光面の表面に保護膜を有する半
導体受光素子において、該保護膜内部での光の干渉を軽
減するために該保護膜の厚さを不均一に形成することを
特徴としている。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems. It is an object of the present invention to reduce the interference of light inside a protective film in a semiconductor light-receiving element having a protective film on the surface of a light-receiving surface. In addition, the thickness of the protective film is formed to be non-uniform.

【0008】[0008]

【発明の実施の形態、及び発明の効果】本発明の半導体
受光素子では、例えば1個の受光素子の受光面の表面に
おいて保護膜の厚さを段階的に変えることにより不均一
な保護膜となす。また、保護膜の厚さが連続的に変わる
テーパ形状とするようにしてもよい。受光素子の受光面
に略垂直に単色光が入射したとき、保護膜の内部におけ
る干渉による光の強弱の波長は保護膜の厚さに依存して
いる。すなわち、保護膜の厚さが相違すると光が強めら
れる波長及び弱められる波長が相違するから、厚さが不
均一な保護膜の内部では干渉による光の強弱が相殺さ
れ、これにより干渉の影響が軽減される。
BEST MODE FOR CARRYING OUT THE INVENTION In the semiconductor light receiving device of the present invention, for example, by changing the thickness of the protective film on the surface of the light receiving surface of one light receiving element in a stepwise manner, it is possible to form an uneven protective film. Eggplant Further, a taper shape in which the thickness of the protective film continuously changes may be employed. When monochromatic light is substantially perpendicularly incident on the light receiving surface of the light receiving element, the wavelength of light intensity due to interference inside the protective film depends on the thickness of the protective film. That is, if the thickness of the protective film is different, the wavelength at which light is strengthened and the wavelength at which light is weakened are different, so that the intensity of light due to interference is canceled inside the protective film having an uneven thickness, thereby reducing the influence of interference. It is reduced.

【0009】したがって、本発明に係る半導体受光素子
による受光素子アレイで分光スペクトルを得ると、干渉
による特定の波長での強調や減衰がなくなるか、或いは
なくならないまでも軽減され、正確なスペクトルを得る
ことができる。
Therefore, when a spectral spectrum is obtained by the light receiving element array using the semiconductor light receiving elements according to the present invention, emphasis or attenuation at a specific wavelength due to interference is eliminated or reduced even if not eliminated, and an accurate spectrum is obtained. be able to.

【0010】なお、従来、保護膜は均一になるように形
成されているが、実際には製造上の限界等により意図し
ない不均一性があった。このような不均一性は保護膜の
形成方法やその形成条件により相違しているが、通常大
きくても保護膜の厚さの10%程度である。これに対
し、本発明の半導体受光素子では、保護膜内部での光の
干渉を軽減するに充分な不均一性が必要であり、このた
めには意図的に不均一な保護膜を形成する方法を用いる
必要がある。また、保護膜の好ましい不均一さとして
は、後記の理由により最小の膜厚と最大の膜厚との差が
1.5〜2倍程度あるとよい。そして、最大膜厚と最小
膜厚との間で4〜5以上の複数段階の段差を設けるか、
或いは連続的に厚さの変化するテーパ形状とするとよ
い。
Conventionally, the protective film is formed so as to be uniform. However, in practice, there has been unintended non-uniformity due to manufacturing limitations and the like. Such non-uniformity differs depending on the method of forming the protective film and the conditions for forming the protective film, but is generally about 10% of the thickness of the protective film at most. On the other hand, in the semiconductor light receiving device of the present invention, sufficient nonuniformity is required to reduce the interference of light inside the protective film, and for this purpose, a method of intentionally forming the nonuniform protective film is used. Must be used. Further, as the preferable nonuniformity of the protective film, the difference between the minimum film thickness and the maximum film thickness is preferably about 1.5 to 2 times for the reason described below. And providing a plurality of steps of 4 to 5 or more between the maximum film thickness and the minimum film thickness,
Alternatively, a tapered shape whose thickness continuously changes may be used.

