JPH1014107A - Method of pulling systems into synchronism - Google Patents

Method of pulling systems into synchronism

Info

Publication number
JPH1014107A
JPH1014107A JP8186610A JP18661096A JPH1014107A JP H1014107 A JPH1014107 A JP H1014107A JP 8186610 A JP8186610 A JP 8186610A JP 18661096 A JP18661096 A JP 18661096A JP H1014107 A JPH1014107 A JP H1014107A
Authority
JP
Japan
Prior art keywords
systems
fault
route
generator
linking line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8186610A
Other languages
Japanese (ja)
Other versions
JP3722387B2 (en
Inventor
Yasuji Sekine
泰次 関根
Nobuyuki Kinoshita
信行 木下
Atsushi Kurita
篤 栗田
Yasuyuki Tada
泰之 多田
Hiroshi Okamoto
浩 岡本
Takashi Yamada
剛史 山田
Naoki Kobayashi
小林  直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP18661096A priority Critical patent/JP3722387B2/en
Publication of JPH1014107A publication Critical patent/JPH1014107A/en
Application granted granted Critical
Publication of JP3722387B2 publication Critical patent/JP3722387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To cope with severe fault by repeating the open and make of a linking line one time or plural times after occurrence of fault when the fault of route break occurs in the linking line which links two systems. SOLUTION: In case that the systems A and B are linked with each other by one route and that the fault of rout break occurs in the linking line, the unbalance between demand and supply equivalent to the power blow PT of the linking line before accident occurs between the systems A and B due to the break of rout. As known from the direction power flow of before accident, in the system A, a group of generators accelerate and in the system B, they decelerate. So, at the point of time when the angle between both system opens and comes to 2π (360 deg.), the breaker is closed again, and then the off/on of the breaker are repeated with appropriate timing as occasion demands so as to discharge the energy accumulated in the system A to the system B, whereby both systems can be pulled into synchronism.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は連系線を介して接続
された2つの系統が系統分離したとき、電源遮断等をす
ることなく同期化する系統の同期引き込み方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of synchronizing a system for synchronizing two systems connected via a connection line without interrupting the power supply when the two systems are separated.

【0002】[0002]

【従来の技術】一般に、2回線送電線で故障が発生した
場合には、高速度再閉路方式により当該送電線の事故相
を遮断した後、所定の無電圧時間(消イオン時間で、例
えば500kV以上の系統では1秒程度)経過後に事故
相を再投入することにより、故障復旧させていた。
2. Description of the Related Art In general, when a fault occurs in a two-circuit transmission line, after a fault phase of the transmission line is cut off by a high-speed reclosing method, a predetermined no-voltage time (for example, 500 kV in a deionization time, for example, 500 kV). The fault was recovered by re-entering the accident phase after about one second in the above system).

【0003】[0003]

【発明が解決しようとする課題】上記従来技術による再
閉路条件としては、各回線合計で事故相以外の異相2相
残り以上で連系されている場合でなければならず、更に
再閉路タイミングによっては、近傍発電機タービン軸に
もショックを与えると言う問題があった。
The re-closing condition according to the above-mentioned prior art must be a case in which each line is interconnected with two or more remaining phases other than the fault phase other than the accident phase, and furthermore, depending on the re-closing timing. However, there is a problem that a shock is also applied to the turbine shaft of the nearby generator.

【0004】本発明は上記課題を解決するためになされ
たものであり、ルート断故障のように最も過酷な故障に
対処できて、系統分離を回避すると共に、発電機タービ
ン軸への影響を最小限に抑えることの可能な系統の同期
引き込み方法を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and can cope with the most severe failure such as a route disconnection failure, thereby avoiding system separation and minimizing the influence on a generator turbine shaft. It is an object of the present invention to provide a synchronization pull-in method for a system that can be minimized.

