JPH10142193A - Method and apparatus for measuring concentration with utilizing phchange reaction - Google Patents
Method and apparatus for measuring concentration with utilizing phchange reactionInfo
- Publication number
- JPH10142193A JPH10142193A JP8302090A JP30209096A JPH10142193A JP H10142193 A JPH10142193 A JP H10142193A JP 8302090 A JP8302090 A JP 8302090A JP 30209096 A JP30209096 A JP 30209096A JP H10142193 A JPH10142193 A JP H10142193A
- Authority
- JP
- Japan
- Prior art keywords
- substance
- measured
- reaction
- potential difference
- sensitive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、生物学的、生化学
的、化学的な反応によりもたらされるpH変化を利用し
て、これらの各反応に寄与する物質の濃度を測定する方
法、及びそのための装置に関する。The present invention relates to a method for measuring the concentration of a substance contributing to each of these reactions by utilizing a pH change caused by a biological, biochemical or chemical reaction, and a method for measuring the same. Device.
【0002】[0002]
【従来の技術】従来から、菌類を固定した微生物センサ
ーを用いて、水質汚濁の指標となる生物化学的酸素消費
量(BOD)の測定が行われている。また、医療や食品
の分野では、グルコース濃度の測定に酵素(グルコース
オキシダーゼ)を用いた酵素センサーが使用されてい
る。2. Description of the Related Art Conventionally, biochemical oxygen consumption (BOD), which is an indicator of water pollution, has been measured using a microorganism sensor having fungi immobilized thereon. In the fields of medicine and food, an enzyme sensor using an enzyme (glucose oxidase) is used for measuring glucose concentration.
【0003】例えば、グルコースの測定においては、グ
ルコースオキシダーゼを固定化した固定化酵素膜や固定
化酵素カラムを使用して、グルコースオキシダーゼがグ
ルコースをグルコン酸に酸化する生化学的反応によって
生じる物質を測定していた。具体的には、反応により生
成される過酸化水素の酸化電流を測定するか、又は反応
により消費される酸素の還元電流を測定することによっ
て、グルコース濃度が求められている。For example, in the measurement of glucose, a substance produced by a biochemical reaction in which glucose oxidase oxidizes glucose to gluconic acid is measured using an immobilized enzyme membrane or an immobilized enzyme column on which glucose oxidase is immobilized. Was. Specifically, the glucose concentration is determined by measuring the oxidation current of hydrogen peroxide generated by the reaction or by measuring the reduction current of oxygen consumed by the reaction.
【0004】しかし、これらの測定方法においては、生
物学的反応や生化学的反応によって生成された物質を、
当該物質に選択的に感応する電極、例えば酸素電極、過
酸化水素電極、アンモニアガス電極、アンモニアイオン
電極、炭酸ガス電極等を用いて測定するため、生成され
る物質ごとに専用の電極及び測定装置を用いる必要があ
った。しかも、酵素等の固定化にカラムを使用した場合
には感度が低下しやすいため、測定できる物質や濃度に
制限があった。[0004] However, in these measuring methods, a substance produced by a biological reaction or a biochemical reaction is used.
For measurement using an electrode selectively sensitive to the substance, for example, an oxygen electrode, a hydrogen peroxide electrode, an ammonia gas electrode, an ammonia ion electrode, a carbon dioxide gas electrode, etc., a dedicated electrode and a measuring device for each substance to be generated Had to be used. In addition, when a column is used for immobilizing an enzyme or the like, the sensitivity is apt to decrease, so that the measurable substances and concentrations are limited.
【0005】また、これらの生物学的反応や生化学的反
応を利用した測定方法の内の一部には通常のpH測定に
より行われるものもあるが、その場合にはガラス電極等
のpH感応電極と比較電極とを用いてpH測定を行うの
で、温度変化の影響が大きくなり、恒温化若しくは一定
の温度管理が必要であった。しかも、比較電極は内部液
の補充交換等が必要であるため、保守点検が非常に面倒
であった。[0005] Some of the measuring methods utilizing these biological and biochemical reactions are carried out by ordinary pH measurement. Since the pH measurement is performed using the electrode and the reference electrode, the influence of a temperature change becomes large, and constant temperature control or constant temperature control is required. In addition, the maintenance and inspection of the comparative electrode is very troublesome because the internal liquid needs replenishment and replacement.