【0011】[0011]

【実施例】本発明に係る半導体受光素子の一実施例を図
面を参照して説明する。図1はこの実施例によるフォト
ダイオードアレイの平面図(a)及びA1−A2線の断面
図(b)である。このフォトダイオードアレイ10で
は、1個のフォトダイオード11の受光面12の長手方
向に対して、膜厚に数段の段差を設けた二酸化シリコン
の保護膜14を形成する。すなわち、複数のフォトダイ
オード11を横切って、それぞれ略同一の膜厚の保護膜
14を有する領域L1〜L5が設けられている。この実施
例では、保護膜14の最大の膜厚d2は最小の膜厚d1の
約2倍となるようにし、その膜厚を有する2つの領域L
1、L5の間の各領域L2〜L4のそれぞれの段差はほぼ均
等となるようにしている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a semiconductor light receiving device according to the present invention will be described with reference to the drawings. FIG. 1 is a plan view (a) of a photodiode array according to this embodiment and a sectional view taken along line A1-A2 (b). In the photodiode array 10, a protective film 14 of silicon dioxide having several steps in the film thickness is formed in the longitudinal direction of the light receiving surface 12 of one photodiode 11. That is, regions L1 to L5 each having the protective film 14 having substantially the same thickness are provided across the plurality of photodiodes 11. In this embodiment, the maximum thickness d2 of the protective film 14 is set to be about twice as large as the minimum thickness d1, and the two regions L having that thickness are formed.
The steps of the respective regions L2 to L4 between 1 and L5 are made substantially equal.

【0012】このような形状の保護膜14を形成するた
めには、例えば次のような方法をとる。まず、最も厚い
均一な膜厚d2の保護膜14を受光部13表面上に形成
する。この形成方法は周知の加熱酸化法、CVD法等を
用いることができる。その後に各領域L1〜L5に対応す
るレジストパターンを用意し、領域L5をマスキングし
て他の領域L1〜L4を領域L4の膜厚までエッチングす
る。次に領域L4、L5をマスキングして他の領域L1〜
L3を領域L3の膜厚までエッチングする。これを繰り返
し、最終的に領域L1の保護膜14の膜厚をd1にする。
また逆に、保護膜14を受光部13表面に堆積させる際
にマスキングを行なうことにより膜厚の相違する保護膜
を順次形成することもできる。
In order to form the protective film 14 having such a shape, for example, the following method is used. First, the protective film 14 having the largest and uniform thickness d2 is formed on the surface of the light receiving section 13. As this forming method, a known thermal oxidation method, a CVD method, or the like can be used. Thereafter, a resist pattern corresponding to each of the regions L1 to L5 is prepared, the region L5 is masked, and the other regions L1 to L4 are etched to the thickness of the region L4. Next, the regions L4 and L5 are masked to form the other regions L1 to L5.
L3 is etched to the thickness of the region L3. This is repeated to finally set the thickness of the protective film 14 in the region L1 to d1.
Conversely, by performing masking when depositing the protective film 14 on the surface of the light receiving portion 13, protective films having different thicknesses can be sequentially formed.

【0013】上記のような構成を有するフォトダイオー
ドアレイ10に平坦なスペクトルを有する分光光を照射
すると、保護膜14の厚さのそれぞれ相違する各領域L
1〜L5において検出される分光スペクトルは、図3の
(a)〜(e)に示すようになる。すなわち、干渉波の
強弱の波長は保護膜14の厚さに依存しているから、各
領域L1〜L5ではそれぞれ干渉波の強弱の波長が相違す
る。前述のように保護膜の膜厚が光の波長の偶数倍であ
るとき光は強められるから、膜厚が厚くなるほど干渉波
の強弱の波長間隔が広がり、膜厚が2倍になると干渉波
が最大になる波長は元の干渉波が最大になる波長と丁度
一致する。このように、膜厚がd1とd2の間で段階的に
変化している保護膜14を有する各領域L1〜L5のスペ
クトルは段階的に波長方向に拡大されたようになり、フ
ォトダイオードアレイ10の分光スペクトルはこれらの
波形を加算したものとなる。この結果、干渉波は打ち消
し合ってその分光スペクトルは図3(f)に示すように
干渉波が大幅に軽減されたものとなる。
When the photodiode array 10 having the above-described structure is irradiated with spectral light having a flat spectrum, each region L having a different thickness of the protective film 14 is obtained.
The spectral spectra detected at 1 to L5 are as shown in FIGS. That is, since the intensity wavelength of the interference wave depends on the thickness of the protective film 14, the intensity wavelength of the interference wave differs in each of the regions L1 to L5. As described above, when the film thickness of the protective film is an even multiple of the wavelength of light, the light is intensified. Therefore, as the film thickness increases, the wavelength interval of the interference wave increases, and when the film thickness increases, the interference wave increases. The wavelength at which the maximum becomes the same as the wavelength at which the original interference wave becomes the maximum. As described above, the spectrum of each of the regions L1 to L5 having the protective film 14 whose film thickness changes stepwise between d1 and d2 is gradually expanded in the wavelength direction. Is the sum of these waveforms. As a result, the interference waves cancel each other out, and the spectral spectrum of the spectrum is greatly reduced as shown in FIG.

【0014】図2は、本発明に係る半導体受光素子の他
の実施例の構成を示す断面図である。この例では、保護
膜14の厚さに段差を設けるのではなく連続的に変化す
るテーパ形状としている。このような形状とすれば、保
護膜14の内部で干渉波を相殺する効果は一層高まり、
より平坦な特性を得ることができる。
FIG. 2 is a sectional view showing the structure of another embodiment of the semiconductor light receiving element according to the present invention. In this example, the thickness of the protective film 14 does not have a step but has a tapered shape that changes continuously. With such a shape, the effect of canceling the interference wave inside the protective film 14 is further enhanced,
Flatter characteristics can be obtained.

【0015】なお、上記実施例は本発明をフォトダイオ
ードアレイに適用したものであるが、単一のフォトダイ
オードであっても単色光を導入する用途においては本発
明が有効であることは明白である。
In the above embodiment, the present invention is applied to a photodiode array. However, it is apparent that the present invention is effective in applications in which monochromatic light is introduced even with a single photodiode. is there.

【0016】また、上記実施例は一例であって、本発明
の趣旨に沿った範囲で適宜変形や修正を行なうことがで
きるのは明らかである。例えば、半導体受光素子におけ
る受光部の半導体の種類や保護膜の種類等に限定はな
い。
The above-described embodiment is merely an example, and it is apparent that modifications and modifications can be made as appropriate within the spirit and scope of the present invention. For example, there is no limitation on the type of semiconductor or the type of protective film of the light receiving unit in the semiconductor light receiving element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の半導体受光素子の実施例によるフォ
トダイオードアレイの平面図(a)及びA1−A2線の断
面図(b)。
FIG. 1A is a plan view of a photodiode array according to an embodiment of a semiconductor light receiving element of the present invention, and FIG. 1B is a cross-sectional view taken along line A1-A2.

【図2】 本発明の半導体受光素子の他の実施例の構成
を示す断面図。
FIG. 2 is a sectional view showing a configuration of another embodiment of the semiconductor light receiving element of the present invention.

【図3】 図1の実施例によるフォトダイオードアレイ
の動作を説明するための波形図。
FIG. 3 is a waveform chart for explaining the operation of the photodiode array according to the embodiment of FIG.

【図4】 本発明のフォトダイオードアレイを適用する
液体クロマトグラフ用分光光度計の概略構成図。
FIG. 4 is a schematic configuration diagram of a spectrophotometer for liquid chromatography to which the photodiode array of the present invention is applied.

【図5】 従来のフォトダイオードアレイの構成の一例
を示す平面図。
FIG. 5 is a plan view showing an example of a configuration of a conventional photodiode array.

【図6】 従来のフォトダイオードアレイで検出される
スペクトルを示す図。
FIG. 6 is a view showing a spectrum detected by a conventional photodiode array.

【図7】 従来のフォトダイオードにおける光の干渉現
象を説明するための断面図。
FIG. 7 is a cross-sectional view illustrating a light interference phenomenon in a conventional photodiode.