【0005】[0005]

【課題を解決するための手段】本発明の[請求項1]に
係る系統の同期引き込み方法は、1ルートの連系線を介
して2つの系統が連系されている前記連系線にルート断
故障が発生したとき、故障発生後に当該連系線の開放,
投入を少なくとも1回以上複数回繰り返すようにする。
この場合、両系統間のアングルが開いて360度となっ
た時点で連系線の再投入をし、その後適切なタイミング
で遮断器の開放,投入を繰り返せば一方の系統の蓄積エ
ネルギーを他方の系統に放出することができ、両系統を
同期に引き込むことができる。
According to a first aspect of the present invention, there is provided a method for pulling a system in synchronization, wherein a route is routed to the interconnection line in which the two systems are interconnected via a single interconnection line. When a disconnection fault occurs, open the interconnecting line after the fault occurs,
The feeding is repeated at least once or more than once.
In this case, when the angle between the two systems is opened to reach 360 degrees, the interconnecting line is turned on again, and then the opening and closing of the circuit breaker is repeated at an appropriate timing, so that the energy stored in one system can be transferred to the other system. It can be released to the system and both systems can be pulled in synchronously.

【0006】本発明の[請求項2]に係る系統の同期引
き込み方法は、[請求項1]において、連系線の開放,
投入はルート断後、両系統のアングル差が開いたことを
条件に、下記とした。
[0006] According to a second aspect of the present invention, there is provided a method for pulling a system in synchronization according to the first aspect of the present invention.
The input was as follows, provided that the angle difference between the two systems was widened after the route was cut.

【数1】(2n−1)π<θ<2nπの間は開放 2nπ<θ<(2n+1)πの間は投入 但し、θはアングル差 nは整数(1) Open during (2n-1) π <θ <2nπ 2 (π) <θ <(2n + 1) π, where θ is the angle difference n is an integer

【0007】本発明の[請求項3]に係る系統の同期引
き込み方法は、[請求項1]又は[請求項2]におい
て、2つの系統に代えてビル内の電気所とした。このよ
うにすれば各ビル間における融通系統で事故時に連系が
解除された場合にも、速やかな同期引き込みが可能とな
る。
According to a third aspect of the present invention, in the method for pulling in a system, in the first or second aspect, an electric station in a building is used instead of the two systems. In this way, even if the interconnection is released at the time of an accident in the interchange system between the buildings, the synchronization can be quickly pulled in.

【0008】[0008]

【発明の実施の形態】図1は連系系統を説明する図であ
り、系統Aと系統Bが1ルートで連系された場合であ
る。そして各系統間に流れる潮流をPT 、矢印は流れる
方向を示し、各慣性中心は∠θ1 ,∠θ2 とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram for explaining an interconnection system, in which a system A and a system B are interconnected by one route. The tidal current flowing between the respective systems is denoted by PT , the arrows indicate the flowing direction, and the respective inertia centers are denoted by ∠θ 1 and ∠θ 2 .

【0009】先ず、連系線のルート断故障が発生した場
合を考える。この時ルート断であるため事故前の連系線
潮流PT に相当する需給アンバランスが、系統Aと系統
B間に生ずる。事故前の潮流方向からわかるように、系
統Aでは発電機群が加速し、系統Bでは減速する。
First, consider a case where a route disconnection failure of the interconnection line has occurred. At this time, since the route is disconnected, a supply-demand imbalance corresponding to the interconnecting line power flow PT before the accident occurs between the system A and the system B. As can be seen from the tide direction before the accident, the generator group accelerates in the system A and decelerates in the system B.

【0010】したがって、これらの加減速を防ぐために
は電源遮断等が必要となる。即ち、系統Aでは電源遮断
し、系統Bでは負荷遮断を要する。ここで仮に、ルート
断の発生後、直ちに連系線を投入することができれば、
系統A,系統Bを同期させることができるはずである。
Therefore, in order to prevent such acceleration / deceleration, it is necessary to cut off the power supply. That is, the power supply is cut off in the system A, and the load is cut off in the system B. Here, if the route can be inserted immediately after the route break,
System A and system B should be able to be synchronized.

【0011】しかし、故障直後の再投入は1秒の消イオ
ン時間が必要となることを考慮すると実現不可能であ
る。そこで両系統間のアングルが開いて2π(360
°)となった時点で遮断器の再投入を行ない、その後、
必要に応じて適切なタイミングで遮断器のOFF/ON
を繰り返して、系統Aの蓄積エネルギーを系統Bに放出
させるようにすれば、両系統を同期に引き込むことがで
きるはずである。
However, re-input immediately after the failure is not feasible in view of the necessity of one second of deionization time. Therefore, the angle between the two systems opens to 2π (360
°), when the circuit breaker is turned on again,
Turn ON / OFF circuit breaker at appropriate timing as needed
Is repeated to release the stored energy of the system A to the system B, both systems should be able to be pulled in synchronously.