【0006】[0006]
【発明が解決しようとする課題】本発明は、このような
従来の事情に鑑み、菌類との生物学的反応、酵素との生
化学的反応、又は化学的反応に関与する物質の濃度を、
その測定対象物質ごとに専用の電極や装置を必要とせ
ず、共通の電極や装置を用いて、しかも測定的物質が低
濃度であっても、簡単に安定して測定することのできる
方法、及びそのための測定装置を提供することを目的と
する。SUMMARY OF THE INVENTION In view of the above-mentioned circumstances, the present invention provides a method for controlling the concentration of a substance involved in a biological reaction with a fungus, a biochemical reaction with an enzyme, or a chemical reaction.
A method that does not require a dedicated electrode or device for each substance to be measured, uses a common electrode or device, and can easily and stably measure even if the concentration of the substance to be measured is low, and It is an object of the present invention to provide a measuring device therefor.
【0007】[0007]
【課題を解決するための手段】本発明は、生物学的反応
や生化学的反応を含む各種反応では、反応による物質の
変化によって溶液中のpHが変動するものが多いことに
着目し、このpHの変動を反応の種類に拘らず共通のp
H感応電極を利用して測定することによって、反応に関
与した測定対象物質の濃度を求めるものである。The present invention focuses on the fact that in various reactions including biological reactions and biochemical reactions, the pH in a solution often fluctuates due to a change in a substance due to the reaction. The variation of pH is common p regardless of the type of reaction.
The measurement is performed using an H-sensitive electrode to determine the concentration of the substance to be measured involved in the reaction.
【0008】即ち、本発明方法は、測定対象物質との生
物学的、生化学的又は化学的な反応によりpH変動をも
たらす反応活性物質に該測定対象物質を含む試料液を接
触させ、液絡状態にある接触前後の試料液に各々浸漬し
た2本のpH感応電極の間の電位差を測定し、得られた
電位差を既知濃度の測定対象物質を含む液について予め
測定した電位差と比較して、試料液中の測定対象物質の
濃度を求めることを特徴とする。That is, in the method of the present invention, a sample liquid containing a substance to be measured is brought into contact with a reactive substance which causes a pH change by a biological, biochemical or chemical reaction with the substance to be measured, The potential difference between the two pH-sensitive electrodes immersed in the sample solution before and after the contact in the state is measured, and the obtained potential difference is compared with a potential difference measured in advance for a solution containing a substance to be measured having a known concentration. It is characterized in that the concentration of a substance to be measured in a sample liquid is obtained.
【0009】このpH変動反応を利用する濃度測定方法
を実施するため、本発明の測定装置は、液流路に沿って
配置した2本のpH感応電極と、該液流路の2本のpH
感応電極の間に配置され、測定対象物質との生物学的、
生化学的又は化学的な反応によりpH変動をもたらす反
応活性物質と、前記2本のpH感応電極の間の電位差を
検知する電位差検出部とを備えている。In order to carry out the concentration measuring method utilizing the pH fluctuation reaction, the measuring device of the present invention comprises two pH-sensitive electrodes arranged along a liquid flow path, and two pH-sensitive electrodes disposed in the liquid flow path.
Placed between the sensitive electrodes,
It is provided with a reaction active substance that causes a pH change due to a biochemical or chemical reaction, and a potential difference detecting unit that detects a potential difference between the two pH-sensitive electrodes.
【0010】[0010]
【発明の実施の形態】本発明においては、測定対象物質
との反応によりpH変動を起こすような反応活性物質を
使用することにより、各反応の前後のpH変動を2本の
pH感応電極のみを用いて電極間の電位差として測定す
る。従って、多くの生物学的反応、生化学的反応、化学
的反応に全て共通のpH感応電極を使用でき、温度変化
の影響を受けることなく、測定対象物質の濃度を簡単に
安定して測定することが可能である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the use of a reaction-active substance that causes a pH fluctuation due to a reaction with a substance to be measured allows the pH fluctuation before and after each reaction to be reduced by using only two pH-sensitive electrodes. It is used to measure the potential difference between the electrodes. Therefore, a common pH-sensitive electrode can be used for many biological, biochemical, and chemical reactions, and the concentration of the target substance can be easily and stably measured without being affected by temperature changes. It is possible.
【0011】測定対象物質は、反応活性物質との各種反
応により、酸性又はアルカリ性の物質を生成し又は消費
して、pH変動をもたらす物質であれば良い。従ってま
た、反応活性物質も測定対象物質との間に上記pH変動
をもたらすような反応を起こすものであれば良く、菌類
や酵素類のほか、一般的な化学物質やイオン交換樹脂な
ども含まれる。The substance to be measured may be any substance that produces or consumes an acidic or alkaline substance by various reactions with a reaction active substance, thereby causing a pH fluctuation. Accordingly, the reaction active substance may be any substance that causes the above-mentioned pH fluctuation with the substance to be measured, and includes not only fungi and enzymes, but also general chemical substances and ion exchange resins. .
【0012】例えば、測定対象物質がグルコースの場合
には、反応活性物質としてグルコースオキシダーゼを使
用すれば、生化学的反応により生成されるグルコン酸の
ためpHが酸性側に変動する。測定対象物質が尿素の場
合には、反応活性物質ウリアーゼとの生化学的反応によ
りアンモニアが生成するので、pHがアルカリ性側にシ
フトする。測定対象物質がグルタミン酸の場合には、D
−グルタミナーゼを反応活性物質とし、同様にアンモニ
アを生成してpH変動が起こる。For example, when the substance to be measured is glucose, if glucose oxidase is used as a reaction active substance, the pH changes to an acidic side due to gluconic acid generated by a biochemical reaction. When the substance to be measured is urea, ammonia is generated by a biochemical reaction with the reactive substance uriase, so that the pH shifts to an alkaline side. When the substance to be measured is glutamic acid, D
-Glutaminase is used as a reactive substance, and ammonia is similarly generated to cause a pH change.
【0013】また、生物学的反応としては、反応活性物
質としての硝酸菌がアンモニア又は亜硝酸を硝酸に代謝
する反応や、乳酸菌が乳糖を分解して乳酸に代謝する反
応があり、いずれもpHが反応前後で酸性側にシフトす
る。更に、pH変動を起こす化学的反応の例としては、
H+型イオン交換樹脂が金属イオン等を吸着して水素イ
オンを放出する反応や、錯形成剤が金属イオンと錯体を
作って水素イオンを放出する反応等がある。The biological reaction includes a reaction in which nitric acid bacteria as a reaction active substance metabolize ammonia or nitrous acid to nitric acid, and a reaction in which lactic acid bacteria decompose lactose and metabolize it to lactic acid. Shifts to the acidic side before and after the reaction. Further, examples of chemical reactions that cause pH fluctuation include:
There are reactions in which the H + type ion exchange resin adsorbs metal ions and the like and releases hydrogen ions, and reactions in which the complexing agent forms a complex with the metal ions and releases hydrogen ions.
【0014】反応活性物質は2本のpH感応電極の間に
配置する。そのための好ましい方法としては、液流路の
下流側に配置されたpH感応電極の感応部表面に反応活
性物質を保持又は固定した膜を取り付けるか、又は2本
のpH感応電極の間の液流路の途中に設けたカラム又は
膜に反応活性物質を保持又は固定化する方法がある。
尚、膜やカラムに反応活性物質を保持又は固定化する方
法は既に公知であり、例えば酵素については共有結合
法、吸着法、架橋化法等が知られている。The reactive substance is located between the two pH-sensitive electrodes. A preferred method for this is to attach a membrane holding or fixing a reactive substance to the surface of the sensitive part of the pH-sensitive electrode disposed downstream of the liquid flow path, or to use a liquid flow between the two pH-sensitive electrodes. There is a method of holding or immobilizing a reactive substance on a column or a membrane provided in the middle of a path.
In addition, a method for holding or immobilizing a reactive substance on a membrane or a column is already known, and for example, a covalent bonding method, an adsorption method, a cross-linking method, etc. are known for enzymes.
【0015】更に、本発明では、測定対象物質に拘らず
2本のpH感応電極を使用して、各pH感応電極間の電
位差を測定する。2本のpH感応電極の間が試料液で液
絡状態にあれば、比較電極を使用しなくても、各pH感
応電極間の電位差を測定することが可能である。かかる
pH感応電極としては、通常のガラス電極のほか、水素
イオンに感応する酸化イリジウムや酸化タンタル等の金
属酸化物を感応部とする電極があり、これらを単独で
(比較電極を使用せず)2本組み合わせて使用すれば良
い。従って、比較電極を用いないので、保守点検が容易
であり、温度の影響もなく、安定した測定が可能とな
る。Further, in the present invention, the potential difference between each pH-sensitive electrode is measured using two pH-sensitive electrodes regardless of the substance to be measured. If the liquid junction between the two pH-sensitive electrodes is in the sample liquid state, the potential difference between the pH-sensitive electrodes can be measured without using a reference electrode. As such a pH-sensitive electrode, besides a normal glass electrode, there is an electrode having a metal oxide such as iridium oxide or tantalum oxide that is sensitive to hydrogen ions as a sensitive part, and these electrodes are used alone (without using a comparative electrode). What is necessary is just to use combining two. Therefore, since no reference electrode is used, maintenance and inspection are easy, and stable measurement can be performed without being affected by temperature.
【0016】本発明方法では、まず2つのpH感応電極
を含む測定装置の校正を行う。例えば、リン酸緩衝液か
らなる標準液に、第一pH感応電極と第二pH感応電極
及び反応活性物質、又は第一pH感応電極及び反応活性
物質を保持又は固定化した膜を取り付けた下流側の第二
pH電極を浸漬し、この時の第一及び第二pH感応電極
間の電位差をゼロに校正する。In the method of the present invention, first, a measuring device including two pH-sensitive electrodes is calibrated. For example, a downstream side where a first pH-sensitive electrode and a second pH-sensitive electrode and a reactive substance, or a membrane holding or immobilizing the first pH-sensitive electrode and the reactive substance are attached to a standard solution composed of a phosphate buffer. Is immersed, and the potential difference between the first and second pH-sensitive electrodes at this time is corrected to zero.
【0017】次に、測定対象物質を含む試料液を液流路
に連続的に供給し、第一pH感応電極から反応活性物質
を経て第二pH感応電極側に流す。尚、試料液のpHは
校正時の標準液とほぼ同一のpHとなるように、リン酸
緩衝液で調整しておく必要がある。Next, a sample liquid containing the substance to be measured is continuously supplied to the liquid flow path, and flows from the first pH-sensitive electrode to the second pH-sensitive electrode via the reactive substance. It is necessary to adjust the pH of the sample solution with a phosphate buffer so as to be almost the same as the standard solution at the time of calibration.
【0018】試料液中の測定対象物質は、反応活性物質
と反応することによってプロトン又は酸性物質若しくは
アルカリ性物質などを放出し又は消費するので、下流の
第二pH感応電極側の試料液のpHが変動する。従っ
て、この時の第一及び第二pH感応電極の間の電位差を
測定し、得られた電位差を既知濃度の測定対象物質を含
む液について予め測定した電位差と比較することによっ
て、試料液中の測定対象物質の濃度を求めることができ
る。Since the substance to be measured in the sample solution releases or consumes protons, acidic substances, or alkaline substances by reacting with the reactive substance, the pH of the sample liquid on the downstream second pH-sensitive electrode side decreases. fluctuate. Accordingly, the potential difference between the first and second pH-sensitive electrodes at this time is measured, and the obtained potential difference is compared with a potential difference previously measured for a solution containing a substance to be measured having a known concentration, whereby the potential difference in the sample solution is measured. The concentration of the substance to be measured can be determined.
【0019】かかる本発明によれば、測定対象物質が従
来になく広範囲となり、生物学的、生化学的、又は化学
的な反応によりpH変動をもたらす殆ど全ての物質の測
定が可能である。また、測定時に起こる温度変化やベー
ス溶液の変化の影響を、複数のpH感応電極を用いるこ
とで消去することができるため、これらの影響を考慮す
ることなく、簡単に常に安定した測定が可能となる。According to the present invention, the range of substances to be measured is wider than before, and almost all substances that cause pH fluctuation by biological, biochemical or chemical reactions can be measured. In addition, since the effects of temperature changes and changes in the base solution that occur during measurement can be eliminated by using multiple pH-sensitive electrodes, stable measurements can be easily performed without considering these effects. Become.
【0020】[0020]
【実施例】実施例1 図1に示すように、第一セル1と第二セル2を液流路3
で接続し、液流路3の第二セル2より下流にポンプ4を
設置した。第一セル1には、酸化イリジウムの感応部5
aを有する第一pH感応電極5を取り付けた。また、第
二セル2には、同く酸化イリジウムの感応部6aを有す
る第二pH感応電極6を取り付けたが、その感応部6a
を覆うようにグルコースオキシダーゼの固定化酵素膜7
を膜押え6bで固定した。 EXAMPLE 1 As shown in FIG. 1, a first cell 1 and a second cell 2 were
And a pump 4 was installed downstream of the second cell 2 in the liquid flow path 3. The first cell 1 has a sensitive part 5 of iridium oxide.
A first pH-sensitive electrode 5 having a was attached. Also, the second cell 2 was provided with the second pH-sensitive electrode 6 having the iridium oxide sensitive portion 6a.
Enzyme membrane 7 of glucose oxidase so as to cover
Was fixed with the membrane retainer 6b.
【0021】グルコースを含まないリン酸緩衝液を液流
路3に連続的に供給し、第一pH感応電極5と第二pH
感応電極6の間の電位差をゼロに校正した。次に、グル
コースを含む試料液を液流路3に連続的に供給し、第一
pH感応電極5と第二pH感応電極6の間の電位差を装
置の電位差検出部で検出した。A phosphate buffer solution containing no glucose is continuously supplied to the liquid flow path 3, and the first pH-sensitive electrode 5 and the second pH
The potential difference between the sensitive electrodes 6 was calibrated to zero. Next, a sample solution containing glucose was continuously supplied to the liquid flow path 3, and a potential difference between the first pH-sensitive electrode 5 and the second pH-sensitive electrode 6 was detected by a potential difference detecting unit of the device.
【0022】この時、試料液中のグルコースは固定化酵
素膜7のグルコースオキシダーゼと反応してグルコン酸
となり、pHを酸性側にシフトさせる。従って、試料液
の反応前のpHは第一pH感応電極5で、及び反応後の
グルコン酸を含む試料液のpHは第二pH感応電極6で
検知されるので、両pH感応電極5、6間の電位差が測
定される。At this time, glucose in the sample solution reacts with glucose oxidase of the immobilized enzyme membrane 7 to become gluconic acid, and shifts the pH to the acidic side. Therefore, the pH of the sample solution before the reaction is detected by the first pH-sensitive electrode 5 and the pH of the sample solution containing gluconic acid after the reaction is detected by the second pH-sensitive electrode 6. The potential difference between them is measured.
【0023】このようにして、グルコース濃度の異なる
複数の試料液について、第一及び第二pH感応電極5、
6の間の電位差をそれぞれ測定したところ、図3に示す
結果が得られた。この図3は検量線となり、グルコース
濃度200ppmまでの範囲で優れた直線性が得られ
た。In this way, for a plurality of sample solutions having different glucose concentrations, the first and second pH-sensitive electrodes 5,
When the potential differences between the samples Nos. 6 were measured, the results shown in FIG. 3 were obtained. FIG. 3 shows a calibration curve, and excellent linearity was obtained in a range of glucose concentration up to 200 ppm.
【0024】従って、濃度未知のグルコースを含む試料
液につて、上記と同様の操作により第一及び第二pH感
応電極5、6の間の電位差を測定すれば、得られた電位
差から図3の検量線を用いて試料液中のグルコース濃度
を求めることができる。Therefore, when the potential difference between the first and second pH-sensitive electrodes 5 and 6 is measured for the sample solution containing glucose of unknown concentration by the same operation as described above, the obtained potential difference is shown in FIG. The glucose concentration in the sample solution can be determined using the calibration curve.
【0025】実施例2 図2に示すように、実施例1の固定化酵素膜7(図1)
の代わりにグルコースオキシダーゼを保持した固定化酵
素カラム8を用い、この固定化酵素カラム8を第一セル
1と第二セル2の間の液流路3の途中に取り付けた。装
置のその他の部分は実施例1と同様である。 Example 2 As shown in FIG. 2, the immobilized enzyme membrane 7 of Example 1 (FIG. 1)
Instead of this, an immobilized enzyme column 8 holding glucose oxidase was used, and this immobilized enzyme column 8 was attached in the middle of the liquid flow path 3 between the first cell 1 and the second cell 2. Other parts of the device are the same as in the first embodiment.
【0026】この測定装置を使用して、実施例1と同様
に校正を行った後、濃度を変えたグルコースを含む試料
液を液流路3に連続的に供給し、第一及び第二pH感応
電極5、6の間の電位差を測定したところ、図4に示す
結果が得られた。測定範囲は実施例1の場合よりも狭か
ったが、グルコース濃度100ppmまでの範囲で優れ
た直線性が得られた。After performing calibration using this measuring device in the same manner as in Example 1, a sample solution containing glucose having a changed concentration is continuously supplied to the liquid flow path 3, and the first and second pH values are measured. When the potential difference between the sensitive electrodes 5 and 6 was measured, the result shown in FIG. 4 was obtained. Although the measurement range was narrower than that of Example 1, excellent linearity was obtained in a range up to a glucose concentration of 100 ppm.
【0027】実施例3 前記実施例1で用いたグルコースオキシダーゼの固定化
酵素膜の代わりに、酵母及び枯草菌を固定化したBOD
センサ膜を第二pH感応電極に取り付け、その他は実施
例1と同様にして、試料液中のグルコース濃度を測定し
た。 Example 3 BOD immobilized with yeast and Bacillus subtilis instead of the enzyme membrane immobilized with glucose oxidase used in Example 1 above.
The glucose concentration in the sample solution was measured in the same manner as in Example 1 except that the sensor membrane was attached to the second pH-sensitive electrode.
【0028】BODセンサ膜中の微生物は、試料液中の
グルコースを分解すると同時に、試料液中の酸素を消費
して二酸化炭素を放出する。放出される二酸化炭素量は
微生物が分解するグルコース量に比例し、放出された二
酸化炭素は試料液に溶解して炭酸となり、pHを酸性側
へとシフトさせる。従って、BOD膜と接していない第
一pH感応電極と、BOD膜と接している第二pH感応
電極との間の電位差を測定することにより、試料液中の
グルコース濃度を求めることができる。Microorganisms in the BOD sensor membrane decompose glucose in the sample solution and simultaneously consume oxygen in the sample solution to release carbon dioxide. The amount of released carbon dioxide is proportional to the amount of glucose decomposed by the microorganism, and the released carbon dioxide dissolves in the sample solution to become carbonic acid, and shifts the pH to the acidic side. Therefore, the glucose concentration in the sample solution can be determined by measuring the potential difference between the first pH-sensitive electrode not in contact with the BOD membrane and the second pH-sensitive electrode in contact with the BOD membrane.
【0029】この実施例において、第一及び第二pH感
応電極の間の電位差を測定したところ、図5に示す結果
が得られた。この図5を検量線とすることにより、同じ
BODセンサ膜とpH感応電極を使用して、濃度未知の
試料液のグルコース濃度を求めることが可能である。ま
た、グルコースのみでなく、他の栄養塩についても同様
であるから、この測定装置は栄養塩測定装置(BOD測
定装置)としても機能することが可能である。In this example, when the potential difference between the first and second pH-sensitive electrodes was measured, the result shown in FIG. 5 was obtained. By using FIG. 5 as a calibration curve, it is possible to determine the glucose concentration of the sample solution of unknown concentration using the same BOD sensor membrane and pH-sensitive electrode. In addition, since the same applies to other nutrients in addition to glucose, this measuring device can also function as a nutrient measuring device (BOD measuring device).
【0030】[0030]
【発明の効果】本発明によれば、生物学的反応、生化学
的反応、又は化学的反応に関与する物質の濃度を、その
測定対象物質ごとに専用の電極や装置を必要とせず、全
てに共通の2本のpH感応電極を含む装置を用いて、し
かも測定対象物質が低濃度であっても、簡単に安定した
測定を行うことができる。According to the present invention, the concentration of a substance involved in a biological reaction, a biochemical reaction, or a chemical reaction can be adjusted without using a dedicated electrode or device for each substance to be measured. It is possible to easily and stably perform measurement using a device including two common pH-sensitive electrodes, and even when the substance to be measured has a low concentration.
【図1】本発明の濃度測定装置の一具体例を示す概略図
である。FIG. 1 is a schematic diagram showing a specific example of a concentration measuring device of the present invention.
【図2】本発明の濃度測定装置の他の具体例を示す概略
図である。FIG. 2 is a schematic view showing another specific example of the concentration measuring device of the present invention.
【図3】実施例1で得られたグルコース濃度と電位差と
の関係を示すグラフである。FIG. 3 is a graph showing the relationship between the glucose concentration and the potential difference obtained in Example 1.
【図4】実施例2で得られたグルコース濃度と電位差と
の関係を示すグラフである。FIG. 4 is a graph showing a relationship between a glucose concentration and a potential difference obtained in Example 2.
【図5】実施例3で得られたグルコース濃度と電位差と
の関係を示すグラフである。FIG. 5 is a graph showing the relationship between the glucose concentration and the potential difference obtained in Example 3.
1 第一セル 2 第二セル 3 液流路 4 ポンプ 5 第一pH感応電極 5a 感応部 6 第二pH感応電極 6a 感応部 6b 膜押え 7 固定化酵素膜 8 固定化酵素カラム DESCRIPTION OF SYMBOLS 1 1st cell 2 2nd cell 3 Liquid flow path 4 Pump 5 1st pH sensitive electrode 5a Sensitive part 6 Second pH sensitive electrode 6a Sensitive part 6b Membrane holding 7 Immobilized enzyme membrane 8 Immobilized enzyme column
Claims (4)
は化学的な反応によりpH変動をもたらす反応活性物質
に該測定対象物質を含む試料液を接触させ、液絡状態に
ある接触前後の試料液に各々浸漬した2本のpH感応電
極の間の電位差を測定し、得られた電位差を既知濃度の
測定対象物質を含む液について予め測定した電位差と比
較して、試料液中の測定対象物質の濃度を求めることを
特徴とするpH変動反応を利用する濃度測定方法。1. A sample solution containing a substance to be measured is brought into contact with a reactive substance which causes a pH change by a biological, biochemical or chemical reaction with the substance to be measured, and before and after the contact in a liquid junction state The potential difference between the two pH-sensitive electrodes immersed in the sample solution is measured, and the obtained potential difference is compared with a potential difference previously measured for a solution containing a substance to be measured having a known concentration, and the measurement in the sample solution is performed. A concentration measuring method using a pH fluctuation reaction, wherein a concentration of a target substance is obtained.
電極と、該液流路の2本のpH感応電極の間に配置さ
れ、測定対象物質との生物学的、生化学的又は化学的な
反応によりpH変動をもたらす反応活性物質と、前記2
本のpH感応電極の間の電位差を検知する電位差検出部
とを備えたことを特徴とするpH変動反応を利用する濃
度測定装置。2. A method according to claim 1, wherein the two pH-sensitive electrodes are arranged along the liquid flow path, and the two pH-sensitive electrodes of the liquid flow path are arranged between the two pH-sensitive electrodes to form a biological or biochemical reaction with the substance to be measured. Or a reaction-active substance causing a pH change by a chemical reaction;
A concentration measuring device using a pH fluctuation reaction, comprising: a potential difference detecting section for detecting a potential difference between the pH-sensitive electrodes.
配置されたpH感応電極の感応部表面に取り付けた膜に
保持されていることを特徴とする、請求項2に記載のp
H変動反応を利用する濃度測定装置。3. The p according to claim 2, wherein the reactive substance is held by a membrane attached to the surface of a sensitive part of a pH-sensitive electrode disposed downstream of the liquid flow path.
Concentration measuring device utilizing H fluctuation reaction.
極の間の液流路の途中に設けたカラム又は膜に保持され
ていることを特徴とする、請求項2に記載のpH変動反
応を利用する濃度測定装置。4. The pH fluctuation according to claim 2, wherein the reactive substance is held in a column or a membrane provided in the middle of a liquid flow path between two pH-sensitive electrodes. A concentration measuring device that uses a reaction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8302090A JPH10142193A (en) | 1996-11-13 | 1996-11-13 | Method and apparatus for measuring concentration with utilizing phchange reaction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8302090A JPH10142193A (en) | 1996-11-13 | 1996-11-13 | Method and apparatus for measuring concentration with utilizing phchange reaction |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10142193A true JPH10142193A (en) | 1998-05-29 |
Family
ID=17904813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8302090A Pending JPH10142193A (en) | 1996-11-13 | 1996-11-13 | Method and apparatus for measuring concentration with utilizing phchange reaction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10142193A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000279706A (en) * | 1999-03-31 | 2000-10-10 | Furukawa Electric Co Ltd:The | Treatment of waste emulsion |
WO2005080953A1 (en) * | 2004-02-25 | 2005-09-01 | National Institute Of Advanced Industrial Science And Technology | Urinary glucose biosensor |
-
1996
- 1996-11-13 JP JP8302090A patent/JPH10142193A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000279706A (en) * | 1999-03-31 | 2000-10-10 | Furukawa Electric Co Ltd:The | Treatment of waste emulsion |
WO2005080953A1 (en) * | 2004-02-25 | 2005-09-01 | National Institute Of Advanced Industrial Science And Technology | Urinary glucose biosensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cammann | Bio-sensors based on ion-selective electrodes | |
US4374013A (en) | Oxygen stabilized enzyme electrode | |
US4404066A (en) | Method for quantitatively determining a particular substrate catalyzed by a multisubstrate enzyme | |
Han et al. | A methylene blue-mediated enzyme electrode for the determination of trace mercury (II), mercury (I), methylmercury, and mercury–glutathione complex | |
US5653862A (en) | Biochemical sensor device and method | |
US7235170B2 (en) | Biosensor | |
Soldatkin et al. | Creatinine sensitive biosensor based on ISFETs and creatinine deiminase immobilised in BSA membrane | |
EP0048090A2 (en) | Substrate specific galactose oxidase enzyme electrodes | |
Evtugyn et al. | Amperometric flow-through biosensor for the determination of cholinesterase inhibitors | |
Guilbault | [41] Enzyme electrodes and solid surface fluorescence methods | |
Huang et al. | Amperometric determination of total cholesterol in serum, with use of immobilized cholesterol ester hydrolase and cholesterol oxidase | |
Montagné et al. | Simultaneous use of dehydrogenases and hexacyanoferrate (III) ion in electrochemical biosensors for L-lactate, D-lactate and L-glutamate ions | |
Kirstein et al. | Enzyme electrode for urea with amperometric indication: Part I—Basic principle | |
Vianello et al. | A coulometric biosensor to determine hydrogen peroxide using a monomolecular layer of horseradish peroxidase immobilized on a glass surface | |
WO1995021934A1 (en) | Hexacyanoferrate modified electrodes | |
US5306413A (en) | Assay apparatus and assay method | |
Saurina et al. | Potentiometric biosensor for lysine analysis based on a chemically immobilized lysine oxidase membrane | |
Kobos | Microbe-based electrochemical sensing systems | |
Saurina et al. | Determination of lysine in pharmaceutical samples containing endogenous ammonium ions by using a lysine oxidase biosensor based on an all-solid-state potentiometric ammonium electrode | |
Mieliauskiene et al. | Amperometric determination of acetate with a tri-enzyme based sensor | |
Karube et al. | Immobilized cells used for detection and analysis | |
Mizutani et al. | Interference-free, amperometric measurement of urea in biological samples using an electrode coated with tri-enzyme/polydimethylsiloxane-bilayer membrane | |
JPH10142193A (en) | Method and apparatus for measuring concentration with utilizing phchange reaction | |
JP4404433B2 (en) | Disposable BUN sensor and manufacturing method thereof | |
US20010051109A1 (en) | Enzymatic analysis system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050215 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050614 |