【符号の説明】[Explanation of symbols]

10…フォトダイオードアレイ 11…フォトダイオード 13…受光部 14…保護膜 DESCRIPTION OF SYMBOLS 10 ... Photodiode array 11 ... Photodiode 13 ... Light receiving part 14 ... Protective film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 受光面の表面に保護膜を有する半導体受
光素子において、該保護膜内部での光の干渉を軽減する
ために該保護膜の厚さを不均一に形成することを特徴と
する半導体受光素子。
1. A semiconductor light receiving element having a protective film on the surface of a light receiving surface, wherein the thickness of the protective film is formed to be non-uniform in order to reduce interference of light inside the protective film. Semiconductor light receiving element.
JP8312994A 1996-11-08 1996-11-08 Semiconductor photo-detector Pending JPH10144951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8312994A JPH10144951A (en) 1996-11-08 1996-11-08 Semiconductor photo-detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8312994A JPH10144951A (en) 1996-11-08 1996-11-08 Semiconductor photo-detector

Publications (1)

Publication Number Publication Date
JPH10144951A true JPH10144951A (en) 1998-05-29

Family

ID=18035961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8312994A Pending JPH10144951A (en) 1996-11-08 1996-11-08 Semiconductor photo-detector

Country Status (1)

Country Link
JP (1) JPH10144951A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158347A (en) * 2000-09-28 2002-05-31 Eastman Kodak Co Picture sensor
JP2006191047A (en) * 2004-12-30 2006-07-20 Magnachip Semiconductor Ltd Image sensor capable of adjusting focal length for every color and its manufacturing method
WO2021199597A1 (en) * 2020-04-03 2021-10-07 浜松ホトニクス株式会社 Solid-state imaging device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158347A (en) * 2000-09-28 2002-05-31 Eastman Kodak Co Picture sensor
JP2006191047A (en) * 2004-12-30 2006-07-20 Magnachip Semiconductor Ltd Image sensor capable of adjusting focal length for every color and its manufacturing method
WO2021199597A1 (en) * 2020-04-03 2021-10-07 浜松ホトニクス株式会社 Solid-state imaging device

Similar Documents

Publication Publication Date Title
US9435958B2 (en) Optical demultiplexing system
Hirschfeld Fellgett's advantage in UV-VIS multiplex spectroscopy
US6181418B1 (en) Concentric spectrometer
US5020910A (en) Monolithic diffraction spectrometer
US4715712A (en) Multiwavelength spectrophotometer
US6500521B2 (en) Stepped etalon
US9958320B2 (en) Apparatus for selectively transmitting the spectrum of electromagnetic radiation within a predefined wavelength range
TWI445933B (en) Color detector having area scaled photodetectors
JP2010133833A (en) Photometric device
US10976200B2 (en) Optical sensing device and method for manufacturing an optical sensing device
JPH10144951A (en) Semiconductor photo-detector
US4746793A (en) Mask for spectrophotometer photodiode array having a bridge portion that substantially covers each photodiode
US20120105847A1 (en) Spectrometric measurement system and method for compensating for veiling glare
US5773173A (en) Film thickness inspection method and apparatus
JPH0743212A (en) Spectroscopic sensor
US20200300699A1 (en) Method and apparatus for linear variable bandpass filter array optical spectrometer
US7164477B2 (en) Infrared spectrometer
KR20200126532A (en) Optical Transmittance Measurement System of Photovolaic Module
White A Photoelectric Observation of the Mean Solar Ha-LINE Profile.
KR20050077695A (en) Spectrometer using 2-dimensional image sensor and beam intensity filter
JPS6242006A (en) Film thickness measuring instrument for optical thin film
US20220221341A1 (en) Spectral reconstruction with multi-channel color sensors
Kellman et al. Acousto-optic channelized receivers
JP2000074742A (en) Spectroscope and light spectrum analyzer
GB2105939A (en) A spectrum analyser and other apparatus for detecting at least one particular frequency component in an electrical signal