JPH10141063A - Combustion chamber structure of direct injection type diesel engine - Google Patents

Combustion chamber structure of direct injection type diesel engine

Info

Publication number
JPH10141063A
JPH10141063A JP8316896A JP31689696A JPH10141063A JP H10141063 A JPH10141063 A JP H10141063A JP 8316896 A JP8316896 A JP 8316896A JP 31689696 A JP31689696 A JP 31689696A JP H10141063 A JPH10141063 A JP H10141063A
Authority
JP
Japan
Prior art keywords
combustion chamber
fuel
liquid phase
diesel engine
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8316896A
Other languages
Japanese (ja)
Inventor
Riyuu Chiyou
▲りゅう▼ 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP8316896A priority Critical patent/JPH10141063A/en
Publication of JPH10141063A publication Critical patent/JPH10141063A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0648Means or methods to improve the spray dispersion, evaporation or ignition
    • F02B23/0651Means or methods to improve the spray dispersion, evaporation or ignition the fuel spray impinging on reflecting surfaces or being specially guided throughout the combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0624Swirl flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the combustion chamber structure of a direct injection type diesel engine to prevent fuel from being exhausted in exhaust gas with fuel left unburnt due to adhesion of a liquid phase part of fuel injected through a fuel injection nozzle to the wall surface of a combustion chamber. SOLUTION: A recessed part 13 corresponding to the collision region of a liquid phase part is formed in a collision portion wherein a liquid phase part 12 of fuel injected through the nozzle hole 9 of a fuel injection nozzle arranged fronting on approximately the central part of a combustion chamber 6 is collided with the wall surface 10 of the combustion chamber 6. Fuel reflected by the recessed part 13 is not adhered in a film-form state on the wall surface 10 but flied in the combustion chamber 6 for combustion. Since a slope 15 is formed in the direction of a swirl B from the bottom 14 of the recessed part 13, flying of reflection fuel to the combustion chamber 6 is promoted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、燃料噴射ノズル
によって燃焼室に燃料を直接に噴射する直噴式ディーゼ
ルエンジンにおける燃焼室構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion chamber structure in a direct injection diesel engine in which fuel is directly injected into a combustion chamber by a fuel injection nozzle.

【0002】[0002]

【従来の技術】従来、特に、小型の直噴式ディーゼルエ
ンジンにおいては、上死点でのスワールの強さを保つた
め、ピストン頂部に形成されたキャビティによって燃焼
室が構成された、所謂、リエントラント型のピストンが
用いられている。この種のエンジンは、一般に、シリン
ダ内を往復動するピストンに形成された燃焼室と、この
燃焼室の略中央に臨ませてシリンダヘッドに設けられ且
つ複数の噴孔を備えた燃料噴射ノズルを備えており、燃
料は噴孔から直接にピストン頂部に形成された燃焼室内
に噴射される。
2. Description of the Related Art Conventionally, especially in a small direct injection type diesel engine, a so-called reentrant type engine in which a combustion chamber is constituted by a cavity formed at the top of a piston in order to maintain the strength of swirl at the top dead center. Pistons are used. This type of engine generally includes a combustion chamber formed in a piston that reciprocates in a cylinder, and a fuel injection nozzle provided in a cylinder head facing a substantially center of the combustion chamber and having a plurality of injection holes. The fuel is injected from the injection hole directly into a combustion chamber formed at the top of the piston.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、小型の
直噴式ディーゼルエンジンにおいては、ピストンの直径
に対するキャビティの開口部直径の比率は、約0.5付
近に集中しており、それ故、図7に示す従来の燃焼室構
造に見られるように、燃料噴射ノズルの噴孔29から噴
射された燃料の未蒸発部分、即ち液相部32は、ピスト
ン23に形成された燃焼室26の壁面30と衝突する。
衝突した燃料は、その衝突部位から燃焼室の壁面30の
広い範囲にわたって壁面30の周方向及びそれと直交す
る方向にフィルム状に広がる(矢印Fは燃料の壁面周方
向への拡がりを示す)。
However, in a small direct-injection diesel engine, the ratio of the diameter of the opening of the cavity to the diameter of the piston is concentrated around about 0.5. As shown in the conventional combustion chamber structure shown in the drawing, the non-evaporated portion of the fuel injected from the injection hole 29 of the fuel injection nozzle, that is, the liquid phase portion 32 collides with the wall surface 30 of the combustion chamber 26 formed in the piston 23. I do.
The colliding fuel spreads in the form of a film in the circumferential direction of the wall surface 30 and in a direction orthogonal thereto, over a wide range of the wall surface 30 of the combustion chamber from the collision site (an arrow F indicates the spread of the fuel in the circumferential direction of the wall surface).

【0004】始動時或いは低負荷運転の状態では、燃焼
室の壁面30の温度が比較的低いため、衝突後の燃料
は、壁面30に沿ってフィルム状に広がり蒸発しないま
ま壁面30に付着状態となる。図7において燃焼室26
のGで示す領域は火炎が届かない領域であり、領域Gに
まで達した液相燃料は、完全に燃焼しないまま燃焼サイ
クルを終える。その結果、その後蒸発する未燃焼のハイ
ドロカーボンが燃焼ガスの中に排出されるという問題点
があった。
[0004] At the time of start-up or low load operation, the temperature of the wall 30 of the combustion chamber is relatively low, so that the fuel after collision spreads in a film along the wall 30 and adheres to the wall 30 without evaporating. Become. In FIG. 7, the combustion chamber 26
The region indicated by G is a region where the flame does not reach, and the liquid phase fuel that has reached the region G ends the combustion cycle without completely burning. As a result, there is a problem that unburned hydrocarbons which evaporate thereafter are discharged into the combustion gas.

【0005】[0005]

【課題を解決するための手段】この発明の目的は、燃料
噴射ノズルから噴射された燃料が燃焼室の壁面に衝突し
ても、噴射燃料の液相部が壁面に付着するのを防ぎ、燃
焼ガス中にハイドロカーボンを排出しない直噴式ディー
ゼルエンジンにおける燃焼室構造を提供することであ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to prevent a liquid phase portion of an injected fuel from adhering to a wall surface even when fuel injected from a fuel injection nozzle collides with a wall surface of a combustion chamber. An object of the present invention is to provide a combustion chamber structure in a direct injection diesel engine that does not emit hydrocarbons into gas.

【0006】この発明は、上記の目的を解決するため、
以下のように構成されている。即ち、この発明は、シリ
ンダ内を往復動するピストンに形成された燃焼室、及び
前記燃焼室の略中央に臨ませてシリンダヘッドに設けら
れ且つ複数の噴孔を備えた燃料噴射ノズルを備えた直噴
式ディーゼルエンジンにおいて、前記燃料噴射ノズルの
噴孔から噴射される燃料の液相部が衝突する前記燃焼室
の衝突面に前記液相部の衝突領域に対応する形状の凹部
が形成されていることを特徴とする直噴式ディーゼルエ
ンジンにおける燃焼室構造に関する。
[0006] The present invention has been made in order to solve the above-mentioned object.
It is configured as follows. That is, the present invention includes a combustion chamber formed in a piston that reciprocates in a cylinder, and a fuel injection nozzle provided in a cylinder head facing a substantially center of the combustion chamber and having a plurality of injection holes. In a direct injection diesel engine, a concave portion having a shape corresponding to the collision region of the liquid phase portion is formed on the collision surface of the combustion chamber where the liquid phase portion of the fuel injected from the injection hole of the fuel injection nozzle collides. The invention relates to a combustion chamber structure in a direct injection diesel engine.

【0007】この発明によれば、燃焼室の略中央に臨ん
で設けられている燃料噴射ノズルの複数の噴孔から噴射
された燃料は、直ちに全ての燃料が気化せず相当量の燃
料が液相のままの状態で、シリンダ内を往復動するピス
トンに形成された燃焼室の壁面に対して衝突する。噴射
された燃料の液相部は、燃焼室の衝突面に形成された前
記液相部の衝突領域に対応する形状の凹部において衝突
することになり、その反射の流れは噴射の方向と逆方向
になる。したがって、噴射燃料は、衝突面との衝突後に
は、燃焼室内にて燃焼に供されることになる。燃焼室の
温度が比較的低い始動時や低負荷での運転状態であるほ
ど、噴射される燃料に対して液相部が占める割合は大き
い傾向にあるが、この発明によれば燃焼室の温度が、通
常運転状態のような比較的高温であるときは勿論のこ
と、比較的低温であっても、液相部が燃焼室の壁面に付
着することが少なくなる。その結果、排気ガス中に含ま
れる未燃焼のハイドロカーボンが少なくなる。
According to the present invention, the fuel injected from the plurality of injection holes of the fuel injection nozzle provided substantially at the center of the combustion chamber does not immediately vaporize all the fuel, and a considerable amount of fuel is supplied. In the state of the phase, it collides with the wall of the combustion chamber formed on the piston reciprocating in the cylinder. The liquid phase portion of the injected fuel collides with a concave portion formed on the collision surface of the combustion chamber and corresponding to the collision region of the liquid phase portion, and the reflection flow is in the opposite direction to the injection direction. become. Therefore, the injected fuel is provided for combustion in the combustion chamber after the collision with the collision surface. When the temperature of the combustion chamber is relatively low at the time of starting or operating at a low load, the ratio of the liquid phase portion to the injected fuel tends to increase. However, not only when the temperature is relatively high as in a normal operation state, but also when the temperature is relatively low, the liquid phase portion is less likely to adhere to the wall surface of the combustion chamber. As a result, unburned hydrocarbons contained in the exhaust gas are reduced.

【0008】凹部には、その底面から燃焼室内に生成さ
れるスワールの流れ方向に延びるスムースな傾斜面が備
わっている。この燃焼室構造によれば、凹部に衝突して
反射する液相燃料は、燃焼室内に生成されるスワールの
流れの補助を受けて、傾斜面から燃焼室の壁面に付着し
たまま広がることなく、燃焼室内に飛散して、燃焼に供
される。
[0008] The recess has a smooth inclined surface extending from the bottom surface in the flow direction of the swirl generated in the combustion chamber. According to this combustion chamber structure, the liquid-phase fuel that collides with the concave portion and reflects does not spread while remaining attached to the wall surface of the combustion chamber from the inclined surface with the aid of the flow of the swirl generated in the combustion chamber. It scatters into the combustion chamber and is used for combustion.

【0009】更に、スワールの流れ方向後流側の傾斜面
と燃焼室の壁面との境界部にはシャープエッジが形成さ
れている。この燃焼室構造によれば、液相燃料がスワー
ルの流れの補助を受けて傾斜面から流れ出る場合に、液
相燃料がシャープエッジによって燃焼室の壁面から剥離
し易くなり、液相燃料が燃焼室の壁面に付着したままの
状態で広がる現象が一層抑制される。
Furthermore, a sharp edge is formed at the boundary between the inclined surface on the downstream side of the swirl flow direction and the wall surface of the combustion chamber. According to this combustion chamber structure, when the liquid fuel flows out of the inclined surface with the assistance of the swirl flow, the liquid fuel is easily separated from the wall surface of the combustion chamber by the sharp edge, and the liquid fuel is separated from the combustion chamber. The phenomenon of spreading while remaining attached to the wall surface of the substrate is further suppressed.

【0010】[0010]

【発明の実施の形態】以下、添付図面を参照しつつ、こ
の発明の実施例を説明する。図1はこの発明による直噴
式ディーゼルエンジンにおける燃焼室構造の一実施例を
示す縦断面図であり、図2に示す線Y−Yを含む平面に
ついての断面図である。図2は、図1に示す燃焼室の横
断面図であり、図1の線X−Xを含む平面についての断
面図である。図1を参照すると、直噴式ディーゼルエン
ジン1は、シリンダ2内をOリング4によって密封され
つつ往復動するピストン3を備えており、ピストン3の
頂部5に形成されたキャビティによって燃焼室6が構成
されている。燃焼室6の略中央に臨むように、シリンダ
ヘッド7には燃料噴射ノズル8が配設されており、燃料
噴射ノズル8の先端には、燃焼室6の壁面10を指向し
て燃料を噴射する複数(図の例では、5個)の噴孔9が
周方向に隔置して配置されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a longitudinal sectional view showing one embodiment of a combustion chamber structure in a direct injection diesel engine according to the present invention, and is a sectional view on a plane including a line Y-Y shown in FIG. FIG. 2 is a cross-sectional view of the combustion chamber shown in FIG. 1, and is a cross-sectional view of a plane including line XX of FIG. 1. Referring to FIG. 1, a direct-injection diesel engine 1 includes a piston 3 that reciprocates while being sealed by an O-ring 4 in a cylinder 2, and a combustion chamber 6 is formed by a cavity formed in a top 5 of the piston 3. Have been. A fuel injection nozzle 8 is provided in the cylinder head 7 so as to face substantially the center of the combustion chamber 6, and fuel is injected at the tip of the fuel injection nozzle 8 in a direction toward the wall surface 10 of the combustion chamber 6. A plurality of (five in the example in the figure) injection holes 9 are arranged at intervals in the circumferential direction.

【0011】噴射燃料11のうち液相部12が燃焼室6
の壁面10において衝突する部位には、液相部12の衝
突領域の形状と対応した凹部13が形成されている。衝
突領域の形状は略円形である場合が多く、したがって、
凹部13の形状も、衝突領域を含むように円形の部分を
有している(後述する図4に示す例の領域Sを参照)。
図2に示すように、燃焼室6には、スワールが矢印Bで
示すように生成されており、凹部13は、その底面14
からスワールBの流れ方向に連続的に延びるスムースな
傾斜面15を備えている。噴射燃料11の液相部12は
断面が略円形をしており、その直径は約4mmであるの
で、凹部13の傾斜面を除く底面14の直径も約4mm
とし、液相部12の跳ね返りの効率性から、凹部13の
深さも直径と同様、約4mmとされる。なお、図1おい
て正面中央に見えるべき凹部13、及び図2において見
えるべき燃焼室6の開口については、図面の繁雑さを回
避するため、省略されている。
The liquid phase portion 12 of the injected fuel 11 is
A concave portion 13 corresponding to the shape of the collision region of the liquid phase portion 12 is formed at a portion where the collision occurs on the wall surface 10. Often, the shape of the collision area is substantially circular,
The shape of the concave portion 13 also has a circular portion so as to include the collision region (see the region S in the example shown in FIG. 4 described later).
As shown in FIG. 2, a swirl is generated in the combustion chamber 6 as shown by an arrow B, and the recess 13 has a bottom surface 14.
And a smooth inclined surface 15 that extends continuously in the flow direction of the swirl B. The liquid phase portion 12 of the injected fuel 11 has a substantially circular cross section and a diameter of about 4 mm, so that the diameter of the bottom surface 14 excluding the inclined surface of the recess 13 is also about 4 mm.
From the efficiency of the rebound of the liquid phase portion 12, the depth of the concave portion 13 is also set to about 4 mm similarly to the diameter. Note that, in FIG. 1, the concave portion 13 that should be seen at the front center and the opening of the combustion chamber 6 that should be seen in FIG. 2 are omitted to avoid complication of the drawing.

【0012】噴射燃料11の液相部12は、壁面10の
凹部13内において衝突した後、跳ね返ることになる
が、跳ね返りの燃料は、図で矢印Aで示すように、噴射
方向に逆向きに流れるものもあるが、跳ね返り燃料の大
部分は、傾斜面15、即ちスワールBの流れ方向に沿っ
て燃焼室6内へと広がり、未蒸発の燃料は燃焼室6内に
おいて拡散し燃焼に供される。したがって、従来のエン
ジンのように、壁面10に沿ってその上下左右にフィル
ム状に広がることがない。また、スワールBは、燃焼に
より凹部13内に溜まり易いカーボンを掃き出し、凹部
13の機能を保つ働きをする。
The liquid phase portion 12 of the injected fuel 11 rebounds after colliding in the recess 13 of the wall surface 10, and the rebounded fuel is directed in the opposite direction to the injection direction as shown by the arrow A in the figure. Although some of the fuel flows, most of the rebound fuel spreads into the combustion chamber 6 along the inclined surface 15, that is, the flow direction of the swirl B, and the unevaporated fuel diffuses in the combustion chamber 6 and is subjected to combustion. You. Therefore, unlike the conventional engine, the film does not spread along the wall surface 10 in a vertical or horizontal direction. In addition, the swirl B sweeps out carbon that easily accumulates in the recess 13 due to combustion, and functions to maintain the function of the recess 13.

【0013】図3は、この発明による直噴式ディーゼル
エンジンにおける燃焼室構造の別の実施例における、燃
焼室に形成される凹部の別の例を示す拡大断面図であ
り、図2と同様の方向の断面で見た図である。図4は図
3に示す凹部の正面図である。図3及び図4に示すよう
に、噴射燃料11の液相部12の壁面10との衝突領域
Sは略円状をなしており、その衝突領域Sに対応して壁
面10には凹部16が形成されている。凹部16は、そ
の底面17から燃焼室6で生成されるスワールBの下流
方向に沿って、壁面10に次第に接近するように傾斜面
18を備えている。したがって、凹部16の底面17で
反射した噴射燃料11の液相部12の流れは、Cで示す
ように、スワールBの方向に流れるように傾斜面18に
よって案内される。
FIG. 3 is an enlarged sectional view showing another example of the recess formed in the combustion chamber in another embodiment of the combustion chamber structure in the direct injection type diesel engine according to the present invention, in the same direction as FIG. FIG. FIG. 4 is a front view of the recess shown in FIG. As shown in FIGS. 3 and 4, a collision region S of the injected fuel 11 with the wall surface 10 of the liquid phase portion 12 has a substantially circular shape, and a concave portion 16 is formed on the wall surface 10 corresponding to the collision region S. Is formed. The concave portion 16 has an inclined surface 18 so as to gradually approach the wall surface 10 along a downstream direction of the swirl B generated in the combustion chamber 6 from the bottom surface 17. Therefore, the flow of the liquid phase portion 12 of the injected fuel 11 reflected on the bottom surface 17 of the concave portion 16 is guided by the inclined surface 18 so as to flow in the direction of the swirl B as shown by C.

【0014】傾斜面18に案内された燃料は、燃焼室6
内へと飛散するが、その作用をより確実にするために、
スワールBの流れ方向後流側の傾斜面18と燃焼室6の
壁面10との境界部においてシャープエッジ19が形成
されている。傾斜面18で案内されて流れる噴射燃料1
1の液相部12は、シャープエッジ19において直接に
燃焼室6内へと飛散し易くなるので、従来のエンジンで
見られたように、壁面10に沿ってフィルム状に這うよ
うに流れて広がることはない。また、スワールBは、図
2に示す例で説明したのと同様に燃焼により生じたカー
ボンを凹部16から掃き出すので、凹部16本来の機能
を維持する働きをする。
The fuel guided to the inclined surface 18 is supplied to the combustion chamber 6.
It scatters inside, but in order to make its action more certain,
A sharp edge 19 is formed at the boundary between the inclined surface 18 on the downstream side in the flow direction of the swirl B and the wall surface 10 of the combustion chamber 6. Injected fuel 1 guided and guided by the inclined surface 18
The first liquid phase portion 12 is easily scattered directly into the combustion chamber 6 at the sharp edge 19, so that it flows and spreads like a film along the wall surface 10 as seen in a conventional engine. Never. Further, the swirl B sweeps out carbon generated by combustion from the concave portion 16 in the same manner as described in the example shown in FIG. 2, and thus functions to maintain the original function of the concave portion 16.

【0015】図5は、この発明による直噴式ディーゼル
エンジンにおける燃焼室構造の更に別の実施例の一部を
示す縦断面図である。図6は、図5に示す凹部の線Z−
Zを通る平面での断面図である。図5及び図6に示す実
施例においては、図1及び図2に示す実施例における構
成要素と実質的に同じ要素には同じ符号を付してあるの
で、それらの要素についての再度の説明を省略する。図
5及び図6に示すように、噴射燃料11の液相部12が
壁面10に衝突する衝突面には、その衝突領域に対応し
て、凹部20が形成されている。凹部20を形成する凹
面は、噴射燃料11の液相部12の中心線Dを中心軸と
する円錐面であり、凹部20の最深尖端は、この円錐の
頂点に相当する。円錐の頂角は、燃料の跳ね返り特性
上、20°〜40°が好ましい。凹部20の壁面10に
おける開口幅は、約4mmである。凹部20で跳ね返っ
た燃料の流れは、矢印Eで示すように噴射の方向と逆方
向になり、燃焼室6の壁面10にフィルム状に広がって
付着することなく、燃焼室6内に飛散する。
FIG. 5 is a longitudinal sectional view showing a part of still another embodiment of the combustion chamber structure in the direct injection diesel engine according to the present invention. FIG. 6 is a cross-sectional view of the concave portion shown in FIG.
It is sectional drawing in the plane which passes through Z. In the embodiment shown in FIGS. 5 and 6, substantially the same components as those in the embodiment shown in FIGS. 1 and 2 are denoted by the same reference numerals. Omitted. As shown in FIGS. 5 and 6, a concave portion 20 is formed on the collision surface where the liquid phase portion 12 of the injected fuel 11 collides with the wall surface 10, corresponding to the collision region. The concave surface forming the concave portion 20 is a conical surface with the central line D of the liquid phase portion 12 of the injected fuel 11 as a central axis, and the deepest point of the concave portion 20 corresponds to the apex of this cone. The apex angle of the cone is preferably 20 ° to 40 ° in view of the fuel rebound characteristics. The opening width of the recess 20 in the wall surface 10 is about 4 mm. The flow of the fuel bounced off by the concave portion 20 is in a direction opposite to the injection direction as shown by an arrow E, and scatters into the combustion chamber 6 without spreading and adhering to the wall surface 10 of the combustion chamber 6 in a film shape.

【0016】[0016]

【発明の効果】この発明は、上記のように構成されてい
るので、次のような効果を奏する。即ち、この発明によ
る直噴式ディーゼルエンジンにおける燃焼室構造によれ
ば、噴射された燃料の液相部は、燃焼室の衝突面に形成
された前記液相部の衝突領域に対応する形状の凹部にお
いて衝突することになり、その反射の流れは噴射の方向
と逆方向になり、噴射燃料は、衝突面との衝突後には、
燃焼室内にて燃焼に供される。したがって、燃焼室が比
較的低温であっても、液相部が燃焼室の壁面にフィルム
状に付着することが少なくなり、衝突面に沿ってフィル
ム状に流れて付着した状態となることに起因して燃料が
未燃焼のままハイドロカーボンの状態で燃焼ガスの中に
排出されることがなくなる。しかも、凹部に形成される
傾斜部によって案内される反射燃料の液相部の流れ方向
は、スワールBの流れと順方向であるので、液相部はス
ワールの流れの補助を受けて燃焼室内に飛散し易くな
り、燃焼に供される。また、燃焼により凹部にカーボン
が生じても、スワールBによって掃き出されて、凹部1
3内に付着したままとなるのが防止され、凹部の機能が
維持される。
Since the present invention is configured as described above, it has the following effects. That is, according to the combustion chamber structure of the direct injection diesel engine according to the present invention, the liquid phase portion of the injected fuel is formed in the recess formed on the collision surface of the combustion chamber and having a shape corresponding to the collision region of the liquid phase portion. The collision will cause the reflected flow to be in the opposite direction of the injection, and the injected fuel will, after impact with the impact surface,
Provided for combustion in the combustion chamber. Therefore, even when the temperature of the combustion chamber is relatively low, the liquid phase is less likely to adhere to the wall surface of the combustion chamber in the form of a film, and the liquid phase portion flows and adheres to the film along the collision surface. As a result, the fuel is not discharged into the combustion gas in a hydrocarbon state without being burned. Moreover, the flow direction of the liquid phase portion of the reflected fuel guided by the inclined portion formed in the concave portion is in the forward direction with respect to the flow of the swirl B, so that the liquid phase portion enters the combustion chamber with the assistance of the swirl flow. It becomes easy to fly and is used for combustion. Further, even if carbon is generated in the concave portion due to combustion, it is swept out by the swirl B and the concave portion 1
3 is prevented from sticking inside, and the function of the concave portion is maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による直噴式ディーゼルエンジンにお
ける燃焼室構造の一実施例を示す縦断面図であり、図2
の線Y−Yを通る平面での断面図である。
FIG. 1 is a longitudinal sectional view showing one embodiment of a combustion chamber structure in a direct injection diesel engine according to the present invention, and FIG.
It is sectional drawing in the plane which passes along the line YY.

【図2】図1に示す燃焼室構造の線X−Xを通る平面で
の断面図である。
FIG. 2 is a cross-sectional view of the combustion chamber structure shown in FIG. 1 taken along a line XX.

【図3】この発明による直噴式ディーゼルエンジンにお
ける燃焼室構造の別の実施例における、燃焼室に形成さ
れる凹部を示す拡大断面図である。
FIG. 3 is an enlarged sectional view showing a recess formed in the combustion chamber in another embodiment of the combustion chamber structure in the direct injection diesel engine according to the present invention.

【図4】図3に示す凹部の正面図である。FIG. 4 is a front view of a recess shown in FIG. 3;

【図5】この発明による直噴式ディーゼルエンジンにお
ける燃焼室構造の更に別の実施例の一部を示す断面図で
ある。
FIG. 5 is a sectional view showing a part of still another embodiment of the combustion chamber structure in the direct injection diesel engine according to the present invention.

【図6】図5に示す凹部の線Z−Zを通る平面での断面
図である。
FIG. 6 is a cross-sectional view taken along a plane passing through line ZZ of the concave portion shown in FIG.

【図7】従来の直接噴射式エンジンの燃焼室構造の横断
面図である。
FIG. 7 is a cross-sectional view of a combustion chamber structure of a conventional direct injection engine.

【符号の説明】[Explanation of symbols]

1 直噴式ディーゼルエンジン 2 シリンダ 3 ピストン 5 ピストン頂部 6 燃焼室 7 シリンダヘッド 8 燃料噴射ノズル 9 噴孔 10 壁面 11 噴射燃料 12 液相部 13,16,20 凹部 14,17 底面 15,18 傾斜面 19 シャープエッジ B スワール DESCRIPTION OF SYMBOLS 1 Direct injection diesel engine 2 Cylinder 3 Piston 5 Piston top 6 Combustion chamber 7 Cylinder head 8 Fuel injection nozzle 9 Injection hole 10 Wall surface 11 Injected fuel 12 Liquid phase part 13, 16, 20 Concave part 14, 17 Bottom surface 15, 18 Inclined surface 19 Sharp Edge B Swirl

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリンダ内を往復動するピストンに形成
された燃焼室、及び前記燃焼室の略中央に臨ませてシリ
ンダヘッドに設けられ且つ複数の噴孔を備えた燃料噴射
ノズルを備えた直噴式ディーゼルエンジンにおいて、前
記燃料噴射ノズルの噴孔から噴射される燃料の液相部が
衝突する前記燃焼室の衝突面に前記液相部の衝突領域に
対応する形状の凹部が形成されていることを特徴とする
直噴式ディーゼルエンジンにおける燃焼室構造。
1. A direct combustion engine comprising: a combustion chamber formed in a piston reciprocating in a cylinder; and a fuel injection nozzle provided in a cylinder head facing a substantially center of the combustion chamber and having a plurality of injection holes. In the injection diesel engine, a concave portion having a shape corresponding to the collision region of the liquid phase portion is formed on a collision surface of the combustion chamber where the liquid phase portion of the fuel injected from the injection hole of the fuel injection nozzle collides. The combustion chamber structure of a direct injection diesel engine characterized by the following.
【請求項2】 前記凹部は、その底面から前記燃焼室内
に生成されるスワールの流れ方向に延びるスムースな傾
斜面を備えている請求項1に記載の直噴式ディーゼルエ
ンジンにおける燃焼室構造。
2. The combustion chamber structure in a direct-injection diesel engine according to claim 1, wherein said recess has a smooth inclined surface extending from a bottom surface thereof in a flow direction of swirl generated in said combustion chamber.
【請求項3】 前記スワールの流れ方向後流側の前記傾
斜面と前記燃焼室の壁面との境界部にはシャープエッジ
が形成されている請求項2に記載の直噴式ディーゼルエ
ンジンにおける燃焼室構造。
3. A combustion chamber structure in a direct-injection diesel engine according to claim 2, wherein a sharp edge is formed at a boundary between the inclined surface on the downstream side in the flow direction of the swirl and a wall surface of the combustion chamber. .
JP8316896A 1996-11-14 1996-11-14 Combustion chamber structure of direct injection type diesel engine Pending JPH10141063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8316896A JPH10141063A (en) 1996-11-14 1996-11-14 Combustion chamber structure of direct injection type diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8316896A JPH10141063A (en) 1996-11-14 1996-11-14 Combustion chamber structure of direct injection type diesel engine

Publications (1)

Publication Number Publication Date
JPH10141063A true JPH10141063A (en) 1998-05-26

Family

ID=18082125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8316896A Pending JPH10141063A (en) 1996-11-14 1996-11-14 Combustion chamber structure of direct injection type diesel engine

Country Status (1)

Country Link
JP (1) JPH10141063A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059154A1 (en) * 2002-12-20 2004-07-15 Daimlerchrysler Ag Internal combustion engine having auto-ignition
FR2898638A1 (en) * 2006-03-17 2007-09-21 Inst Francais Du Petrole Gaseous fluid e.g. air, and fuel mixing method for diesel type direct injection internal combustion engine, involves rotating injected fuel in swirl movement using rotating unit so as to mix introduced gaseous fluid and fuel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059154A1 (en) * 2002-12-20 2004-07-15 Daimlerchrysler Ag Internal combustion engine having auto-ignition
US7073478B2 (en) 2002-12-20 2006-07-11 Daimlerchrysler Ag Internal combustion engine with auto-ignition
FR2898638A1 (en) * 2006-03-17 2007-09-21 Inst Francais Du Petrole Gaseous fluid e.g. air, and fuel mixing method for diesel type direct injection internal combustion engine, involves rotating injected fuel in swirl movement using rotating unit so as to mix introduced gaseous fluid and fuel
WO2007118952A1 (en) * 2006-03-17 2007-10-25 Ifp Method for mixing at least one gaseous fluid and a fuel in the combustion chamber of a direct injection internal combustion engine, and engine using said method

Similar Documents

Publication Publication Date Title
JPH0826772B2 (en) Spark ignition cylinder injection engine
JP4888330B2 (en) Direct injection internal combustion engine
JPH10131757A (en) Inner-cylinder injection type engine
JP2000248944A (en) Cylinder injection type spark ignition internal combustion engine
JPH10141063A (en) Combustion chamber structure of direct injection type diesel engine
JPH09228838A (en) Direct injection type diesel engine
JPH11200867A (en) Cylinder fuel injection engine
JP2005351200A (en) Direct-injection spark-ignition internal combustion engine
JP3538916B2 (en) Combustion chamber structure of direct injection engine
JP2010150970A (en) Spark ignition direct injection engine
JP3644057B2 (en) Direct injection spark ignition internal combustion engine
JP3596351B2 (en) Compression ignition type internal combustion engine
JP2867767B2 (en) Diesel engine swirl chamber structure
JPH10196371A (en) Combustion chamber structure of direct injection type diesel engine
JP2005163567A (en) Fuel injection nozzle and internal combustion engine
JP2002013417A (en) Method to provide fuel-air mixture in internal combustion engine by gasoline direct injection and internal combustion engine accompanied with gasoline direct injection
JPH05106443A (en) Combustion chamber of internal combustion engine
JP2001214744A (en) Cylinder injection type spark ignition internal combustion engine
JP4096637B2 (en) In-cylinder direct injection internal combustion engine
JP2587370Y2 (en) In-cylinder direct injection spark ignition engine
JP4026406B2 (en) Direct-injection spark ignition internal combustion engine
JP2003269176A (en) Cylinder direct injection engine
JP2003314286A (en) Cylinder injection type spark ignition engine
JPH05296048A (en) Cylinder direct injection type spark ignition engine
JPH0681655A (en) Combustion chamber for cylinder injection type internal combustion engine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term