【0012】図2は連系系統での位相角の動きと放出・
蓄積されるエネルギーとの関係図である。図2において
縦軸は連系線潮流PT を示し、横軸は発電機群の回転子
位相角差θを示す。なお、P0 は機械入力であり、最初
は一定と考える。図2をもとに系統Aによる蓄積エネル
ギーを系統Bに放出させる作用について、等面積法を用
いて説明する。
FIG. 2 shows the movement of the phase angle and the emission
It is a relation diagram with stored energy. In FIG. 2, the vertical axis indicates the interconnection line power flow PT , and the horizontal axis indicates the rotor phase angle difference θ of the generator group. In addition, P 0 is the mechanical input, initially considered a constant. The operation of releasing the stored energy from the system A to the system B based on FIG. 2 will be described using the equal area method.

【0013】PT を電力潮流とするとき、S0 +ST
系統Aに蓄積されるエネルギーであり、S2 が系統Aか
ら放出されるエネルギーである。ここで各系統A,Bの
発電機群の回転子位相角の慣性中心をθ1 ,θ2 とすれ
ば、これらの動作式は(1)式,(2)式で表わされ
る。
[0013] When the P T and power flow, the energy of S 0 + S T is accumulated in the system A, the energy of S 2 is released from the system A. Here, assuming that the inertia centers of the rotor phase angles of the generator groups of the respective systems A and B are θ 1 and θ 2 , these operation equations are expressed by equations (1) and (2).

【0014】[0014]

【数2】 (Equation 2)

【0015】(1)式,(2)式より系統A,Bの慣性
中心の相対運動は(3)式で表わされる。
From equations (1) and (2), the relative motion of the center of inertia of systems A and B is expressed by equation (3).

【数3】 (3)式は等価的に慣性定数M,機械入力P0 ,電気出
力PT の発電機の動揺方程式となっており、等面積法に
よって過渡安定度を論じることができる。
(Equation 3) Equation (3) is equivalent to a generator equation of inertia constant M, mechanical input P 0 , and electrical output PT , and the transient stability can be discussed by the equal area method.

【0016】今、調速手段(GOV)の動作を無視し、
負荷が定電力特性をもつとすれば、上記(3)式の機械
入力P0 は一定値となる。ここでルート断後に両系統の
アングル差が開き角度が2π(360度)となった時点
で遮断器を再投入し、その後もアングルが開いていく場
合を考える。
Now, ignoring the operation of the speed control means (GOV),
Assuming that the load has a constant power characteristic, the mechanical input P 0 in the above equation (3) has a constant value. Here, a case is considered in which the angle difference between the two systems is opened after the route is cut, and the circuit breaker is turned on again when the angle becomes 2π (360 degrees), and then the angle continues to be opened.

【0017】この状態時において、遮断器を(4)式の
ように動作させれば1回のOFF/ONにて、図2に示
されるS2 −S1 に相当する分だけ、系統Aの蓄積エネ
ルギーを系統Bに放出できるので、両系統を同期に引き
込むことができる。なお、OFF/ONの繰り返し動作
はアングル差が開いている場合であり、その開閉のタイ
ミングは(4)式の通りとし減少に転じたときは後述す
る。
In this state, if the circuit breaker is operated as in equation (4), one off / on operation corresponds to S 2 -S 1 shown in FIG. Since the stored energy can be released to the system B, both systems can be drawn in synchronously. The OFF / ON repetition operation is performed when the angle difference is open, and the opening / closing timing is as shown in equation (4).

【0018】[0018]

【数4】 (2n−1)π<θ<2nπの間は開放 2nπ<θ<(2n+1)πの間は連系線を投入 …………………(4)(4) (2n-1) Open during π <θ <2nπ. Connected interconnection line during 2nπ <θ <(2n + 1) π .............. (4)

【0019】これらの動作をさせるにはS1 <S2 とな
る必要がある。PT =Psin θが成立する場合にはこの
条件は(5)式で表わせる。
In order to perform these operations, it is necessary that S 1 <S 2 . If P T = P sin θ holds, this condition can be expressed by equation (5).

【数5】 P0 /P<1/π …………………(5)P 0 / P <1 / π (5)

【0020】しかし実際には調速手段(GOV)と負荷
変動の影響があるため、P0 の値は一定ではなくて時間
と共に減少してゆく。又、等価慣性定数Mに対する連系
線潮流の比が小さいほど、両系統間の加速が緩やかにな
るため、系統A,Bが共に大規模系統になるほど、スイ
ッチングのタイミングはゆっくりでよい。逆に一機無限
大母線系統の場合(系統Aが対象発電機,系統Bが無限
大母線)が、この制御を行なう上で制御速度の面で最も
厳しくなる。
[0020] However, because actually there is the influence of the governor means (GOV) and the load change, the value of P 0 is slide into decline with time rather than at a constant. Further, the smaller the ratio of the interconnection flow to the equivalent inertia constant M is, the slower the acceleration between the two systems becomes. Therefore, the more the systems A and B become large-scale systems, the slower the switching timing becomes. Conversely, in the case of a single-machine infinite bus system (the system A is the target generator and the system B is the infinite bus), the control speed becomes the strictest in performing this control.

【0021】次に開閉制御の終了条件について説明す
る。遮断器投入後の系統A,B間のアングル差が増加か
ら減少に転じた後(即ち、両系統が同期に引き込まれた
後)には(4)式の条件により遮断器のOFF/ONを
前記同様に繰り返すと、かえって動揺が大きくなるため
制御を終了する必要がある。
Next, the condition for terminating the open / close control will be described. After the angle difference between the systems A and B after the circuit breaker is turned from an increase to a decrease (that is, after both systems are pulled in synchronously), the circuit breaker is turned off / on according to the condition of equation (4). If the same is repeated as described above, the fluctuations are rather large, and it is necessary to end the control.

【0022】このことを図を用いて前記同様等面積法に
て説明する。先ず、図3のA点において、系統A,B間
のアングル差は減少に転じ、系統の状態は電力曲線に沿
って左下の方向に動いていく。この時、前記した(4)
式の条件によりB点で連系線を開放すると、系統Bに蓄
えられた蓄積エネルギーを放出し終わるC点まで、BC
線上を矢印に沿ってアングル差は減少し再びアングル差
が開いていく。
This will be described with reference to the drawings by the same area method as described above. First, at point A in FIG. 3, the angle difference between the systems A and B starts to decrease, and the state of the system moves in the lower left direction along the power curve. At this time, the above (4)
When the interconnecting line is opened at the point B according to the condition of the equation, the BC up to the point C where the stored energy stored in the system B is completely released.
The angle difference decreases along the arrow on the line, and the angle difference increases again.

【0023】一方、B点での連系線開放を行なわなかっ
た場合には、電力曲線に沿ってA→B→Dと進み、系統
Bの蓄積エネルギーを放出し終わるので、結果として動
揺が小さくなる。
On the other hand, if the interconnecting line is not opened at the point B, the power goes from A to B to D along the power curve, and the energy stored in the system B is released. As a result, the fluctuation is small. Become.

【0024】次に発電機軸トルクへの影響について説明
する。同期引き込みのためのスイッチングは遮断器の開
閉と同様に発電機のエアーギャップに過渡的な電磁トル
クを発生させ、軸疲労をまねく可能性がある。特に、遮
断器投入時には通常大きな商用周波数の振動トルクが生
じるため、チェックが必要である。
Next, the effect on the generator shaft torque will be described. Switching for synchronizing pull-in generates transient electromagnetic torque in the air gap of the generator as well as opening and closing of the circuit breaker, which may lead to shaft fatigue. In particular, when a circuit breaker is turned on, a large commercial frequency vibration torque is usually generated, and therefore, a check is required.

【0025】図4にほぼ理想的なタイミング(アングル
差360度)でスイッチングが行なわれた場合(a)
と、スイッチングが3サイクル遅れた場合(b)の発電
機トルクを示す。なお、縦軸は発電機トルク[pu]
を、又、横軸は時間[秒]を示す。
FIG. 4 shows a case where switching is performed at almost ideal timing (360 ° angle difference) (a).
And (b) the generator torque when switching is delayed by three cycles. The vertical axis indicates the generator torque [pu].
, And the horizontal axis represents time [seconds].

【0026】図4からわかるように、前者(a)では殆
ど商用周波数の過渡振動分が見られないが、スイッチン
グが遅れた場合(b)には大きな過渡振動トルクが現れ
ている。これは、理想的なタイミングでは、母線間のア
ングル差がなくなって、発電機出力の変化が0になって
いるのに対して、スイッチングが遅れるとアングルが開
いて発電機出力がステップ上に変化しようとするためで
あると考えられる。又、スイッチングのタイミングが早
過ぎた場合にも同様の過渡振動トルクが発生する。
As can be seen from FIG. 4, in the former case (a), almost no transient vibration at the commercial frequency is observed, but when the switching is delayed (b), a large transient vibration torque appears. This is because, at ideal timing, the angle difference between the buses disappears and the generator output changes to 0, but if switching is delayed, the angle opens and the generator output changes on a step. It is thought that it is to try. Also, when the switching timing is too early, a similar transient vibration torque is generated.

【0027】上記図4(b)に示されるような50Hz
振動分が発電機に加わると、発電機の軸にねじり力が働
き、その結果ショックを加えることとなるが、同期引き
込みのタイミングを合わせると図4(a)に示されるよ
うに殆ど50Hz振動分はなく、発電機へのショックも
ないことがわかった。
50 Hz as shown in FIG.
When a vibration component is applied to the generator, a torsional force acts on the generator shaft, and as a result, a shock is applied. However, when the synchronization pull-in timing is adjusted, as shown in FIG. It was found that there was no shock to the generator.

【0028】図5はスイッチングタイミングのずれと発
電機に生じる過渡振動トルクの関係図である。図5にお
いて縦軸は振動トルク[pu]を示し、横軸は時間[m
s]を示す。図5からわかることは、過渡振動トルクは
スイッチングのタイミングのずれに比例して大きくなる
傾向にある、ということである。
FIG. 5 is a diagram showing the relationship between the switching timing shift and the transient vibration torque generated in the generator. In FIG. 5, the vertical axis indicates vibration torque [pu], and the horizontal axis indicates time [m].
s]. It can be seen from FIG. 5 that the transient vibration torque tends to increase in proportion to the switching timing shift.

【0029】上記実施の形態によれば、連系線のルート
断後に少なくとも1回以上数回のスイッチングを繰り返
すことで、電源遮断及び負荷遮断等の対策なしに、速や
かに分離した系統を同期化することができるばかりか、
遮断器の開閉タイミングが理想的であれば、発電機の電
磁トルクの過渡振動分は非常に小さく、軸系の消耗への
影響が小さくなることである。
According to the above-described embodiment, by repeating switching at least once or several times after disconnecting the route of the interconnection line, the separated systems can be synchronized quickly without any measures such as power cutoff and load cutoff. Can not only do
If the opening / closing timing of the breaker is ideal, the transient vibration of the electromagnetic torque of the generator is very small, and the influence on the wear of the shaft system is reduced.

【0030】上記実施の形態に示す同期化引き込みスイ
ッチングの電力系統シミュレータ試験結果を以下に説明
する。スイッチングによる同期化引き込み制御につい
て、一機無限大母線系統による電力系統シミュレータ試
験を実施して、その実現可能性を確認する。合わせて制
御ロジックの検証と、ディジタル解析との比較検討を行
なう。
The power system simulator test result of the synchronous pull-in switching shown in the above embodiment will be described below. For synchronization pull-in control by switching, a power system simulator test using one infinite bus system is performed to confirm its feasibility. At the same time, control logic verification and comparison with digital analysis will be conducted.

【0031】図6はシミュレータ試験用モデル系統図で
あり、これを用いて試験を行なった。先ず、母線N2
4 のa相電圧を検出して、母線間の位相差を計算し、
これを基に遮断器開閉信号を発生させている。位相差計
算等を含むスイッチング制御ブロックは、パソコン上の
制御系を用いて作成し、これをDSP(Digital
Signal Processor)上で動作させる
ことで実現している。
FIG. 6 is a model diagram of a simulator test model, and a test was performed using the model system diagram. First, the buses N 2 ,
By detecting a phase voltage of N 4, it calculates the phase difference between the busbars,
Based on this, a circuit breaker switching signal is generated. The switching control block including the phase difference calculation and the like is created using a control system on a personal computer, and is created by a DSP (Digital).
This is realized by operating on a Signal Processor.

【0032】位相差の検出は母線N2 及びN4 間の位相
差θ=θ1 −θ2 の検出を行なった。この場合、V1
2 ×sin (θ1 −θ2 )=V1 sin (ωt+θ1 )×V
2 cos (ωt+θ2 )−V1 cos (ωt+θ1 )×V2
sin (ωt+θ2 )となることを利用して、信号V1
2 ×sin (θ1 −θ2 )を計算するものである。
The phase difference was detected by detecting the phase difference θ = θ 1 −θ 2 between the buses N 2 and N 4 . In this case, V 1 V
2 × sin (θ 1 −θ 2 ) = V 1 sin (ωt + θ 1 ) × V
2 cos (ωt + θ 2 ) −V 1 cos (ωt + θ 1 ) × V 2
Using the fact that sin (ωt + θ 2 ), the signal V 1 V
2 × sin (θ 1 −θ 2 ) is calculated.

【0033】ルート断故障の発生後、位相差θ1 −θ2
が増加して360度を越える瞬間に遮断器を投入する。
これらのブロックをコンピュータを用いて作成し、これ
をDSPプログラムに変換することで、位相差の検出を
行なっている。なお、DSPのサンプリング時間は0.
5msである。
After the occurrence of the route disconnection fault, the phase difference θ 1 −θ 2
The breaker is turned on at the moment when increases and exceeds 360 degrees.
The phase difference is detected by creating these blocks using a computer and converting them into a DSP program. It should be noted that the DSP sampling time is 0.
5 ms.

【0034】図7に試験結果を示す。図7(a)は発電
機の内部状態を示す図であり、縦軸は発電機有効電力
[pu]と発電機角速度偏差(%)である。又、図7
(b)はDSPによるV1 2 sin (θ1 −θ2 )の計
算値であり、縦軸はV1 2 sin(θ)の値[pu]
を、又、横軸は時間(s)を示している。
FIG. 7 shows the test results. FIG. 7A is a diagram showing the internal state of the generator, and the vertical axis represents the generator active power [pu] and the generator angular velocity deviation (%). FIG.
(B) is the calculated value of V 1 V 2 sin (θ 1 −θ 2 ) by the DSP, and the vertical axis is the value [pu] of V 1 V 2 sin (θ)
, And the horizontal axis indicates time (s).

【0035】故障除去後ほぼ1秒後に、制御ロジックに
したがって遮断器が投入され、系統は過渡脱調せずに安
定に保たれていることがわかる。又、DSPによって計
算されているV1 2 ×sin (θ1 −θ2 )の信号を見
ると、遮断器が投入されている状態では、発電機有効電
力出力に比例した値となっており、正しく計算が行なわ
れていることがわかる。
About one second after the elimination of the fault, the circuit breaker is turned on according to the control logic, and it can be seen that the system is kept stable without transient step-out. When the signal of V 1 V 2 × sin (θ 1 −θ 2 ) calculated by the DSP is seen, when the circuit breaker is turned on, the value is proportional to the generator active power output. It can be seen that the calculation is performed correctly.

【0036】又、位相差が360度となる瞬間に、遮断
器が投入されていることも確認できる。遮断器投入後の
発電機出力には商用周波数成分が殆ど含まれず、振動性
の過渡電磁トルクが殆ど発生していないことがわかる。
したがって軸系へのショックも小さい。
At the moment when the phase difference reaches 360 degrees, it can be confirmed that the circuit breaker is closed. It can be seen that the generator output after turning on the circuit breaker contains almost no commercial frequency component, and almost no oscillatory transient electromagnetic torque is generated.
Therefore, the shock to the shaft system is small.

【0037】次にディジタル解析結果との比較結果を示
す。シミュレーション試験と同じ系統について、EMT
P(電磁過渡現象解析プログラム)による瞬時値ディジ
タルシミュレーションと実効値ディジタルシミュレーシ
ョンを実施した。結果を図8,図9に示す。これらはい
ずれも図7のシミュレータ試験結果とほぼ完全に一致し
ていることがわかる。
Next, the result of comparison with the result of digital analysis will be shown. EMT for the same system as the simulation test
An instantaneous digital simulation and an effective digital simulation using P (electromagnetic transient analysis program) were performed. The results are shown in FIGS. It can be seen that these all almost completely match the simulator test results of FIG.

【0038】以上のシミュレーション結果によれば、以
下(イ),(ロ),(ハ)に列挙する事項が確認でき
た。 (イ)スイッチング制御の実現可能性と制御ロジックの
妥当性をシミュレータ試験により確認できた。 (ロ)アナログシミュレータ試験結果は、EMTPによ
る瞬時値ディジタルシミュレーション結果及び実効値デ
ィジタルシミュレーション結果とほぼ一致し、これらの
解析ツールを用いての検討が可能であることが明らかに
なった。振動性の軸トルクを計算する必要がない場合に
は、実効値シミュレーションで十分な精度が得られる。 (ハ)理想的なタイミングでスイッチングを行なえば、
発電機に発生する振動性の過渡電磁トルクは非常に小さ
く、軸系に与える影響は少ない。
According to the above simulation results, the following items (a), (b), and (c) were confirmed. (B) The feasibility of switching control and the validity of the control logic were confirmed by a simulator test. (B) The results of the analog simulator test almost coincided with the results of the instantaneous value digital simulation and the effective value digital simulation by EMTP, and it was clarified that examination using these analysis tools was possible. When it is not necessary to calculate the vibrating shaft torque, sufficient accuracy can be obtained by the effective value simulation. (C) If switching is performed at ideal timing,
The oscillatory transient electromagnetic torque generated in the generator is very small and has little effect on the shaft system.

【0039】上記実施の形態によれば、送電系統につい
てのみの説明をしたが、本発明はこれに限定されるもの
ではない。即ち、近年の都市においては各ビル単位に発
電設備を有して、互いに隣接するビルとの間で連系する
局地的な融通系統があるが、これらの各系統間において
も本方法は適用できる。
According to the above embodiment, only the power transmission system has been described, but the present invention is not limited to this. That is, in recent cities, there is a local interchange system that has a power generation facility for each building unit and interconnects with adjacent buildings, but this method is also applied between these systems. it can.

【0040】この場合は系統A,系統Bをそっくりその
ままビル単位の電気所(発電設備、あるいは発電機単体
を有する)に置き換えるだけで、連系系統のOFF/O
Nは上記実施の形態で説明した通りでよいことは明らか
である。
In this case, the system A and the system B are simply replaced with an electric station (including a power generation facility or a single generator) in a building unit as it is.
Obviously, N may be as described in the above embodiment.

【0041】[0041]

【発明の効果】以上説明したように、本発明によれば連
系線のルート断後に所定位相差に合わせて遮断器のオフ
・オンを複数回繰り返すことにより、系統間の蓄積エネ
ルギーを放出するようにしたので、各系統間の位相差が
順次なくなって同期引き込みが可能となる。
As described above, according to the present invention, the stored energy between the systems is released by repeating the turning on and off of the circuit breaker a plurality of times in accordance with the predetermined phase difference after the disconnection of the interconnection line route. As a result, the phase difference between the respective systems is sequentially eliminated, and synchronization can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】連系系統を説明する図。FIG. 1 is a diagram illustrating an interconnection system.

【図2】連系系統での位相角の動きと放出・蓄積エネル
ギーの関係図。
FIG. 2 is a diagram showing the relationship between the movement of the phase angle and the released / stored energy in the interconnection system.

【図3】開閉制御の終了条件を説明する図。FIG. 3 is a diagram illustrating an end condition of the opening / closing control.

【図4】スイッチングのタイミングによる過渡振動トル
クの差を説明する図。
FIG. 4 is a view for explaining a difference in transient vibration torque due to switching timing.

【図5】スイッチングのタイミングのずれを発電機に生
じる過渡振動トルクの関係図。
FIG. 5 is a diagram showing a relationship between a transient vibration torque that causes a shift in switching timing in a generator.

【図6】電力系統シミュレータ用モデル系統図。FIG. 6 is a model system diagram for a power system simulator.

【図7】シミュレータの試験結果を示す図。FIG. 7 is a view showing test results of a simulator.

【図8】瞬時値ディジタルシミュレータ結果を示す図。FIG. 8 is a diagram showing results of an instantaneous value digital simulator.

【図9】実効値ディジタルシミュレーション結果を示す
図。
FIG. 9 is a diagram showing a result of an effective value digital simulation.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 多田 泰之 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式会社電力技術研究所内 (72)発明者 岡本 浩 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式会社電力技術研究所内 (72)発明者 山田 剛史 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式会社電力技術研究所内 (72)発明者 小林 直樹 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式会社電力技術研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasuyuki Tada 4-1 Egasaki-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside the Electric Power Research Laboratory, Tokyo Electric Power Company (72) Inventor Hiroshi Okamoto E, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture 4-1, Kasaki-cho, Tokyo Electric Power Company, Electric Power Technology Research Institute (72) Inventor Takeshi Yamada 4-1, Egasaki-cho, Tsurumi-ku, Yokohama, Kanagawa Prefecture, Tokyo Electric Power Company, Electric Power Technology Research Institute (72) Inventor Kobayashi Naoki 4-1 Egasakicho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture, Tokyo Electric Power Company

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1ルートの連系線を介して2つの系統あ
るいは1発電所と系統が連系されている前記連系線にル
ート断故障が発生したとき、故障発生後に当該連系線の
開放,投入を少なくとも1回以上複数回繰り返すことを
特徴とする系統の同期引き込み方法。
When a route disconnection fault occurs in two interconnected lines or one interconnected power plant and a system via a single interconnected line, a route disconnection fault occurs after the occurrence of the fault. A method of synchronizing a system, wherein opening and closing are repeated at least once or more than once.
【請求項2】 連系線の開放,投入はルート断後、両系
統のアングル差が開いたことを条件に、下記とすること
を特徴とする請求項1記載の系統の同期引き込み方法。 【数1】(2n−1)π<θ<2nπの間は開放 2nπ<θ<(2n+1)πの間は投入 但し、θはアングル差 nは整数
2. The method according to claim 1, wherein the connection and disconnection of the interconnection line are performed as follows on condition that an angle difference between the two systems is opened after the route is disconnected. (1) Open during (2n-1) π <θ <2nπ 2 (π) <θ <(2n + 1) π, where θ is the angle difference n is an integer
【請求項3】 2つの系統に代えてビル内の電気所とす
ることを特徴とする請求項1又は請求項2記載の系統の
同期引き込み方法。
3. The method according to claim 1, wherein an electric station in a building is used instead of the two systems.
JP18661096A 1996-06-27 1996-06-27 System synchronization pull-in method Expired - Fee Related JP3722387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18661096A JP3722387B2 (en) 1996-06-27 1996-06-27 System synchronization pull-in method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18661096A JP3722387B2 (en) 1996-06-27 1996-06-27 System synchronization pull-in method

Publications (2)

Publication Number Publication Date
JPH1014107A true JPH1014107A (en) 1998-01-16
JP3722387B2 JP3722387B2 (en) 2005-11-30

Family

ID=16191595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18661096A Expired - Fee Related JP3722387B2 (en) 1996-06-27 1996-06-27 System synchronization pull-in method

Country Status (1)

Country Link
JP (1) JP3722387B2 (en)

Also Published As

Publication number Publication date
JP3722387B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
CN110112990B (en) Control multi-winding permanent magnet motor
US8736090B2 (en) Protection arrangement of an electric power system
Weckesser et al. Impact of model detail of synchronous machines on real-time transient stability assessment
Wall et al. Smart frequency control for the future GB power system
So et al. Out-of-step detection algorithm using frequency deviation of voltage
Mathebula et al. Development of in-phase bus transfer scheme using MATLAB simulink
CN113471943A (en) Method for operating a converter, in particular of a wind turbine
JPH1014107A (en) Method of pulling systems into synchronism
Padhi et al. Numerical method based single machine analysis for transient stability
AU2021442185B2 (en) Method of controlling a power converter, converter arrangement and computer program product
Stringer Voltage considerations during generator synchronizing
Cheng et al. Out-of-step protection using the equal area criterion
Ali et al. Influence of communication delay on the performance of fuzzy logic-controlled braking resistor against transient stability
Annakkage et al. Transient Stability in Power Systems
Wämundson et al. Dimensioning of EHV series braking resistor for large thermal generators
KR100629617B1 (en) Out-of-Step detecting method using frequency deviation of the voltage
Ogboh et al. Transient stability analysis of power station (A case study of Nigeria power station)
Jhumka et al. Rotor angle and inertia analysis in presence of renewable energy source
Park et al. A Study on Communication Impact in the Excitation Signal Chain of a 3-phase Synchronous Generator
JPH0714258B2 (en) Step-out detection device
Ventruella et al. A second look at generator 51-V relays
Aghazadeh et al. A novel fast algorithm for detecting out-of-step using equal area criterion
Dilertea et al. Transient Response of Synchronous Generator to Faults on the Evacuation Overhead Line
Dineley Power system stability. II. Hardware, generators and their controls
CN113013927A (en) Three-phase reclosing control method and system for generator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050909

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees