JPH10139410A - Production of carbonaceous material and battery using the same - Google Patents

Production of carbonaceous material and battery using the same

Info

Publication number
JPH10139410A
JPH10139410A JP9247532A JP24753297A JPH10139410A JP H10139410 A JPH10139410 A JP H10139410A JP 9247532 A JP9247532 A JP 9247532A JP 24753297 A JP24753297 A JP 24753297A JP H10139410 A JPH10139410 A JP H10139410A
Authority
JP
Japan
Prior art keywords
pitch
carbonaceous material
weight
quinoline
mesophase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9247532A
Other languages
Japanese (ja)
Other versions
JP3223144B2 (en
Inventor
Yoshihiko Hase
義彦 長谷
Hidetoshi Morotomi
秀俊 諸富
Hiromi Okamoto
寛巳 岡本
Seiji Komura
省二 甲村
Yasuyuki Takigawa
泰行 瀧川
Shigeyuki Hirano
滋幸 平野
Tetsuo Shiode
哲夫 塩出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADO KEMUKO KK
Original Assignee
ADO KEMUKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADO KEMUKO KK filed Critical ADO KEMUKO KK
Priority to JP24753297A priority Critical patent/JP3223144B2/en
Publication of JPH10139410A publication Critical patent/JPH10139410A/en
Application granted granted Critical
Publication of JP3223144B2 publication Critical patent/JP3223144B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Working-Up Tar And Pitch (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce economically a carbonaceous material having high performance as a material for negative electrodes of lithium-ion secondary battery without use of a solvent of troublesome handling, such as quinoline. SOLUTION: This carbonaceous material, which is used as a material for negative electrodes of lithium-ion secondary batteries, is produced by steps of: heat-treating vacuum pitch until its quinoline-insoluble content becomes 50-85wt.% so as to form mesophase pitch; powdering the obtained mesophase pitch to fine particles having an aspect ratio of 2 or less; oxidizing the powder; and carbonizing and graphitizing the oxidized powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、炭素質材料の製造
方法に関し、更に詳しくはリチウムイオン二次電池用の
負極材料等として高性能な炭素質材料を経済的に提供す
ることを目的とする。
The present invention relates to a method for producing a carbonaceous material, and more particularly, to economically provide a high-performance carbonaceous material as a negative electrode material for a lithium ion secondary battery. .

【0002】[0002]

【従来の技術】近年、電子機器や通信機器の小型化及び
軽量化が急速に進んでおり、これらの駆動用電源として
用いられる二次電池に対しても小型化及び軽量化の要求
が強く、高エネルギー密度で且つ高電圧を有するリチウ
ムイオン二次電池が提案されている。
2. Description of the Related Art In recent years, miniaturization and weight reduction of electronic devices and communication devices have been rapidly progressing, and there is a strong demand for miniaturization and weight reduction of secondary batteries used as power sources for driving these devices. A lithium ion secondary battery having a high energy density and a high voltage has been proposed.

【0003】リチウムイオン二次電池は、正極に例えば
コバルト酸リチウムを使用し、負極に黒鉛等の炭素質材
料を使用して、充電時にリチウムイオンを炭素質材料に
吸蔵させ、放電時にこれらのリチウムイオンを負極から
放出させるものである。正極材料としては、種々の材料
が提案されているが、現在のところコバルト酸リチウム
が最も広く使用され、一方、負極材料としては、主にカ
ーボンが使用され、これらのカーボンとしては、主とし
て黒鉛質結晶性材料と炭素質非結晶性材料とに分けられ
る。
A lithium ion secondary battery uses, for example, lithium cobalt oxide for a positive electrode, uses a carbonaceous material such as graphite for a negative electrode, occludes lithium ions in the carbonaceous material at the time of charging, and stores these lithium ions at the time of discharge. The ions are released from the negative electrode. Various materials have been proposed as the positive electrode material. At present, lithium cobalt oxide is most widely used. On the other hand, carbon is mainly used as the negative electrode material. It is divided into crystalline materials and carbonaceous amorphous materials.

【0004】[0004]

【発明が解決しようとする課題】上記黒鉛質材料の1種
として、球状メソフェーズピッチ微粒子が負極材料とし
て使用されている。この球状メソフェーズピッチ微粒子
は、各種ピッチを350℃〜500℃の温度に加熱する
ことにより、ピッチ中に球状に析出してくる微粒子であ
り、黒鉛類似の構造を有している。上記ピッチの熱処理
をそのまま続けてゆくとやがて全体がコークスへと変化
するので、前記メソフェーズピッチ微粒子を得るために
は、球状メソフェーズピッチ微粒子の生成過程におい
て、熱処理ピッチに溶剤を加えて該微粒子のみを遠心分
離、その他の方法で分離することが必要である(特開平
4−115458号公報等)。
As one of the above-mentioned graphite materials, spherical mesophase pitch fine particles are used as a negative electrode material. These spherical mesophase pitch fine particles are fine particles which are precipitated in the pitch by heating various pitches to a temperature of 350 ° C. to 500 ° C., and have a structure similar to graphite. When the heat treatment of the pitch is continued as it is, the whole eventually changes to coke.In order to obtain the mesophase pitch fine particles, in the process of producing the spherical mesophase pitch fine particles, a solvent is added to the heat-treated pitch to remove only the fine particles. It is necessary to separate them by centrifugation or another method (Japanese Patent Laid-Open No. 4-115458, etc.).

【0005】上記球状メソフェーズピッチ微粒子の分離
は、溶剤を加えた高粘度の溶融ピッチから行うことから
その分離操作が煩雑であり、そのうえ、使用したピッチ
100重量部当たりの得られる球状微粒子の量は約10
〜30重量部程度に過ぎず、非常に収率が低く、そのう
え使用した溶剤の回収の問題がある。従って、操作が煩
雑なばかりでなく、収率の低さからして得られる球状メ
ソフェーズピッチ微粒子は、その使用原料に比較して著
しく高価になるという問題があり、最終的に得られるリ
チウムイオン二次電池のコストアップの1原因となって
いる。
The separation of the above-mentioned spherical mesophase pitch fine particles is complicated because the separation operation is performed from a high-viscosity molten pitch to which a solvent is added. In addition, the amount of the obtained spherical fine particles per 100 parts by weight of the pitch used is About 10
Only about 30 parts by weight, the yield is very low, and there is a problem of recovery of the used solvent. Therefore, not only the operation is complicated, but also the spherical mesophase pitch fine particles obtained from the low yield have a problem that they are extremely expensive as compared with the raw materials used, and the finally obtained lithium ion This is one cause of an increase in the cost of the secondary battery.

【0006】上記の如き問題を解決する方法として、コ
ールタールピッチをキノリンで処理してキノリン可溶分
を分離し、更にこのキノリン可溶分からトルエン不溶分
を除去して得られる、所謂「β−レジン」を調製し、こ
れを水素添加及び重質化して得られるメソフェーズピッ
チを原料として使用して炭素質材料を提供する方法が提
案されている(特公昭64−33186号公報及び特開
平7−223808号公報)。
As a method for solving the above problems, a so-called “β-isolate” obtained by treating coal tar pitch with quinoline to separate a quinoline-soluble component and further removing a toluene-insoluble component from the quinoline-soluble component is used. A method has been proposed in which a "resin" is prepared, and a mesophase pitch obtained by hydrogenating and heaviering the resin is used as a raw material to provide a carbonaceous material (Japanese Patent Publication No. 64-33186 and Japanese Patent Application Laid-Open No. No. 223808).

【0007】上記方法によれば、良好な球状炭素粉末が
得られるものの、高沸点且つ毒性の高いキノリン及びト
ルエンを多量に使用するという問題があり、それらの溶
剤の取扱い、溶剤の回収の問題等多くの課題が残されて
おり、その結果、得られる球状炭素材料は著しくコスト
高になるという問題がある。従って本発明の目的は、取
扱いが煩雑であるキノリン等の溶剤を何ら使用すること
なく、リチウムイオン二次電池用の負極材料等として高
性能な炭素質材料を経済的に提供することである。
According to the above method, although good spherical carbon powder can be obtained, there is a problem that a large amount of quinoline and toluene having a high boiling point and high toxicity are used in a large amount. Many problems remain, and as a result, there is a problem that the cost of the obtained spherical carbon material is significantly increased. Accordingly, an object of the present invention is to economically provide a high-performance carbonaceous material as a negative electrode material or the like for a lithium ion secondary battery without using any complicated solvent such as quinoline.

【0008】[0008]

【課題を解決するための手段】上記目的は以下の本発明
によって達成される。即ち、本発明は、減圧ピッチを、
そのキノリン不溶分が50〜85重量%になるまで熱処
理してメソフェーズピッチとする工程、得られたメソフ
ェーズピッチをアスペクト比が2以下の微粒子に粉砕す
る工程、該粉砕物を酸化処理する工程、及び酸化処理物
を炭化・黒鉛化処理する工程からなることを特徴とする
炭素質材料の製造方法、及び該炭素質材料を負極材料と
して使用したリチウムイオン二次電池である。
The above object is achieved by the present invention described below. That is, the present invention provides a reduced pressure pitch,
A step of heat-treating the quinoline insoluble matter to 50 to 85% by weight to form a mesophase pitch, a step of pulverizing the obtained mesophase pitch into fine particles having an aspect ratio of 2 or less, a step of oxidizing the pulverized product, and A method for producing a carbonaceous material, comprising a step of carbonizing and graphitizing an oxidized product, and a lithium ion secondary battery using the carbonaceous material as a negative electrode material.

【0009】本発明によれば、減圧ピッチを、そのキノ
リン不溶分が50〜85重量%になるまで熱処理してメ
ソフェーズピッチとし、該メソフェーズピッチを分離す
ることなく、これを微粒子に粉砕し、これを酸化処理す
ることにより、粉砕物は球状に近い形状に変化し、この
状態で炭化・黒鉛化処理することによって、従来の熱処
理ピッチから分離した球状メソフェーズピッチ微粒子と
同等或いはそれ以上のリチウムイオンの吸蔵能力を有す
る炭素質微粒子が得られることを見出した。従って本発
明によれば、キノリンやトルエン等の溶剤を何ら使用す
ることなく、リチウムイオン二次電池用の負極材料等と
して高性能な炭素質材料を、簡便な操作で高収率且つ経
済的に提供することができる。
According to the present invention, the reduced-pressure pitch is heat-treated until its quinoline-insoluble content becomes 50 to 85% by weight to form a mesophase pitch, and the mesophase pitch is pulverized into fine particles without separation. By oxidizing the pulverized material, the pulverized material changes into a shape close to a sphere, and in this state, carbonization and graphitization are performed, whereby lithium ions of the same or greater size than spherical mesophase pitch fine particles separated from the conventional heat treatment pitch are obtained. It has been found that carbonaceous fine particles having an occlusion ability can be obtained. Therefore, according to the present invention, without using any solvent such as quinoline or toluene, a high-performance carbonaceous material as a negative electrode material or the like for a lithium ion secondary battery can be produced in a simple operation at a high yield and economically. Can be provided.

【0010】[0010]

【発明の実施の形態】次に好ましい実施の形態を挙げて
本発明を更に詳細に説明する。本発明の製造方法は、図
1の製造工程図に示すように、減圧ピッチを、そのキノ
リン不溶分が50〜85重量%になるまで熱処理してメ
ソフェーズピッチとする工程、得られたメソフェーズピ
ッチをアスペクト比が2以下の微粒子に粉砕する工程、
該粉砕物を酸化処理する工程、及び酸化処理物を炭化・
黒鉛化処理する工程からなることを特徴としている。
Next, the present invention will be described in more detail with reference to preferred embodiments. The production method of the present invention comprises, as shown in the production process diagram of FIG. 1, a step of heat-treating the reduced-pressure pitch until the quinoline-insoluble content becomes 50 to 85% by weight to form a mesophase pitch. A step of pulverizing into fine particles having an aspect ratio of 2 or less,
Oxidizing the pulverized material, and carbonizing the oxidized material.
It is characterized by comprising a step of graphitizing.

【0011】本発明において原料として使用する減圧ピ
ッチとは、常圧蒸留によって軽質分を除いたコールター
ルを更に減圧蒸留して残った留分である。好ましくはコ
ールタールを遠心分離器によって、コールタール中に存
在している固体不純物を除去し、常圧蒸留塔で水蒸気蒸
留してコールタール中に存在している軽質分を除去して
沸点280℃以上の留分を得る。この留分は、使用する
コールタールの種類によって一概には規定されないが、
好ましくは装入したコールタール100重量部が75重
量部以下、好ましくは70重量部以下になる条件で常圧
蒸留することによって得られる。
The reduced-pressure pitch used as a raw material in the present invention is a fraction remaining after further distillation under reduced pressure of coal tar from which light components have been removed by atmospheric distillation. Preferably, the coal tar is centrifuged to remove solid impurities present in the coal tar, and steam distilled in an atmospheric distillation tower to remove light components present in the coal tar, and the boiling point is 280 ° C. The above fraction is obtained. This fraction is not specified unconditionally by the type of coal tar used,
Preferably, it is obtained by distillation under normal pressure under the condition that 100 parts by weight of the charged coal tar is 75 parts by weight or less, preferably 70 parts by weight or less.

【0012】減圧蒸留は、上記常圧蒸留物を更に減圧下
で蒸留して、常圧蒸留物中の残余の軽質分の除去のため
に行う。この常圧蒸留物の加熱を加熱炉中で行い、加熱
温度が360℃以下、好ましくは300〜360℃の温
度で50Torr以下、好ましくは30Torr以下の
減圧下で短時間に減圧蒸留を行う。この減圧蒸留によっ
て軽質成分が殆ど除去され、減圧蒸留の条件によって種
々の軟化点を有するピッチが得られるが、本発明におい
ては、得られる減圧ピッチの軟化点が100℃〜120
℃、好ましくは105〜115℃の範囲になるように加
熱温度、加熱時間及び減圧度等の条件を設定して減圧蒸
留を行う。軟化点が上記範囲を超える減圧蒸留条件で
は、減圧蒸留中に加熱炉チューブにおいてコーキング
(炭化)が発生し、安定した減圧蒸留の運転が妨げられ
る虞がある。このようにして得られた減圧ピッチは、含
有されている成分の分子量分布が狭く且つ一定にでき、
トルエン不溶分25重量%以下、キノリン不溶分4重量
%以下で安定した性状となる。
The vacuum distillation is performed by further distilling the above-mentioned atmospheric distillate under reduced pressure to remove residual light components in the atmospheric distillate. The atmospheric distillate is heated in a heating furnace, and is subjected to vacuum distillation in a short time at a heating temperature of 360 ° C. or less, preferably 300 to 360 ° C., and a reduced pressure of 50 Torr or less, preferably 30 Torr or less. Most of the light components are removed by this vacuum distillation, and pitches having various softening points can be obtained depending on the conditions of the vacuum distillation. In the present invention, the softening point of the obtained vacuum pitch is 100 ° C to 120 ° C.
C., preferably a temperature in the range of 105 to 115.degree. Under reduced pressure distillation conditions in which the softening point exceeds the above range, caulking (carbonization) occurs in the heating furnace tube during reduced pressure distillation, which may hinder stable vacuum distillation operation. The reduced pressure pitch thus obtained can have a narrow and constant molecular weight distribution of the contained components,
Stable properties are obtained when the toluene-insoluble content is 25% by weight or less and the quinoline-insoluble content is 4% by weight or less.

【0013】尚、本発明の方法において、減圧蒸留を省
略すると以下の如き不都合がある。即ち、軟化点が10
0〜120℃のピッチは、常圧蒸留したピッチを加熱処
理しても得られるが、得られた加熱処理ピッチは、その
分子量分布が広く、メソフェーズピッチの中のメソフェ
ーズ相に含まれる多環縮合芳香族化合物の分子量分布も
不均一となり、その後の炭化・黒鉛化してリチウム電池
の負極材料として利用する場合に、リチウムの吸蔵量が
小さくなる等の不都合がある。
In the method of the present invention, omitting vacuum distillation has the following disadvantages. That is, the softening point is 10
The pitch of 0 to 120 ° C. can be obtained by heat-treating a pitch obtained by distillation under normal pressure, but the obtained heat-treated pitch has a wide molecular weight distribution and polycyclic condensation contained in the mesophase phase in the mesophase pitch. The molecular weight distribution of the aromatic compound also becomes non-uniform, and when it is subsequently carbonized and graphitized and used as a negative electrode material of a lithium battery, there are disadvantages such as a reduced amount of lithium occlusion.

【0014】本発明では、以上のように調整された減圧
ピッチを熱処理する。熱処理は、窒素ガス等の非酸化性
ガスを吹き込みながら、420℃以下、好ましくは39
5〜400℃で熱処理を行う。このガスの吹き込みによ
り、溶融ピッチの温度の均一性を保ち、ピッチ成分の偏
在を防止し、又、併せてピッチ中に存在している低沸点
物質を強制的に除去する。上記不活性ガスの流量を0.
05Nm3/ピッチkg・hr以上、好ましくは0.1
5〜0.20Nm3/ピッチkg・hrとした場合に
は、前記加熱処理時間は通常は約3〜7時間であり、好
ましくは約4〜6時間である。
In the present invention, the reduced pressure pitch adjusted as described above is heat-treated. The heat treatment is performed at 420 ° C. or lower, preferably 39 ° C. while blowing a non-oxidizing gas such as nitrogen gas.
Heat treatment is performed at 5 to 400 ° C. By blowing the gas, the uniformity of the temperature of the molten pitch is maintained, uneven distribution of pitch components is prevented, and low-boiling substances present in the pitch are also forcibly removed. The flow rate of the inert gas is set to 0.
05 Nm 3 / pitch kg · hr or more, preferably 0.1
In the case of 5 to 0.20 Nm 3 / pitch kg · hr, the heat treatment time is usually about 3 to 7 hours, preferably about 4 to 6 hours.

【0015】又、熱処理中に発生する軽質分を除去し得
るように、反応器に排出管を設けると共に、反応器内圧
力を昇温過程では9kg/cm2・G以下、好ましくは
5kg/cm2・G以下に保つように圧力調節弁を設
け、軽質分の連続的な排出を行う。以上の熱処理は、熱
処理物のキノリン不溶分が50〜85重量%になるま
で、好ましくは該キノリン不溶分とともにトルエン不溶
分が70〜95重量%、更に好ましくはキノリン不溶分
が55〜80重量%且つトルエン不溶分が70〜90重
量%のメソフェーズピッチが得られるまで行う。
Further, a discharge pipe is provided in the reactor so that light components generated during the heat treatment can be removed, and the pressure in the reactor is raised to 9 kg / cm 2 · G or less, preferably 5 kg / cm 2 during the temperature rise process. A pressure regulating valve is provided to keep the pressure at 2.G or less, and light components are continuously discharged. The above heat treatment is carried out until the quinoline-insoluble content of the heat-treated product becomes 50 to 85% by weight, preferably 70 to 95% by weight of toluene-insoluble content together with the quinoline-insoluble content, more preferably 55 to 80% by weight of quinoline-insoluble content The process is continued until a mesophase pitch having a toluene insoluble content of 70 to 90% by weight is obtained.

【0016】キノリン不溶分が50重量%未満である
と、メソフェーズピッチ微粒子を酸化処理する際にメソ
フェーズピッチ微粒子が互いに融着したり、これらの微
粒子を酸化する際に該微粒子が黒鉛化しにくい構造にな
る等の問題があり、又、キノリン不溶分が85重量%を
超えると、減圧ピッチのコークス化が進行し、熱溶融性
がなくなり、メソフェーズピッチの粉砕時に粒子が丸み
を帯びずに、粒子のアスペクト比が大きくなる等の問題
があり、又、トルエン不溶分についても上記の範囲を外
れると同様な問題が生ずるので好ましくない。又、以上
の熱処理は、軟化点が280℃以上、好ましくは320
〜370℃、更に好ましくは330〜365℃の範囲に
なるように加熱温度、加熱時間及び圧力等の条件を設定
して行うことが好ましい。熱処理物の軟化点が280℃
未満では、メソフェーズピッチ微粒子の生成量は不十分
であり、一方、熱処理物の軟化点が370℃を超える
と、ピッチの流動性がなくなり、ハンドリングが困難に
なる等の点で好ましくない。
If the quinoline insoluble content is less than 50% by weight, the mesophase pitch fine particles are fused to each other when oxidizing the mesophase pitch fine particles, or the fine particles are hardly graphitized when these fine particles are oxidized. When the quinoline insoluble content exceeds 85% by weight, coking of the reduced pressure pitch proceeds, the heat melting property is lost, and the particles are not rounded during the pulverization of the mesophase pitch. There are problems such as an increase in the aspect ratio, and the toluene-insoluble matter is not preferable because if it is out of the above range, the same problem occurs. In the above heat treatment, the softening point is 280 ° C. or higher, preferably 320 ° C.
The heating temperature, the heating time, the pressure and the like are preferably set so as to be in a range of from about 370 ° C. to 370 ° C., more preferably from 330 ° C. to 365 ° C. Softening point of heat treated product is 280 ℃
If it is less than the above, the amount of mesophase pitch fine particles generated is insufficient. On the other hand, if the softening point of the heat-treated product exceeds 370 ° C., the fluidity of the pitch is lost and handling becomes difficult.

【0017】又、上記熱処理においてピッチ中には球状
メソフェーズピッチ微粒子が連続的に生成及び成長し、
ピッチ中の光学的等方性成分と光学的異方性成分(球状
メソフェーズピッチ微粒子)との比率が変化するので、
熱処理中にこれらの量比をサンプリングして確認し、光
学的異方性成分が全体の50容量%以上、好ましくは全
体の約60〜95容量%の範囲になって、光学的等方性
成分が光学的異方性成分中に均一に分散した状態になる
ように、前記熱処理条件を設定することが好ましい。
In the above heat treatment, spherical mesophase pitch fine particles are continuously generated and grown in the pitch,
Since the ratio between the optically isotropic component and the optically anisotropic component (spherical mesophase pitch fine particles) in the pitch changes,
During the heat treatment, these quantitative ratios are sampled and confirmed, and the optically anisotropic component becomes 50% by volume or more, preferably about 60 to 95% by volume of the whole, It is preferable to set the heat treatment conditions so that is uniformly dispersed in the optically anisotropic component.

【0018】熱処理物中の光学的異方性成分の量が50
容量%未満であると、ピッチを所定の酸素濃度まで酸化
する不融化時間が長くなることや、その後前記ピッチを
炭化・黒鉛化した際の結晶性が悪くなる等の点で不十分
であり、一方、熱処理物中の光学的異方性成分の量が約
95容量%を超えると、熱処理物を粉砕して得られる粒
子のアスペクト比が大きくなり、又、酸化処理の際に球
状に近い形状に変化しない等の点で不十分である。
The amount of the optically anisotropic component in the heat-treated product is 50
When the volume is less than the volume%, the infusibilization time for oxidizing the pitch to a predetermined oxygen concentration becomes long, and the crystallinity when the pitch is carbonized and graphitized thereafter is insufficient, and is insufficient. On the other hand, when the amount of the optically anisotropic component in the heat-treated product exceeds about 95% by volume, the aspect ratio of the particles obtained by pulverizing the heat-treated product becomes large, and the shape becomes almost spherical when oxidized. It is not sufficient in that it does not change to

【0019】次に上記高軟化点ピッチを冷却後、粉砕
し、粒子径を200メッシュアンダーとする。平均粒径
としては50μm以下、好ましくは5〜30μmの範囲
に粉砕する。粉砕機としては、特に限定されず、例え
ば、ボールミル、撹拌ミル、ジェット粉砕機等の粉砕機
が使用できる。
Next, the high softening point pitch is cooled and then pulverized to a particle size of less than 200 mesh. The powder is pulverized to have an average particle size of 50 μm or less, preferably 5 to 30 μm. The pulverizer is not particularly limited, and for example, a pulverizer such as a ball mill, a stirring mill, and a jet pulverizer can be used.

【0020】上記粉砕物を酸化処理する。この酸化処理
は空気中で140〜300℃の温度で行ってもよいが、
酸化炉中に窒素ガスを流して酸素濃度16〜18重量%
程度で行うことが好ましい。又、酸化に際しては粉砕粒
子が焼結して溶融凝集物を形成しないように、酸化炉を
多分割して温度制御が正確にできるようにしたり、粉砕
物が熱源に接触しないように、流動床で処理したり、酸
化炉内の通過を薄い層で行ったりするのが好ましい。
The above pulverized material is subjected to an oxidation treatment. This oxidation treatment may be performed in air at a temperature of 140 to 300 ° C.,
Nitrogen gas is flowed into the oxidation furnace to achieve an oxygen concentration of 16 to 18% by weight.
It is preferable to carry out in a degree. In addition, during oxidation, the oxidation furnace is divided into multiple sections so that temperature control can be accurately performed so that the pulverized particles do not sinter to form molten aggregates, or a fluidized bed can be used so that the pulverized substances do not come into contact with a heat source. It is preferable to carry out the treatment in an oxidizing furnace or to perform the treatment in a thin layer.

【0021】この酸化処理において、酸化の程度は、酸
化処理物が約2〜10重量%程度の酸素を含む状態にな
るように酸化条件を設定することが望ましい。酸素量が
上記範囲未満、即ち、酸化不十分であると、炭化・黒鉛
化過程で再度融着を生じるという問題や、最終的に得ら
れる本発明の炭素質材料において、粒子内の光学組織が
保持できない等の点で不十分であり、一方、酸化が過剰
になると、酸化処理物の非晶質性が増し、結晶性が悪く
なったり、比表面積が大きくなる等の点で好ましくな
い。以上の粉砕及び酸化処理を受けた粒子は、粉砕時の
摩擦エネルギーや酸化反応の熱エネルギーによって、粒
子の鋭角な角が無くなり、やや丸みを帯びた粒子になっ
て、そのアスペクト比が1〜2の範囲に収まる。
In this oxidation treatment, the degree of oxidation is desirably set so that the oxidized product contains about 2 to 10% by weight of oxygen. If the oxygen content is less than the above range, that is, if the oxidation is insufficient, there is a problem that fusion occurs again in the carbonization / graphitization process, and in the finally obtained carbonaceous material of the present invention, the optical structure in the particles is On the other hand, it is not sufficient in that it cannot be retained. On the other hand, if the oxidation is excessive, the amorphous property of the oxidized product increases, the crystallinity deteriorates, and the specific surface area increases. Particles that have been subjected to the above-mentioned pulverization and oxidation treatment lose sharp corners of the particles due to friction energy at the time of pulverization and heat energy of an oxidation reaction, become slightly rounded particles, and have an aspect ratio of 1 to 2. Within the range.

【0022】最後に常法に従って上記酸化処理物の炭化
・黒鉛化処理を行う。炭化処理は700℃〜1200℃
の温度で行い、又、黒鉛化処理は2500〜3000℃
の温度で行う。それぞれの処理時間は、使用する装置に
より異なるので、採用した装置により最適な時間を選択
すればよい。これらの炭化・黒鉛化処理は連続的に行う
こともでき、炭化・黒鉛化の各種条件及び装置は従来公
知の各種条件及び装置がそのまま使用できる。尚、この
炭化・黒鉛化処理工程においては、粒子の形状に大きな
変化はないが、処理前に含まれていた酸素の殆どが脱離
する。
Finally, the oxidized product is carbonized and graphitized according to a conventional method. 700 ° C to 1200 ° C for carbonization
Temperature, and the graphitization is performed at 2500-3000 ° C.
At a temperature of Since each processing time differs depending on the device to be used, an optimum time may be selected depending on the employed device. These carbonization and graphitization treatments can be performed continuously, and various conditions and apparatuses for carbonization and graphitization can be used as they are. In the carbonization / graphitization process, there is no significant change in the shape of the particles, but most of the oxygen contained before the process is eliminated.

【0023】上記本発明の炭素質材料は種々の用途に有
用であるが、その1つの用途としてのリチウムイオン二
次電池について説明する。リチウムイオン二次電池は、
例えば、金属箔からなる集電体上に正及び負の活物質層
が形成されているものを正及び負の電極板とし、電解液
に非水有機溶媒を用い、正極及び負極の電極間をリチウ
ムイオンが移動する際の電子のやり取りによって充放電
が可能となるものである。
Although the carbonaceous material of the present invention is useful for various uses, a lithium ion secondary battery as one of the uses will be described. Lithium ion secondary batteries are
For example, the positive and negative electrode plates are formed on a current collector made of a metal foil on which positive and negative active material layers are formed, and a nonaqueous organic solvent is used as an electrolytic solution. Charges and discharges are enabled by the exchange of electrons when lithium ions move.

【0024】電極板を形成する活物質層は、少なくとも
活物質と結着剤(バインダー)とからなる電極塗工液か
ら形成される。負極活物質としては前記本発明の炭素質
材料を使用し、正極活物質としては、例えば、LiCo
2、LiMn24等のリチウム酸化物、TiS2、Mn
2、MoO3、V25等のカルコゲン化合物のうちの一
種、或いはこれらの複数種が組み合わせて用いることに
よって、4ボルト程度の高い放電電圧のリチウムイオン
二次電池が得られる。これらの活物質は形成される塗工
膜中に均一に分散されるのが好ましい。このために、正
及び負の活物質として1〜100μmの範囲の粒径を有
する平均粒径が10μm程度の粉体を用いるのが好まし
い。
The active material layer forming the electrode plate is formed from an electrode coating solution comprising at least an active material and a binder. As the negative electrode active material, the carbonaceous material of the present invention is used, and as the positive electrode active material, for example, LiCo
Lithium oxides such as O 2 , LiMn 2 O 4 , TiS 2 , Mn
By using one of chalcogen compounds such as O 2 , MoO 3 , V 2 O 5 or a combination thereof, a lithium ion secondary battery having a high discharge voltage of about 4 volts can be obtained. It is preferable that these active materials are uniformly dispersed in the formed coating film. For this purpose, it is preferable to use a powder having an average particle diameter of about 10 μm having a particle diameter in the range of 1 to 100 μm as the positive and negative active materials.

【0025】又、活物質層の結着剤としては、例えば、
熱可塑性樹脂、即ち、ポリエステル樹脂、ポリアミド樹
脂、ポリアクリル酸エステル樹脂、ポリカーボネート樹
脂、ポリウレタン樹脂、セルロース樹脂、ポリオレフィ
ン樹脂、ポリビニル樹脂、フッ素系樹脂及びポリイミド
樹脂等から任意に選択して使用することができる。
As the binder for the active material layer, for example,
Thermoplastic resins, that is, arbitrarily selected from polyester resins, polyamide resins, polyacrylate resins, polycarbonate resins, polyurethane resins, cellulose resins, polyolefin resins, polyvinyl resins, fluorine resins, polyimide resins, and the like can be used. it can.

【0026】電極板を構成する活物質層は、以下のよう
な方法によって作成される。先ず、上記の材料から適宜
に選択された結着剤と微粉末状の活物質とを適当な分散
媒を用いて、混練或いは分散溶解して電極塗工液を作製
する。次に、得られた塗工液を用いて、集電体上に塗工
する。塗工する方法としては、グラビア、グラビアリバ
ース、ダイコート及びスライドコート等の方式を用い
る。その後、塗工した塗工液を乾燥させる乾燥工程を経
て所望の膜厚の活物質層を形成して正及び負の電極板と
される。
The active material layer constituting the electrode plate is formed by the following method. First, an electrode coating solution is prepared by kneading or dispersing and dissolving a binder and a fine powdered active material appropriately selected from the above-mentioned materials using an appropriate dispersion medium. Next, using the obtained coating liquid, coating is performed on the current collector. As a coating method, a method such as gravure, gravure reverse, die coating, and slide coating is used. Thereafter, an active material layer having a desired film thickness is formed through a drying step of drying the applied coating liquid to obtain positive and negative electrode plates.

【0027】電極板に用いられる集電体としては、例え
ば、アルミニウム、銅等の金属箔が好ましく用いられ
る。金属箔の厚さとしては、10〜30μm程度のもの
を用いる。又、以上のようにして作製した正極及び負極
の電極板を用いて、リチウムイオン二次電池を作製する
場合には、電解液として、溶質のリチウム塩を有機溶媒
に溶かした非水電解液が用いられる。
As the current collector used for the electrode plate, for example, a metal foil such as aluminum and copper is preferably used. The thickness of the metal foil is about 10 to 30 μm. When a lithium ion secondary battery is manufactured using the positive and negative electrode plates manufactured as described above, a non-aqueous electrolyte in which a solute lithium salt is dissolved in an organic solvent is used as an electrolyte. Used.

【0028】この際に使用される有機溶媒としては、環
状エステル類、鎖状エステル類、環状エーテル類、鎖状
エーテル類等があり、例えば、環状エステル類として
は、プロピレンカーボネート等があり、又、鎖状エステ
ル類としては、ジメチルカーボネート等があり、又、環
状エーテル類としては、テトラヒドロフラン等があり、
又、鎖状エーテル類としては、1,2−ジメトキシエタ
ン等が挙げられる。
The organic solvent used at this time includes cyclic esters, chain esters, cyclic ethers, chain ethers and the like. Examples of the cyclic esters include propylene carbonate and the like. , Chain esters include dimethyl carbonate and the like, and cyclic ethers include tetrahydrofuran and the like,
In addition, examples of the chain ethers include 1,2-dimethoxyethane.

【0029】又、上記の有機溶媒と共に非水電解液を形
成する溶質のリチウム塩としてはLiClO4、LiB
4、LiPF6、LiAsF6、LiCl、LiBr等
の無機リチウム塩、及びLiB(C654、LiN
(SO2CF32、LiC(SO2CF33、LiOSO
2CF3、LiOSO225、 LiOSO237、L
iOSO249、LiOSO2511、 LiOSO2
613、LiOSO2715等の有機リチウム塩等が
用いられる。
The solute lithium salt which forms a non-aqueous electrolyte with the above organic solvent is LiClO 4 , LiB
Inorganic lithium salts such as F 4 , LiPF 6 , LiAsF 6 , LiCl, and LiBr; and LiB (C 6 H 5 ) 4 and LiN
(SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiOSO
2 CF 3 , LiOSO 2 C 2 F 5 , LiOSO 2 C 3 F 7 , L
iOSO 2 C 4 F 9 , LiOSO 2 C 5 F 11 , LiOSO 2
Organic lithium salts such as C 6 F 13 and LiOSO 2 C 7 F 15 are used.

【0030】[0030]

【実施例】次に実施例及び比較例を挙げて本発明を更に
具体的に説明する。 実施例1 原料として軟化点115.0℃、キノリン不溶分2.3
重量%、トルエン不溶分19.1重量%、数平均分子量
494の分子量分布の揃った減圧ピッチを用いた。この
原料を270℃に予熱した反応容器に導入した。この反
応容器は270℃に予熱された底部に不活性ガスの吹き
込みノズルを有し、併せて機械撹拌装置を備えており、
有効内容量は1.2m3(外径1,200mm、高さ
2,700mm)である。原料導入後昇温速度10℃/
時間で400℃に昇温した後、上記ノズルより0.17
Nm3/ピッチkg・時間の条件で窒素ガスを吹き込
み、120rpmで撹拌し、反応容器内の圧力を5kg
/cm2・Gに保ち、6時間熱処理を行った。この間、
反応容器内の液は完全混合状態にあった。
Next, the present invention will be described more specifically with reference to examples and comparative examples. Example 1 As a raw material, a softening point of 115.0 ° C. and a quinoline insoluble content of 2.3.
A pressure-reduced pitch having a uniform molecular weight distribution of 19.1% by weight, a toluene insoluble content of 19.1% by weight and a number average molecular weight of 494 was used. This raw material was introduced into a reaction vessel preheated to 270 ° C. This reaction vessel has an inert gas blowing nozzle at the bottom preheated to 270 ° C., and is additionally equipped with a mechanical stirring device.
The effective internal capacity is 1.2 m 3 (outer diameter 1,200 mm, height 2,700 mm). Temperature rise rate 10 ° C /
After raising the temperature to 400 ° C. for 0.1 hour, 0.17
Nitrogen gas is blown in under the condition of Nm 3 / pitch kg · hour, the mixture is stirred at 120 rpm, and the pressure in the reaction vessel is 5 kg.
/ Cm 2 · G, and heat-treated for 6 hours. During this time,
The liquid in the reaction vessel was in a completely mixed state.

【0031】熱処理を行った後のピッチの収率は67.
5重量%で、軟化点364℃、偏光顕微鏡での目視計数
カウントの光学的異方性成分の含有率は74容量%であ
り、光学的等方性成分が光学的異方性成分の中に均一に
分散したメソフェーズピッチであった。このピッチのキ
ノリン不溶分は70重量%であり、トルエン不溶分は8
3重量%であった。上記のメソフェーズピッチをジェッ
トミルで粉砕してアスペクト比2以下で、48μm以上
の粒径の粒子がなく、2μm以下の粒径の微粒子が3重
量%以下である平均粒径16μmの微粉末を得た。上記
微粉末を空気気流中において昇温速度4℃/分で130
℃から260℃まで昇温して20分間保持し、酸化処理
を行った。この酸化処理を施すことにより、前記粉砕時
の微粉末よりも形状が丸みのある光学的成分の固定され
た酸素含有率5.4重量%のメソフェーズピッチの微粉
末を得た。
The pitch yield after heat treatment is 67.
At 5% by weight, the softening point was 364 ° C., the content of the optically anisotropic component in the visual count with a polarizing microscope was 74% by volume, and the optically isotropic component was included in the optically anisotropic component. The mesophase pitch was uniformly dispersed. The quinoline-insoluble content of this pitch was 70% by weight, and the toluene-insoluble content was 8%.
It was 3% by weight. The above-mentioned mesophase pitch is pulverized by a jet mill to obtain a fine powder having an aspect ratio of 2 or less, no particles having a particle size of 48 μm or more, and fine particles having a particle size of 2 μm or less and 3% by weight or less having an average particle size of 16 μm. Was. The above fine powder is heated at a rate of 4 ° C./min.
The temperature was raised from 260 ° C. to 260 ° C. and maintained for 20 minutes to perform an oxidation treatment. By performing this oxidation treatment, a fine powder of mesophase pitch having a fixed oxygen content of 5.4% by weight of an optical component having a rounder shape than the fine powder at the time of the pulverization was obtained.

【0032】上記微粉末を、窒素雰囲気中、昇温速度3
℃/時間で1,100℃まで昇温し、2時間炭化処理し
た後、再度3,000℃で2時間の黒鉛化処理をした。
この結果黒鉛化物の収率は82重量%であり、得られた
黒鉛粒子の結晶格子定数C0は6.73Å、結晶子の大
きさを表わすLcは710Å、比表面積は0.85m2
/gであった。以上の実施例において、最終的に得られ
た本発明の炭素質材料の、最初の原料に対する収率は5
5重量%であり、これに対して従来方法の熱処理メソフ
ェーズピッチから球状微粒子を分離する方法では、収率
は高くても24重量%程度である。
The above fine powder was heated in a nitrogen atmosphere at a heating rate of 3
The temperature was raised to 1,100 ° C. at a rate of ° C./hour, carbonized for 2 hours, and then graphitized again at 3,000 ° C. for 2 hours.
As a result, the yield of the graphitized product was 82% by weight, the crystal lattice constant C 0 of the obtained graphite particles was 6.73 °, Lc representing the crystallite size was 710 °, and the specific surface area was 0.85 m 2.
/ G. In the above examples, the yield of the finally obtained carbonaceous material of the present invention based on the initial raw material was 5%.
In contrast, the yield of the conventional method of separating spherical fine particles from the heat-treated mesophase pitch is at most about 24% by weight.

【0033】実施例2 減圧ピッチの熱処理時間を5時間とした以外は実施例1
と同様にして本発明の炭素質材料を得、同様に電極材料
として評価した。尚、熱処理物のキノリン不溶分は65
重量%、トルエン不溶分は76重量%、軟化点は350
℃、偏光顕微鏡での目視計数カウントの光学異方性成分
の含有率51重量%、酸化処理物の酸素含有量は5.7
重量%あった。
Example 2 Example 1 except that the heat treatment time of the reduced pressure pitch was changed to 5 hours.
The carbonaceous material of the present invention was obtained in the same manner as described above, and was similarly evaluated as an electrode material. The quinoline insoluble content of the heat-treated product was 65%.
% By weight, toluene insoluble content is 76% by weight, softening point is 350
° C, the content of the optically anisotropic component in the visual count with a polarizing microscope was 51% by weight, and the oxygen content of the oxidized product was 5.7.
% By weight.

【0034】比較例1 実施例1の光学的等方性成分が光学的異方性成分の中に
均一に分散したメソフェーズピッチの粉砕物を酸化処理
せず、その他は実施例1と同じ炭化処理を行った。この
際、微粉末同士が融着して凝集したので、再度粉砕した
が、粒子のアスペクト比は3.2となった。この微粉末
について実施例1と同じ黒鉛化処理を施した。その後実
施例1と同様にして比較例の炭素質材料を得、同様に電
極材料としての評価を行った。
Comparative Example 1 The pulverized mesophase pitch in which the optically isotropic component of Example 1 was uniformly dispersed in the optically anisotropic component was not subjected to oxidation treatment, and the other carbonization treatment was the same as in Example 1. Was done. At this time, since the fine powders were fused and agglomerated, they were pulverized again, but the aspect ratio of the particles was 3.2. This fine powder was subjected to the same graphitization treatment as in Example 1. Thereafter, a carbonaceous material of a comparative example was obtained in the same manner as in Example 1, and was similarly evaluated as an electrode material.

【0035】比較例2 実施例1の減圧ピッチの代わりに、コールタールを常圧
蒸留した後のピッチを加熱処理したもの(減圧蒸留せず
に加熱処理して軟化点を112.0℃に調整)を原料と
して使用した以外は、実施例1と同様にして比較例の炭
素質材料を得、同様に電極材料としての評価を行った。
COMPARATIVE EXAMPLE 2 In place of the reduced pressure pitch of Example 1, a pitch obtained by subjecting coal tar to normal pressure distillation and then heat-treated (heat-treated without vacuum distillation to adjust the softening point to 112.0 ° C.) ) Was used as a raw material, and a carbonaceous material of a comparative example was obtained in the same manner as in Example 1, and was similarly evaluated as an electrode material.

【0036】電極材料としての評価 前記実施例及び比較例で得られた炭素質微粉末95重量
部と5重量部のバインダー(ポリテトラフルオロエチレ
ン:33重量%、アセチレンブラック:66重量%、界
面活性剤:1重量%)とを良く混練し、直径13mmの
ペレット状に成形した後、これをニッケルネットに挟み
込み、3.8t/cm2の圧力で圧着し、150℃で5
時間真空乾燥して電極を作製した。対極にリチウム箔を
用い、電解液として過塩素酸リチウムを1モル/リット
ルの濃度に溶解したエチレンカーボネートとジエチレン
カーボネートとの等モル混合溶媒を使用した。電流密度
0.1mA/cm2の定電流充放電下で、電池の放電容
量を測定した。評価結果を下記表1に示す。表1の結果
からして、本発明の炭素質材料を用いたリチウムイオン
二次電池は高容量で且つ低い不可逆容量を示すことが分
かる。
Evaluation as electrode material 95 parts by weight of the carbonaceous fine powder obtained in the above Examples and Comparative Examples and 5 parts by weight of a binder (polytetrafluoroethylene: 33% by weight, acetylene black: 66% by weight, surface activity) The mixture was kneaded well and formed into a pellet having a diameter of 13 mm, and this was sandwiched between nickel nets and pressed at a pressure of 3.8 t / cm 2 , and pressed at 150 ° C. for 5 hours.
The electrode was prepared by vacuum drying for an hour. A lithium foil was used as a counter electrode, and an equimolar mixed solvent of ethylene carbonate and diethylene carbonate in which lithium perchlorate was dissolved at a concentration of 1 mol / liter was used as an electrolytic solution. The discharge capacity of the battery was measured under constant current charging and discharging at a current density of 0.1 mA / cm 2 . The evaluation results are shown in Table 1 below. From the results in Table 1, it can be seen that the lithium ion secondary battery using the carbonaceous material of the present invention has high capacity and low irreversible capacity.

【0037】表1 Table 1

【0038】実施例3〜5及び比較例3〜5 実施例1における減圧ピッチの熱処理条件を下記表2に
記載したように変化させて、表2に記載の物性を有する
メソフェーズピッチを得た。
Examples 3 to 5 and Comparative Examples 3 to 5 By changing the heat treatment conditions of the reduced pressure pitch in Example 1 as shown in Table 2 below, mesophase pitches having the physical properties shown in Table 2 were obtained.

【0039】表2 註)熱処理条件:温度(℃)/時間(Hr)/ガス吹き
込み量(Nm3/ピッチkg・hr)
Table 2 Note) Heat treatment conditions: temperature (° C) / time (Hr) / gas blowing
Amount (NmThree/ Pitch kg ・ hr)

【0040】上記で得られた夫々のメソフェーズピッチ
を用いて実施例1と同様にして本発明及び比較例の炭素
質材料を得、前記と同様に電極材料として評価した。そ
の結果を表3に示す。表3の結果からして、本発明の炭
素質材料を用いたリチウムイオン二次電池は高容量で且
つ低い不可逆容量を示すことが分かる。
Using each mesophase pitch obtained above, carbonaceous materials of the present invention and comparative examples were obtained in the same manner as in Example 1, and evaluated as electrode materials in the same manner as above. Table 3 shows the results. From the results in Table 3, it can be seen that the lithium ion secondary battery using the carbonaceous material of the present invention has high capacity and low irreversible capacity.

【0041】表3 Table 3

【0042】実施例6〜9及び比較例6〜7 酸化処理条件を種々変更して、酸化処理物の酸素含有量
を種々変更した以外は実施例1と同様にして本発明及び
比較例の炭素質材料を得、前記と同様に電極材料として
評価した。その結果を表4に示す。表4の結果からし
て、本発明の炭素質材料を用いたリチウムイオン二次電
池は高容量で且つ低い不可逆容量を示すことが分かる。
Examples 6 to 9 and Comparative Examples 6 and 7 Carbon dioxide of the present invention and comparative examples was prepared in the same manner as in Example 1 except that the oxidation conditions were variously changed and the oxygen content of the oxidized product was variously changed. Quality material was obtained and evaluated as an electrode material in the same manner as described above. Table 4 shows the results. From the results in Table 4, it can be seen that the lithium ion secondary battery using the carbonaceous material of the present invention has high capacity and low irreversible capacity.

【0043】表4 Table 4

【0044】[0044]

【発明の効果】以上の如き本発明によれば、減圧ピッチ
を、そのキノリン不溶分が50〜85重量%になるまで
熱処理してメソフェーズピッチとし、該メソフェーズピ
ッチを分離することなく、これを微粒子に粉砕し、これ
を酸化処理することにより、粉砕物は球状に近い形状に
変化し、この状態で炭化・黒鉛化処理することによっ
て、従来の熱処理ピッチから分離した球状メソフェーズ
ピッチ微粒子と同等或いはそれ以上のリチウムイオンの
吸蔵能力を有する炭素質微粒子が得られることを見出し
た。従って本発明によれば、キノリンやトルエン等の溶
剤を何ら使用することなく、リチウムイオン二次電池用
の負極材料等として高性能な炭素質材料を、簡便な操作
で高収率且つ経済的に提供することができる。
According to the present invention as described above, the reduced pressure pitch is heat-treated to a mesophase pitch until the quinoline-insoluble content becomes 50 to 85% by weight, and the mesophase pitch is separated without separating the mesophase pitch. By oxidizing this, the pulverized material changes into a nearly spherical shape, and in this state, by carbonizing and graphitizing, spherical mesophase pitch fine particles separated from the conventional heat-treated pitch or equivalent to the same. It has been found that carbonaceous fine particles having the above-mentioned lithium ion storage capacity can be obtained. Therefore, according to the present invention, without using any solvent such as quinoline or toluene, a high-performance carbonaceous material as a negative electrode material or the like for a lithium ion secondary battery can be produced in a simple operation at a high yield and economically. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の製造方法の工程図。FIG. 1 is a process chart of a manufacturing method of the present invention.

フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 4/02 H01M 4/02 D 4/04 4/04 A 4/58 4/58 10/40 10/40 Z (72)発明者 甲村 省二 東京都千代田区九段北四丁目1−3 アド ケムコ株式会社内 (72)発明者 瀧川 泰行 東京都千代田区九段北四丁目1−3 アド ケムコ株式会社内 (72)発明者 平野 滋幸 東京都千代田区九段北四丁目1−3 アド ケムコ株式会社内 (72)発明者 塩出 哲夫 東京都千代田区九段北四丁目1−3 アド ケムコ株式会社内Continued on the front page (51) Int.Cl. 6 Identification symbol FI H01M 4/02 H01M 4/02 D 4/04 4/04 A 4/58 4/58 10/40 10/40 Z (72) Inventor Komura (2) Inventor Yasuyuki Takigawa 4-Chome Kita-Kita 1-chome, Chiyoda-ku, Tokyo Ad-Chemco Co., Ltd. (72) Inventor Shigeyuki Hirano Tokyo (72) Inventor Tetsuo Shiode 4-chome Kita-kita 4-chome, Chiyoda-ku, Tokyo Ad Chemo Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 減圧ピッチを、そのキノリン不溶分が5
0〜85重量%になるまで熱処理してメソフェーズピッ
チとする工程、得られたメソフェーズピッチをアスペク
ト比が2以下の微粒子に粉砕する工程、該粉砕物を酸化
処理する工程、及び酸化処理物を炭化・黒鉛化処理する
工程からなることを特徴とする炭素質材料の製造方法。
1. The reduced pressure pitch is adjusted to a quinoline insoluble content of 5%.
0 to 85% by weight to form a mesophase pitch, a step of pulverizing the obtained mesophase pitch into fine particles having an aspect ratio of 2 or less, a step of oxidizing the pulverized product, and a step of carbonizing the oxidized product. -A method for producing a carbonaceous material, comprising a step of graphitizing.
【請求項2】 メソフェーズピッチのキノリン不溶分が
55〜80重量%である請求項1に記載の炭素質材料の
製造方法。
2. The method according to claim 1, wherein the quinoline insoluble content of the mesophase pitch is 55 to 80% by weight.
【請求項3】 メソフェーズピッチのキノリン不溶分が
55〜80重量%且つトルエン不溶分が70〜90重量
%である請求項1に記載の炭素質材料の製造方法。
3. The method for producing a carbonaceous material according to claim 1, wherein the quinoline-insoluble content of the mesophase pitch is 55 to 80% by weight and the toluene-insoluble content is 70 to 90% by weight.
【請求項4】 ピッチの熱処理を、その軟化点が280
℃以上になるまで行う請求項1に記載の炭素質材料の製
造方法。
4. A pitch heat treatment, wherein the softening point is 280.
The method for producing a carbonaceous material according to claim 1, wherein the method is performed until the temperature becomes higher than or equal to ° C.
【請求項5】 ピッチの熱処理を、その軟化点が320
〜370℃になるまで行う請求項1に記載の炭素質材料
の製造方法。
5. A heat treatment of the pitch having a softening point of 320
The method for producing a carbonaceous material according to claim 1, wherein the method is performed until the temperature reaches to 370 ° C.
【請求項6】 ピッチの熱処理を、ピッチ中の光学的異
方性(メソフェーズ)成分が50容量%以上になるまで
行う請求項1に記載の炭素質材料の製造方法。
6. The method for producing a carbonaceous material according to claim 1, wherein the heat treatment of the pitch is performed until the optical anisotropy (mesophase) component in the pitch becomes 50% by volume or more.
【請求項7】 ピッチの熱処理を、ピッチ中の光学的異
方性(メソフェーズ)成分が60〜95容量%になるま
で行う請求項1に記載の炭素質材料の製造方法。
7. The method for producing a carbonaceous material according to claim 1, wherein the heat treatment of the pitch is performed until the optical anisotropy (mesophase) component in the pitch becomes 60 to 95% by volume.
【請求項8】 酸化処理を、酸化処理物の酸素含有量が
2〜10重量%になる範囲で行う請求項1に記載の炭素
質材料の製造方法。
8. The method for producing a carbonaceous material according to claim 1, wherein the oxidation treatment is performed in a range where the oxygen content of the oxidized product is 2 to 10% by weight.
【請求項9】 請求項1〜8に記載の炭素質材料を負極
材料として使用したことを特徴とするリチウムイオン二
次電池。
9. A lithium ion secondary battery using the carbonaceous material according to claim 1 as a negative electrode material.
JP24753297A 1996-09-13 1997-08-29 Method for producing carbonaceous material and battery Expired - Fee Related JP3223144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24753297A JP3223144B2 (en) 1996-09-13 1997-08-29 Method for producing carbonaceous material and battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-263746 1996-09-13
JP26374696 1996-09-13
JP24753297A JP3223144B2 (en) 1996-09-13 1997-08-29 Method for producing carbonaceous material and battery

Publications (2)

Publication Number Publication Date
JPH10139410A true JPH10139410A (en) 1998-05-26
JP3223144B2 JP3223144B2 (en) 2001-10-29

Family

ID=26538312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24753297A Expired - Fee Related JP3223144B2 (en) 1996-09-13 1997-08-29 Method for producing carbonaceous material and battery

Country Status (1)

Country Link
JP (1) JP3223144B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362914A (en) * 2001-06-07 2002-12-18 Adchemco Corp Graphite material and manufacturing method thereof and lithium ion secondary battery
JP2007173156A (en) * 2005-12-26 2007-07-05 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2012046802A1 (en) * 2010-10-08 2012-04-12 Jx日鉱日石エネルギー株式会社 Graphite material with lattice distortion for use in lithium-ion secondary battery negative electrodes, and lithium-ion secondary battery
JP2013216563A (en) * 2012-03-16 2013-10-24 Jfe Chemical Corp Composite graphite particle, and its application to lithium ion secondary battery
KR20140121445A (en) 2012-03-02 2014-10-15 제이에프이 케미칼 가부시키가이샤 Nagative electrode material for lithium ion secondary batteries, nagative electrode for lithium ion secondary batteries, and lithium ion secondary battery
EP2709195A4 (en) * 2011-05-13 2015-06-24 Mitsubishi Chem Corp Carbon material for non-aqueous secondary battery, anode using said carbon material, and non-aqueous secondary battery
JP2019172886A (en) * 2018-03-29 2019-10-10 三菱ケミカル株式会社 Modified pitch and method for producing same
JP2020164641A (en) * 2019-03-29 2020-10-08 三菱ケミカル株式会社 Method for producing raw coke
JP2021128881A (en) * 2020-02-14 2021-09-02 Jfeケミカル株式会社 Coating pitch of lithium ion secondary battery negative electrode material and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362914A (en) * 2001-06-07 2002-12-18 Adchemco Corp Graphite material and manufacturing method thereof and lithium ion secondary battery
JP2007173156A (en) * 2005-12-26 2007-07-05 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2012046802A1 (en) * 2010-10-08 2012-04-12 Jx日鉱日石エネルギー株式会社 Graphite material with lattice distortion for use in lithium-ion secondary battery negative electrodes, and lithium-ion secondary battery
JP2012084360A (en) * 2010-10-08 2012-04-26 Jx Nippon Oil & Energy Corp Graphite material with lattice strain for use in lithium-ion secondary battery negative electrodes, and lithium-ion secondary battery
US9214666B2 (en) 2010-10-08 2015-12-15 Jx Nippon Oil & Energy Corporation Graphite material with lattice distortion for use in lithium-ion secondary battery negative electrodes, and lithium-ion secondary battery
EP2709195A4 (en) * 2011-05-13 2015-06-24 Mitsubishi Chem Corp Carbon material for non-aqueous secondary battery, anode using said carbon material, and non-aqueous secondary battery
KR20140121445A (en) 2012-03-02 2014-10-15 제이에프이 케미칼 가부시키가이샤 Nagative electrode material for lithium ion secondary batteries, nagative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2013216563A (en) * 2012-03-16 2013-10-24 Jfe Chemical Corp Composite graphite particle, and its application to lithium ion secondary battery
JP2019172886A (en) * 2018-03-29 2019-10-10 三菱ケミカル株式会社 Modified pitch and method for producing same
JP2020164641A (en) * 2019-03-29 2020-10-08 三菱ケミカル株式会社 Method for producing raw coke
JP2021128881A (en) * 2020-02-14 2021-09-02 Jfeケミカル株式会社 Coating pitch of lithium ion secondary battery negative electrode material and manufacturing method thereof

Also Published As

Publication number Publication date
JP3223144B2 (en) 2001-10-29

Similar Documents

Publication Publication Date Title
US9096473B2 (en) Coated carbonaceous particles particularly useful as electrode materials in electrical storage cells, and method of making the same
EP1801903B1 (en) Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
JP3534391B2 (en) Carbon material for electrode and non-aqueous secondary battery using the same
JP3803866B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
US5527643A (en) Carbonaceous electrode material for secondary battery and process for production thereof
JP5064728B2 (en) Graphite composite particles for non-aqueous secondary battery, negative electrode active material containing the same, negative electrode and non-aqueous secondary battery
WO2013118757A1 (en) Carbonaceous material for non-aqueous electrolyte secondary battery
KR101615439B1 (en) Manufacturing mehtod of carbon-silicon composite
KR20000058189A (en) Production process of material for lithium-ion secondary batteries, material obtained by the process, and batteries
CN113226986A (en) Method for preparing negative active material of lithium secondary battery
JPH09147860A (en) Negative electrode material for lithium ion secondary battery
US5910383A (en) Production process of carbonaceous material and battery
JP4045438B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
JP3568563B2 (en) Carbonaceous material for secondary battery electrode and method for producing the same
JP2002231225A (en) Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery
JP3223144B2 (en) Method for producing carbonaceous material and battery
JP2000182617A (en) Carbon material for lithium secondary battery electrode and its manufacture, and lithium secondary battery
JP2948097B2 (en) Graphite material for secondary battery electrode and method for producing the same
JP2000313609A (en) Material for lithium ion secondary battery, its production and battery
JPH0992284A (en) Graphite material for secondary battery electrode, its manufacture, and secondary battery
JP2003176115A (en) Method of manufacturing graphite powder, graphite powder and lithium ion secondary battery
JP3309701B2 (en) Method for producing carbon powder for negative electrode of lithium ion secondary battery
JP4108226B2 (en) Bulk mesophase production method, carbon material production method, negative electrode active material, and lithium ion secondary battery
JPH11335673A (en) Production of carbonaceous material and lithium ion secondary battery
JPH09259886A (en) Negative electrode material of lithium ion secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees