JPH10143777A - Method for detecting fire in high temperature heat treatment process and device therefor - Google Patents

Method for detecting fire in high temperature heat treatment process and device therefor

Info

Publication number
JPH10143777A
JPH10143777A JP31143396A JP31143396A JPH10143777A JP H10143777 A JPH10143777 A JP H10143777A JP 31143396 A JP31143396 A JP 31143396A JP 31143396 A JP31143396 A JP 31143396A JP H10143777 A JPH10143777 A JP H10143777A
Authority
JP
Japan
Prior art keywords
fire
heat treatment
chromaticity
temperature heat
chromaticity coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31143396A
Other languages
Japanese (ja)
Other versions
JP3363044B2 (en
Inventor
Nobuhiro Saito
信浩 斉藤
Yoshiro Sugiyama
芳朗 杉山
Noboru Sasaki
昇 佐々木
Motochika Nakamura
元親 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Toyota Motor Corp
Original Assignee
Tokai Carbon Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd, Toyota Motor Corp filed Critical Tokai Carbon Co Ltd
Priority to JP31143396A priority Critical patent/JP3363044B2/en
Publication of JPH10143777A publication Critical patent/JPH10143777A/en
Application granted granted Critical
Publication of JP3363044B2 publication Critical patent/JP3363044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Emergency Alarm Devices (AREA)
  • Fire Alarms (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fire detecting method and device for quickly and exactly detecting fire occurrence in the processing process of a heat treated object in a high temperature heat treatment process. SOLUTION: In this fire detecting method, a prescribed visual field range in a high temperature heat treatment process is successively monitored by plural color CCD cameras 10, each picture element of an obtained color video is converted into chromaticity coordinates, only a preliminarily designated chromaticity area is extracted from among monitoring pictures, and the shape or shape change of the chromaticity coordinates is recognized by a fire recognition logic different for each monitoring picture so that fire occurrence can be detected. This device is provided with plural color CCD cameras 10 which monitor a prescribed visual field range in a high temperature heat treatment process, camera switcher 11 which switches color video pictures in each constant time, picture processor 12 which converts each picture element of the color video into the chromaticity coordinates, extracts only the chromaticity area to be monitored, and detects the shape or shape change of the chromaticity coordinates according to the logic corresponding to the monitoring area, and warning device 13 which detects the fire occurrence, and outputs a warning signal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、例えば金属あるい
はセラミックス等の部材を工業的に高温熱処理する工程
において、熱処理工程のトラブルで加熱処理物が発火し
たり、あるいは加熱処理物が近傍の易燃焼物と接触して
着火した場合などにおいて、それらの火災発生を迅速か
つ的確に検出することのできる高温熱処理工程における
火災検知方法および火災検知装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a process for industrially subjecting a member such as a metal or ceramics to high-temperature heat treatment. The present invention relates to a fire detection method and a fire detection device in a high-temperature heat treatment step capable of quickly and accurately detecting the occurrence of a fire, for example, when a fire is caused by contact with an object.

【0002】[0002]

【従来の技術】従来、CCDカメラを用いて火災等の異
常事態を監視するシステムとしては、例えば、監視部を
撮像するCCDカメラと、該カメラの撮像情報をメモリ
する複数の画像メモリと、CCDカメラの撮像およびメ
モリされた複数の画像処理により異常を判定する制御部
とからなり、前記CCDカメラには通常時に特定波長以
下の光のみを通過する赤外線カットフィルタと、該フィ
ルタを通過した複数の経時的画像間の輝度変化もしくは
像間差を生じた際に特定波長以下の光のみを通過させ、
あるいは特定波長帯域の光のみをカットするフィルタと
を切替可能に装着する方式(特公平3−65075 号公報)
や、監視すべき空間を挟んで設置された赤外線を輻射す
る光源と赤外線に感応するCCDと、該CCDに入射光
線を投影し、赤外線を透過するポリエチレンで作ったフ
レネル・レンズとを具備する火災検知装置(特開平4−
241094号公報) などが提案されている。しかしながら、
前者は輝度信号のみを捕捉するモノクロCCDカメラを
使用し、また赤外線フィルタは高温物体のみを対象とす
るものであるため、特定波長帯域の光を遮断したとして
もあらゆる波長域の自然光や人工光源による誤作動を防
止するには限界がある。一方、後者は空間に充満する煙
による赤外線の減衰を光学的に検知する方式であって画
像処理により火炎を判別するものではない。
2. Description of the Related Art Conventionally, as a system for monitoring an abnormal situation such as a fire using a CCD camera, for example, a CCD camera for capturing an image of a monitoring unit, a plurality of image memories for storing image information of the camera, a CCD camera, and the like. The CCD camera normally includes an infrared cut filter that passes only light having a wavelength equal to or less than a specific wavelength, and a plurality of infrared cut filters that pass through the filter. When a change in luminance between images over time or a difference between images occurs, only light of a specific wavelength or less passes,
Alternatively, a method is provided in which a filter that cuts only light in a specific wavelength band is switchably mounted (Japanese Patent Publication No. 3-65075).
Or a fire equipped with a light source that radiates infrared light and a CCD that is sensitive to infrared light, and a Fresnel lens made of polyethylene that transmits infrared light and transmits infrared light to the CCD. Detection device
No. 241094) has been proposed. However,
The former uses a monochrome CCD camera that captures only luminance signals, and the infrared filter targets only high-temperature objects, so even if light in a specific wavelength band is cut off, natural light or artificial light sources in any wavelength range will be used. There are limits to preventing malfunction. On the other hand, the latter is a method of optically detecting the attenuation of infrared rays due to smoke filling the space, and does not discriminate a flame by image processing.

【0003】カラーCCDカメラによる画像処理を用い
た火災検出手段としては、監視領域の画像を撮像する撮
像手段と、該撮像手段で把えた画像に含まれる輝度信号
が所定レベルを越える範囲を炎の輪郭として抽出する炎
輪郭抽出手段と、少なくとも炎輪郭抽出手段で抽出され
た炎輪郭内の温度分布を検出する温度検出手段と、火源
までの距離を測定する距離測定手段と、炎輪郭抽出手段
で抽出された炎輪郭内の分布温度と火源までの距離とに
基づいて火源からの放射エネルギを演算する放射エネル
ギ演算手段と、該放射エネルギ演算手段で求められた火
源の放射エネルギに基づいて火災を判断する火炎判断手
段とを備える装置(特開平5−20564 号公報)が提案さ
れている。この技術ではカラーCCDカメラで捉えたR
GB信号を画像処理しているが、RGBの光量比のみを
対象としているため外乱に基づく影響が大きく誤認判定
を招き易い問題点がある。
As fire detection means using image processing by a color CCD camera, an image pickup means for picking up an image of a monitoring area and a flame signal in a range where a luminance signal included in the image grasped by the image pickup means exceeds a predetermined level. Flame contour extracting means for extracting as a contour, temperature detecting means for detecting a temperature distribution in at least the flame contour extracted by the flame contour extracting means, distance measuring means for measuring a distance to a fire source, and flame contour extracting means Radiant energy calculating means for calculating the radiant energy from the fire source based on the distribution temperature in the flame contour and the distance to the fire source extracted in There has been proposed an apparatus having a flame judgment means for judging a fire based on the result (Japanese Patent Laid-Open No. 5-20564). In this technology, R captured by a color CCD camera
Although the GB signal is image-processed, it has a problem that it is largely affected by disturbance and easily leads to erroneous recognition determination because only the light amount ratio of RGB is targeted.

【0004】一方、カラー撮像装置で撮像した映像信号
により指定した色の画像を抽出する装置として、カラー
CCDカメラからのRGB信号をコンピューターを用い
て色相、彩度、明度、色調角、色調長等の成分に変換
し、基準色と比較することにより色画像を抽出する装置
や色順を判定する方式(特公平6−70590 号公報、同7
−92401 号公報、同7−49269 号公報、同7−198491号
公報等)が提案されている。この装置によれば基準色の
抽出が迅速容易にできるが、火災発生の検知に応用する
ことについては解明されていない。
On the other hand, as a device for extracting an image of a designated color from a video signal picked up by a color image pick-up device, an RGB signal from a color CCD camera is used by a computer to calculate hue, saturation, brightness, tone angle, tone length, and the like. And a method for determining a color order by extracting a color image by comparing with a reference color (Japanese Patent Publication No. 6-70590, and
-92401, 7-49269, 7-198491, etc.). According to this device, the reference color can be extracted quickly and easily, but its application to detection of fire occurrence has not been elucidated.

【0005】[0005]

【発明が解決しようとする課題】一般に、部品工場にお
いて加熱炉により金属あるいはセラミックスなどの中間
部材を熱処理する工程、例えば歯車、各種ロッド、スプ
リングなどの鉄鋼製部材を熱処理する工程では、熱処理
工程のトラブルで加熱処理部材が発火したり、高温熱処
理部材が移動する間に搬送装置から床に落下したり、床
や設備に付着している油、紙、プラスチック、木材など
の易燃焼物と接触して着火し、火災を発生することがあ
る。このような環境下で火災検知を行う場合には、監視
領域内にある高温熱処理材が発する赤熱光や加熱炉から
の漏洩火炎などと、火災による火炎との識別が困難なケ
ースが多く、また熱処理設備が複雑で、照明や外来光が
不規則に存在する場合には、これらの周囲光を火災と誤
認することもある。
Generally, in the process of heat-treating an intermediate member such as metal or ceramics by a heating furnace in a parts factory, for example, the process of heat-treating steel members such as gears, various rods, and springs, a heat treatment process is performed. The heat treatment member ignites due to a trouble, drops from the transfer device to the floor while the high temperature heat treatment member moves, or comes in contact with easily combustible materials such as oil, paper, plastic, and wood adhering to the floor or equipment. May ignite and cause fire. When performing fire detection in such an environment, it is often difficult to distinguish between the glow emitted from the high-temperature heat-treated material in the monitoring area and the flame leaking from the heating furnace, and the flame caused by the fire. If the heat treatment equipment is complex and lighting and extraneous light are present irregularly, these ambient lights may be mistaken for a fire.

【0006】本発明者らは、このような環境下における
火災発生を的確に検知するための手段について研究を進
めた結果、高温熱処理工程を複数台のカラーCCDカメ
ラで監視して得られたカラー映像を色度座標に変換する
と、高温の加熱処理物が示す色度は照明や外来光などの
外乱光とは異なる色度となることに着目し、加熱処理物
の色度領域のみを分離して取り出し、この色度領域の挙
動から火災発生を的確に検知できることを見出した。
The present inventors have conducted research on a means for accurately detecting the occurrence of a fire in such an environment, and as a result, the color obtained by monitoring the high-temperature heat treatment process with a plurality of color CCD cameras. When the image is converted to chromaticity coordinates, focusing on the fact that the chromaticity of the high-temperature heat-treated object is different from that of disturbance light such as illumination or extraneous light, only the chromaticity region of the heat-treated object is separated. It was found that the occurrence of a fire could be accurately detected from the behavior of the chromaticity region.

【0007】本発明はこの知見に基づいて開発されたも
ので、その目的は、金属やセラミックス等の部材を工業
的に高温熱処理する工程において、加熱処理物の発火に
よる火災を、高温熱処理材が発する赤熱光や加熱炉の漏
洩火炎あるいは照明や太陽光などの外来光と識別して、
火災を的確に検知することのできる火災検知方法および
装置を提供することにある。
The present invention has been developed on the basis of this finding. The object of the present invention is to provide a method for industrially performing high-temperature heat treatment of a member such as a metal or ceramic in order to prevent a fire caused by ignition of a heat-treated material and to use a high-temperature heat-treated material. By distinguishing it from the glowing red light, the leaking flame of the heating furnace, or the extraneous light such as lighting and sunlight,
It is an object of the present invention to provide a fire detection method and device capable of accurately detecting a fire.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による高温熱処理工程における火災検知方法
は、複数台のカラーCCDカメラで高温熱処理工程の所
定の視野範囲を順次監視して、得られたカラー映像の各
画素を色度座標に変換し、監視画像の中から予め指定し
た色度領域のみを取り出して監視画像毎に異なる火災認
識ロジックにより色度座標の形状あるいは形状変化を認
識して、火災発生を検出することを構成上の特徴とす
る。
According to the present invention, there is provided a method for detecting a fire in a high-temperature heat treatment step according to the present invention, wherein a plurality of color CCD cameras sequentially monitor a predetermined visual field range of the high-temperature heat treatment step. Each pixel of the obtained color image is converted into chromaticity coordinates, only the chromaticity area specified in advance is extracted from the monitoring image, and the shape or shape change of the chromaticity coordinate is recognized by a fire recognition logic that differs for each monitoring image. Then, it is characterized by detecting the occurrence of fire.

【0009】また、その火災検知装置は、高温熱処理工
程の所定の視野範囲を監視する複数台のカラーCCDカ
メラと、カラー映像画面を一定時間毎に切り替えるカメ
ラスイッチャーと、カラー映像の各画素を色度座標に変
換して監視対象の色度領域のみを取り出し、監視領域に
対応したロジックにしたがって色度座標の形状あるいは
形状変化を検出する画像処理装置と、火災発生を検出し
て警報信号を出力する警報装置とからなることを構成上
の特徴とする。
Further, the fire detection device includes a plurality of color CCD cameras for monitoring a predetermined visual field range in a high-temperature heat treatment process, a camera switcher for switching a color image screen at regular time intervals, and a method for coloring each pixel of a color image. Converts to chromaticity coordinates, extracts only the chromaticity area to be monitored, detects the shape or shape change of chromaticity coordinates according to the logic corresponding to the monitored area, and outputs an alarm signal when a fire is detected And an alarm device that performs the function.

【0010】[0010]

【発明の実施の形態】金属やセラミックス等を高温に加
熱すると赤熱光を発し、加熱温度によって色調が変化す
ることは知られており、この温度と色調の関係は色度座
標における黒体軌跡上の位置と温度の関係で示すことが
できる。本発明はこの点に着目して、カラー映像の画面
内の各部分の色調を色度座標上の座標値(x,y)に置
き換えて、黒体軌跡上で加熱処理物が示す温度範囲近傍
にある部分を加熱処理物と認識するものである。火災発
生時の火災が示す色調は、温度が分布しているにも拘ら
ず加熱処理物が示す色調を必ず含んでおり、加熱処理材
と火災発生時の火炎は色度座標上で同じ分布範囲に属し
ていることになる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS It is known that heating metals and ceramics to a high temperature emits red light, and the color tone changes according to the heating temperature. The relationship between the temperature and the color tone depends on the locus of the black body in the chromaticity coordinates. Can be indicated by the relationship between the position and the temperature. Focusing on this point, the present invention replaces the color tone of each part in the screen of the color image with the coordinate value (x, y) on the chromaticity coordinates, and the vicinity of the temperature range indicated by the heat-treated object on the blackbody locus. Is recognized as a heat-treated product. The color tone of a fire at the time of fire occurrence always includes the color tone of a heat-treated product despite the distribution of temperature, and the heat treatment material and the flame at the time of the fire occurrence have the same distribution range on the chromaticity coordinates. It belongs to.

【0011】したがって、例えば加熱処理材が周囲の物
体と接触して発火したような場合にも同じ色度値で両者
を同時に認識することが可能であり、また太陽光、溶接
光、照明などの外来光が示す色度と加熱処理材が示す色
度とは表1に示したように大きく異なっているので、こ
れら外来光を火災発生と誤判断することはない。
Therefore, for example, even when the heat-treated material ignites when it comes into contact with a surrounding object, it is possible to recognize the two at the same time with the same chromaticity value. Since the chromaticity indicated by the extraneous light and the chromaticity indicated by the heat-treated material are greatly different as shown in Table 1, the extraneous light is not erroneously determined to be a fire.

【0012】[0012]

【表1】 [Table 1]

【0013】すなわち、表1から判るように金属、セラ
ミックスなどの加熱処理材や火炎光の色度座標(x,
y)値は、概ね(0.5、0.3)から(0.7、0.
4)の範囲にあり、太陽光、溶接光、照明などの外来光
の色度座標値とは明瞭に異なるので、火炎の色度領域の
みを容易に取り出すことが可能である。また、カラー映
像の各画素から色度座標への変換は、CPUによりカラ
ー画像の三原色値から色度を高速で算出することができ
る。なお、色度座標値はR、G、B(R;波長 700nm、G;
波長 546.3nm、B;波長 435.8nm)の測定値から算出した
ものである。
That is, as can be seen from Table 1, the chromaticity coordinates (x,
y) values are generally between (0.5, 0.3) and (0.7, 0.
Since it is in the range of 4) and is clearly different from the chromaticity coordinate values of extraneous light such as sunlight, welding light, and illumination, it is possible to easily extract only the chromaticity region of the flame. In the conversion of each pixel of the color image into chromaticity coordinates, the chromaticity can be calculated at high speed from the three primary color values of the color image by the CPU. The chromaticity coordinate values are R, G, B (R; wavelength 700 nm, G;
It is calculated from the measured values of wavelength 546.3 nm, B; wavelength 435.8 nm).

【0014】取り出した色度領域について観測視野内に
ある対象毎に、すなわち監視画像毎に異なる火災認識ロ
ジックにしたがって色度座標の形状あるいは形状変化を
認識する。 (1)高温物体の認識と火災認識ロジック:熱処理材が油
や可燃物体と接触して発生する火災を検知するには、先
ず画面内にある高温物体を色度値から認識するとが必要
である。すなわち、画像処理装置に予め表1に示した高
温物体の色度座標の範囲をファイルしておき、カラー画
像の各点の色度をこのファイルと照合して合致した部分
を熱処理材と判断する。このようにしてカラー画像から
熱処理材に対応した高温領域が取り出される。火災の検
知は熱処理材に対応した領域の形状や形状変化を利用し
て行う。火炎は熱処理材と同一の色度を示すことから、
例えば火災が発生すると高温領域が急激に増加し、形状
が変化する。また、高温領域が視野から急激に消滅した
り、あるいは急に現れたりする場合には熱処理材や火粉
が落下して正常な軌跡から外れたことを示し、搬送異常
と判定する。この際における形状変化の内容や程度、形
状変化の割合などは、視野内の装置の配置、加熱処理物
の移動状態などをパラメータとして設定される。
With respect to the extracted chromaticity region, the shape or shape change of the chromaticity coordinates is recognized for each object within the observation visual field, that is, for each monitoring image according to a different fire recognition logic. (1) High-temperature object recognition and fire recognition logic: To detect a fire that occurs when the heat-treated material comes into contact with oil or a flammable object, it is necessary to first recognize the high-temperature object in the screen from the chromaticity value. . That is, the range of the chromaticity coordinates of the high-temperature object shown in Table 1 is stored in the image processing apparatus in advance, and the chromaticity of each point of the color image is compared with this file to determine a matched part as the heat-treated material. . In this way, a high-temperature region corresponding to the heat-treated material is extracted from the color image. Fire detection is performed using the shape or shape change of the region corresponding to the heat-treated material. Since the flame shows the same chromaticity as the heat-treated material,
For example, when a fire occurs, the high-temperature region rapidly increases, and the shape changes. If the high-temperature region suddenly disappears or suddenly appears from the visual field, it indicates that the heat-treated material or the spark has fallen out of a normal trajectory, and it is determined that the conveyance is abnormal. At this time, the content and degree of the shape change, the rate of the shape change, and the like are set using the arrangement of the device in the visual field, the moving state of the heat-treated object, and the like as parameters.

【0015】(2)プロセス信号の併用:高温熱処理工程
には加熱処理物以外にも同様な色度を示す物体が数多く
存在する。例えば加熱炉内部は高温であり、加熱炉から
漏洩する火炎や加熱炉内部の煉瓦が示す色度は加熱処理
物と同じである。このような場合には加熱炉扉の開閉信
号をプロセス制御コンピュータから伝送し、この制御信
号とリンクさせることにより火災発生と誤認することが
防止される。なお、プロセス信号としてはコンピュータ
のシーケンス信号以外にも各種のセンサ、分析機器の信
号を併用することもできる。
(2) Combination of process signals: In the high-temperature heat treatment step, there are many objects having similar chromaticity other than the heat-treated material. For example, the inside of the heating furnace has a high temperature, and the flame that leaks from the heating furnace and the chromaticity of the brick inside the heating furnace are the same as those of the heat-treated product. In such a case, the open / close signal of the heating furnace door is transmitted from the process control computer and linked with this control signal, thereby preventing a fire from being erroneously recognized. As the process signal, signals from various sensors and analyzers can be used in addition to the sequence signal from the computer.

【0016】本発明は、上記の火災認識ロジックを適宜
組み合わせて、それぞれのカメラが監視する監視領域に
応じて最適なロジックを構成したマルチカメラ方式によ
るものであるから、適応範囲が広く、迅速、的確に火災
発生を検知することが可能となる。更に学習機能を持た
せたロジックを適用して、火災検知のパラメータを最適
化すると信頼性を一層向上させることができる。
The present invention is based on a multi-camera system in which the above-described fire recognition logics are appropriately combined and an optimum logic is configured according to a monitoring area monitored by each camera. It is possible to accurately detect the occurrence of a fire. Further, by applying a logic having a learning function and optimizing the parameters of the fire detection, the reliability can be further improved.

【0017】[0017]

【実施例】以下、本発明の実施例を歯車、ロッド、スプ
リングなどの鉄鋼製部材を連続的に高温熱処理する場合
を例に詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described in detail below, taking as an example the case where steel members such as gears, rods and springs are continuously subjected to high-temperature heat treatment.

【0018】図2は熱処理した部材を搬送する工程を模
式的に示した熱処理工程図である。図2において、加熱
炉1に自動的に装入された歯車、ロッド、スプリングな
どの加熱処理物2は、一定時間毎に加熱炉1の扉3を開
閉して第1ロボット4のアーム5により高温に加熱され
た状態で取り出され中間置台6上に置かれる。次いで第
2ロボット7のアーム8により中間置台6上の加熱処理
物2を把持して冷却台9に運び、所定温度以下に冷却し
た後、製品置場に搬出される。
FIG. 2 is a heat treatment process diagram schematically showing a process of transporting the heat-treated member. In FIG. 2, a heat-treated product 2 such as a gear, a rod, or a spring automatically charged into the heating furnace 1 opens and closes a door 3 of the heating furnace 1 at regular time intervals, and the arm 5 of the first robot 4 opens and closes the door. It is taken out while being heated to a high temperature and placed on the intermediate table 6. Next, the heat-treated product 2 on the intermediate table 6 is gripped by the arm 8 of the second robot 7, carried to the cooling table 9, cooled to a predetermined temperature or lower, and then carried out to the product storage area.

【0019】この工程において、下記に示すような様々
な形態の火災が発生する。 加熱炉扉付近の火災;加熱炉の扉部分から火炎が外部
に漏れ、周囲の物体に接触して火災を発生することがあ
る。 加熱処理物の落下による火災;第1ロボットのアーム
が掴んだ加熱処理物は、一旦中間置台に置かれ、次いで
第2ロボットのアームで冷却台に搬送されるが、この際
アームの把持状態が不調であると加熱処理物を床に落と
してしまう。床に落下した加熱処理物は周囲にある可燃
物や床に付着している油と接触して火災を発生すること
がある。 中間置台の火災;第1ロボットと第2ロボットの連係
が不調であると、加熱処理物がスムースに搬送されず、
加熱処理物が中間置台上に溜まって火災発生の原因とな
ることがある。 ロボットの火災;ロボットのアームグリップ部に油が
付着していると、これに着火して火災発生の原因となる
ことがある。
In this step, various types of fires occur as described below. Fire near heating furnace door: Flames may leak out of the heating furnace door and come into contact with surrounding objects, causing a fire. Fire due to falling of heat-treated material; heat-treated material grasped by arm of first robot is temporarily placed on intermediate table, and then transported to cooling table by arm of second robot. If unsatisfactory, the heat-treated product will fall on the floor. The heat-treated product that has dropped onto the floor may come into contact with surrounding combustibles or oil adhering to the floor, causing a fire. Intermediate table fire; If the linkage between the first robot and the second robot is not normal, the heat-treated product will not be smoothly transported,
The heat-treated material may accumulate on the intermediate table, causing a fire. Robot fire: If oil adheres to the arm grip of the robot, it may ignite and cause a fire.

【0020】これらの火災発生に対して、下記のロジッ
クにより火災発生を認識する。 (1)加熱処理物の搬送異常監視ロジック(L1);ロボッ
ト自身の診断機能で判別できない搬送動作の異常、例え
ば中間置台上への加熱処理物の置き方が不的確であれば
第2ロボットは正確に加熱処理物を把持できない。この
ような場合にはカラーCCDカメラで中間置台を監視し
て、ロボットからのシーケンス信号により加熱処理物を
中間置台に置いた時点で加熱処理物の形状を認識して、
適正な状態で加熱処理物が置かれているか判定する。ま
た中間置台で火災が発生した時点では高温領域の形状が
大幅に変化することから、火災発生を的確に検知でき
る。
For these fire occurrences, the following logic recognizes the fire occurrence. (1) Heating object transfer abnormality monitoring logic (L1): If there is an abnormality in the transfer operation that cannot be determined by the diagnosis function of the robot itself, for example, if the heating object is improperly placed on the intermediate table, the second robot will The heat-treated product cannot be grasped accurately. In such a case, the intermediate stage is monitored by the color CCD camera, and the shape of the heat-treated object is recognized when the heated object is placed on the intermediate stage by a sequence signal from the robot.
It is determined whether the heat-treated product is placed in an appropriate state. Further, when a fire occurs on the intermediate stage, the shape of the high-temperature area changes significantly, so that the occurrence of the fire can be accurately detected.

【0021】(2)加熱処理物あるいは火粉の床への落下
による発火監視ロジック(L2);加熱処理物や火粉が搬
送ラインから落下して床に落ち、床に付着している油や
易燃焼物と接触して火災を発生する場合がある。このよ
うな場合には床を監視するカメラの視野内に高温物体が
現れた時点で高温材料の落下と判断して警報信号を発す
る。更に火災が発生した場合には高温領域の形状が急激
に変化するので、この時点で火災発生が検知される。こ
の監視領域においては、高温領域の発生と形状の急変を
観測して火災発生を認識するロジックが用いられる。
(2) Ignition monitoring logic (L2) due to the fall of the heat-treated material or sparks onto the floor; the heat-treated material or sparks fall from the transport line and fall on the floor, and the oil adhering to the floor A fire may occur on contact with easily combustible materials. In such a case, when a high-temperature object appears in the field of view of the camera monitoring the floor, it is determined that the high-temperature material has dropped, and an alarm signal is issued. Further, when a fire occurs, the shape of the high-temperature area changes rapidly, so that the occurrence of the fire is detected at this point. In this monitoring area, logic for recognizing the occurrence of a fire by observing the occurrence of a high-temperature area and a sudden change in shape is used.

【0022】(3)ロボットアームのグリップ発火監視ロ
ジック(L3);ロボットのアームに付着している油に着
火する場合があり、この場合には視野内で加熱処理物が
移動する際に視差の関係でカメラから加熱処理物が遠ざ
かるにつれ緩やかに高温領域の大きさが減少し、逆に近
づく場合には高温領域が緩やかに増大する。このような
状態でロボットアームが加熱処理物を把持しているグリ
ップ部から発火した場合には、高温部分の面積が急激に
増加する。したがって、この面積の増大によって火災が
検知される。
(3) Grip firing monitoring logic (L3) of the robot arm: There is a case where oil adhering to the robot arm is ignited. In this case, the parallax when the heat-treated material moves within the visual field is detected. In this connection, the size of the high-temperature region gradually decreases as the heat-treated object moves away from the camera, and the size of the high-temperature region gradually increases when the heat treatment object approaches the camera. In such a state, when the robot arm ignites from the grip portion holding the heat-treated material, the area of the high-temperature portion sharply increases. Therefore, a fire is detected by this increase in the area.

【0023】(4)加熱炉扉からの発火監視ロジック(L
4);加熱炉の扉が開いている場合には高温の炉内や漏洩
火炎が視野に入り、火災発生と誤判断する。このような
場合には、炉扉が開いた時に示す高温領域の形状を記憶
させておき、炉扉の開閉信号を画像処理装置に入力して
炉扉の開いている時間は高温領域が予め指定した形状を
示す限り火災発生と認識せず、炉扉が閉じた後に高温領
域を検出した場合には火災発生と判断するロジックを使
用する。
(4) Logic for monitoring ignition from heating furnace door (L
4); If the door of the heating furnace is open, the inside of the high-temperature furnace or the leaked flame can be seen, and it is erroneously determined that a fire has occurred. In such a case, the shape of the high-temperature area indicated when the furnace door is opened is stored, and the open / close signal of the furnace door is input to the image processing apparatus, and the time during which the furnace door is open is specified in advance. If a high temperature area is detected after the furnace door is closed, logic is used to determine that a fire has occurred, as long as the fired shape is indicated.

【0024】本発明の火災検知装置を例示したシステム
構成図を図1に示した。図1は6台のカラーCCDカメ
ラ10を配置した場合を示したもので、カメラスイッチャ
ー11により0.2秒毎にカラーCCDカメラ10を順次切
り換えて熱処理の全工程を監視している。この場合、カ
メラスイッチャー11と並列にビデオモニタを接続して監
視領域をモニタすることにより、全視野を1.2秒間隔
で監視することができる。
FIG. 1 shows a system configuration diagram illustrating a fire detection device according to the present invention. FIG. 1 shows a case in which six color CCD cameras 10 are arranged, and the color CCD cameras 10 are sequentially switched every 0.2 seconds by a camera switcher 11 to monitor all the steps of the heat treatment. In this case, by connecting a video monitor in parallel with the camera switcher 11 and monitoring the monitoring area, the entire field of view can be monitored at 1.2 second intervals.

【0025】6台のカメラから順次送られるカラー映像
信号は画像処理装置12に送られ、カラーCCDカメラ10
の切り換え信号は画像処理装置12のコンピュータにより
監視位置の確認信号として用いられる。このようにして
6台のカラーCCDカメラから順次伝送される映像信号
は、上記した各監視領域に対応したロジックにより火災
発生を判定することができ、火災発生を検知した場合に
は直ちに警報装置13から警報信号が出力される。このシ
ステムにおいて、各カラーCCDカメラの配置場所およ
び監視対象と上記の火災認識ロジックとの関係を表2に
例示した。
The color video signals sequentially sent from the six cameras are sent to the image processing device 12 and the color CCD camera 10
Is used as a confirmation signal of the monitoring position by the computer of the image processing apparatus 12. In this manner, the video signals sequentially transmitted from the six color CCD cameras can determine the occurrence of a fire by the logic corresponding to each of the monitoring areas described above. Outputs an alarm signal. In this system, Table 2 shows the relationship between the location of each color CCD camera, the object to be monitored, and the fire recognition logic described above.

【0026】[0026]

【表2】 [Table 2]

【0027】上記のシステムおよび火災認識ロジックに
より、高温熱処理工程の火災を検知した結果の一例を表
3に示した。
Table 3 shows an example of the result of detecting a fire in the high-temperature heat treatment step by the above system and the fire recognition logic.

【0028】[0028]

【表3】 [Table 3]

【0029】また、カメラ番号3により床を監視し、火
災認識ロジックL2 により火災発生を検知した場合の高
温領域の形状変化を図3に例示した。図3は高温領域を
長軸と短軸で表し、その時間変化を示したもので、長
軸、短軸ともに火災発生時点から急激に増大しているこ
とが判る。
FIG. 3 illustrates a change in the shape of the high-temperature area when the floor is monitored by the camera number 3 and a fire occurrence is detected by the fire recognition logic L2. FIG. 3 shows the high temperature region by a long axis and a short axis, and shows the time change. It can be seen that both the long axis and the short axis sharply increase from the time of the fire occurrence.

【0030】[0030]

【発明の効果】以上のとおり、本発明の火災検知方法お
よび火災検知装置によれば、高温熱処理工程の所定の視
野毎に複数台のカラーCCDカメラで監視して、得られ
た画像の各画素を色度座標に変換し、予め指定した色度
領域のみを取り出して監視画像毎に異なる火災認識ロジ
ックに基づいて色度座標の形状やその変化を認識するこ
とにより火災発生を検出するものであるから、加熱炉か
らの漏洩火炎や照明、外来光などの外乱光と誤認するこ
となく、迅速、的確に火災発生を検知することが可能と
なる。したがって、金属やセラミックス等の部材を工業
的に高温熱処理する工程における火災検知方法および装
置として極めて有用である。
As described above, according to the fire detecting method and the fire detecting apparatus of the present invention, each pixel of the obtained image is monitored by a plurality of color CCD cameras for each predetermined visual field in the high-temperature heat treatment step. Is converted into chromaticity coordinates, only the chromaticity region designated in advance is extracted, and the occurrence of a fire is detected by recognizing the shape of the chromaticity coordinates and its change based on a fire recognition logic that differs for each monitoring image. Therefore, it is possible to quickly and accurately detect the occurrence of a fire without erroneously recognizing the light as a disturbance light such as a leakage flame from a heating furnace, lighting, or extraneous light. Therefore, it is extremely useful as a method and apparatus for detecting a fire in the step of industrially heat-treating a member such as a metal or ceramic.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の火災検知装置を例示したシステム構成
図である。
FIG. 1 is a system configuration diagram illustrating a fire detection device of the present invention.

【図2】熱処理した部材を搬送する工程を模式的に示し
た熱処理工程図である。
FIG. 2 is a heat treatment process diagram schematically showing a process of transporting a heat-treated member.

【図3】火災発生を検知した場合の高温領域の形状変化
と経過時間との関係を例示したグラフである。
FIG. 3 is a graph illustrating a relationship between a change in shape of a high-temperature region and an elapsed time when a fire occurrence is detected.

【符号の説明】[Explanation of symbols]

1 加熱炉 2 加熱処理物 3 扉 4 第1ロボット 5 第1ロボットのアーム 6 中間置台 7 第2ロボット 8 第2ロボットのアーム 9 冷却台 10 カラーCCDカメラ 11 カメラスイッチャー 12 画像処理装置 13 警報装置 DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Heat processing thing 3 Door 4 1st robot 5 1st robot arm 6 Intermediate stage 7 2nd robot 8 2nd robot arm 9 Cooling stand 10 Color CCD camera 11 Camera switcher 12 Image processing device 13 Alarm device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G08B 21/00 G08B 21/00 A E H04N 7/18 H04N 7/18 N (72)発明者 佐々木 昇 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 中村 元親 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification code FI G08B 21/00 G08B 21/00 AE H04N 7/18 H04N 7/18 N (72) Inventor Noboru Sasaki Toyota-cho, Toyota-shi, Aichi Prefecture 1st Toyota Motor Corporation (72) Inventor Motochika Nakamura 1st Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数台のカラーCCDカメラで高温熱処
理工程の所定の視野範囲を順次監視して、得られたカラ
ー映像の各画素を色度座標に変換し、監視画像の中から
予め指定した色度領域のみを取り出して監視画像毎に異
なる火災認識ロジックにより色度座標の形状あるいは形
状変化を認識して、火災発生を検出することを特徴とす
る高温熱処理工程における火災検知方法。
1. A plurality of color CCD cameras sequentially monitor a predetermined visual field range in a high-temperature heat treatment process, convert each pixel of an obtained color image into chromaticity coordinates, and designate a pixel designated in advance from a monitored image. A fire detection method in a high-temperature heat treatment process, wherein only a chromaticity region is extracted and a shape or a change in shape of chromaticity coordinates is recognized by a fire recognition logic different for each monitoring image to detect a fire occurrence.
【請求項2】 高温熱処理工程の所定の視野範囲を監視
する複数台のカラーCCDカメラと、カラー映像画面を
一定時間毎に切り替えるカメラスイッチャーと、カラー
映像の各画素を色度座標に変換して監視対象の色度領域
のみを取り出し、監視領域に対応したロジックにしたが
って色度座標の形状あるいは形状変化を検出する画像処
理装置と、火災発生を検出して警報信号を出力する警報
装置とからなることを特徴とする高温熱処理工程におけ
る火災検知装置。
2. A plurality of color CCD cameras for monitoring a predetermined visual field range in a high-temperature heat treatment step, a camera switcher for switching a color image screen at predetermined time intervals, and converting each pixel of a color image into chromaticity coordinates. It consists of an image processing device that extracts only the chromaticity region to be monitored and detects the shape or shape change of the chromaticity coordinates according to the logic corresponding to the monitoring region, and an alarm device that detects a fire occurrence and outputs an alarm signal. A fire detection device in a high-temperature heat treatment step.
JP31143396A 1996-11-07 1996-11-07 Fire detection method and apparatus in high temperature heat treatment process Expired - Fee Related JP3363044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31143396A JP3363044B2 (en) 1996-11-07 1996-11-07 Fire detection method and apparatus in high temperature heat treatment process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31143396A JP3363044B2 (en) 1996-11-07 1996-11-07 Fire detection method and apparatus in high temperature heat treatment process

Publications (2)

Publication Number Publication Date
JPH10143777A true JPH10143777A (en) 1998-05-29
JP3363044B2 JP3363044B2 (en) 2003-01-07

Family

ID=18017160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31143396A Expired - Fee Related JP3363044B2 (en) 1996-11-07 1996-11-07 Fire detection method and apparatus in high temperature heat treatment process

Country Status (1)

Country Link
JP (1) JP3363044B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013152194A (en) * 2012-01-26 2013-08-08 Buriizu:Kk Infrared camera and temperature detection method of infrared emission source
WO2015087163A3 (en) * 2013-12-13 2015-09-24 Michael Newton Flame detection system and method
JP2017097702A (en) * 2015-11-26 2017-06-01 株式会社日立国際八木ソリューションズ Monitor system and monitor control device of the same
CN111488868A (en) * 2020-03-27 2020-08-04 贵州电网有限责任公司 High-temperature area identification method and system based on transformer infrared image
CN111899458A (en) * 2020-07-27 2020-11-06 山东工商学院 Artificial intelligence-based fire smoke image identification method
CN113554845A (en) * 2021-06-25 2021-10-26 东莞市鑫泰仪器仪表有限公司 Be used for forest fire prevention thermal imaging device
CN115439997A (en) * 2022-11-07 2022-12-06 北京中海兴达建设有限公司 Fire early warning method, device, equipment and readable storage medium

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013152194A (en) * 2012-01-26 2013-08-08 Buriizu:Kk Infrared camera and temperature detection method of infrared emission source
WO2015087163A3 (en) * 2013-12-13 2015-09-24 Michael Newton Flame detection system and method
GB2535409A (en) * 2013-12-13 2016-08-17 Newton Michael Flame detection system and method
US9530074B2 (en) 2013-12-13 2016-12-27 Michael Newton Flame detection system and method
GB2535409B (en) * 2013-12-13 2018-04-18 Newton Michael Flame detection system and method
JP2017097702A (en) * 2015-11-26 2017-06-01 株式会社日立国際八木ソリューションズ Monitor system and monitor control device of the same
CN111488868A (en) * 2020-03-27 2020-08-04 贵州电网有限责任公司 High-temperature area identification method and system based on transformer infrared image
CN111488868B (en) * 2020-03-27 2023-06-30 贵州电网有限责任公司 High-temperature area identification method and system based on transformer infrared image
CN111899458A (en) * 2020-07-27 2020-11-06 山东工商学院 Artificial intelligence-based fire smoke image identification method
CN113554845A (en) * 2021-06-25 2021-10-26 东莞市鑫泰仪器仪表有限公司 Be used for forest fire prevention thermal imaging device
CN113554845B (en) * 2021-06-25 2022-09-30 东莞市鑫泰仪器仪表有限公司 Be used for forest fire prevention thermal imaging device
CN115439997A (en) * 2022-11-07 2022-12-06 北京中海兴达建设有限公司 Fire early warning method, device, equipment and readable storage medium

Also Published As

Publication number Publication date
JP3363044B2 (en) 2003-01-07

Similar Documents

Publication Publication Date Title
US5153722A (en) Fire detection system
US4555800A (en) Combustion state diagnostic method
JP7211622B2 (en) Intelligent spark detection device and method using infrared thermal image
JP3994355B2 (en) Automatic fire detection method and automatic fire detection device
US20120314080A1 (en) Gas leakage detecting system and method
CN113643495B (en) Intelligent auxiliary analysis system and method for fire cause investigation
EP3080788B1 (en) Flame detection system and method
JP3363044B2 (en) Fire detection method and apparatus in high temperature heat treatment process
KR101816769B1 (en) Fire detector for sensing fire using Internet united Protocol camera and sensor for sensing fire and method for sensing fire thereof
US7154400B2 (en) Fire detection method
CN111627184A (en) Alarm linkage system
JP4745863B2 (en) Flame visualization device
JPH08305980A (en) Device and method for flame detection
JP2007078313A (en) Flame detection device
JP4732377B2 (en) Pilot flame monitoring method and apparatus
EP0165169A2 (en) Processing method of a video image for tracking a luminous object and for protecting this tracking against other jamming luminous objects
JPH10239202A (en) Method and device for leakage detection
JPH09293185A (en) Object detection device/method and object monitoring system
JP2605581B2 (en) How to discharge falling cans, etc.
JPH0711414B2 (en) Glass bottle uneven thickness inspection method
TWI284863B (en) Image recognition system for smoke and temperature distribution
DK176996B1 (en) Fire detection system and method for early fire detection
JP3496746B2 (en) Flame detector
JP2002298144A (en) Automatic target detection and identification processing method, device, and program, recording medium and visual camera device
JPH11295142A (en) Infrared image pickup device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees