JPH10134795A - Non-aqueous electrolytic battery and manufacture thereof - Google Patents

Non-aqueous electrolytic battery and manufacture thereof

Info

Publication number
JPH10134795A
JPH10134795A JP8284767A JP28476796A JPH10134795A JP H10134795 A JPH10134795 A JP H10134795A JP 8284767 A JP8284767 A JP 8284767A JP 28476796 A JP28476796 A JP 28476796A JP H10134795 A JPH10134795 A JP H10134795A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
electrode sheet
resin
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8284767A
Other languages
Japanese (ja)
Inventor
Toshiyuki Miwa
俊之 美和
Yuko Kanazawa
祐子 金澤
Nozomi Narita
望 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP8284767A priority Critical patent/JPH10134795A/en
Publication of JPH10134795A publication Critical patent/JPH10134795A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous electrolytic battery with its high safety in which abnormal heating of the battery due to internal short-circuit is prevented and a manufacturing method thereof. SOLUTION: This battery comprises a positive electrode sheet 1 in which a positive electrode compound is applied to a positive electrode. collector 9, a negative electrode sheet 2 in which a negative electrode compound is applied to a negative electrode collector 10, and a separator 3 interposed between these sheet electrodes. A resin film containing bromine is formed on a surface of the positive sheet 1 and/or a surface of the negative electrode sheet 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液電池に
関し、特に、電池の安全性向上を図った非水電解液電池
およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more particularly to a non-aqueous electrolyte battery with improved battery safety and a method of manufacturing the same.

【0002】[0002]

【従来の技術】一般的に、非水電解液電池に代表される
リチウム電池においては、高電圧、高エネルギー密度等
が特徴であるが、内存するリチウム金属の化学反応性が
極めて高いことから、例えば、充電済みの電池が外部よ
り加圧・変形させられ、内部短絡が発生した場合には、
その際の化学反応による電解液や電極構成物質の分解で
発熱したり、ガス発生による内圧の上昇で破裂したりす
ることがある。
2. Description of the Related Art In general, a lithium battery represented by a non-aqueous electrolyte battery is characterized by a high voltage, a high energy density, and the like. However, since the lithium metal contained therein has an extremely high chemical reactivity, For example, when a charged battery is pressurized and deformed from the outside and an internal short circuit occurs,
At that time, heat may be generated due to decomposition of the electrolytic solution or the electrode constituent material due to a chemical reaction, or the gas may explode due to an increase in internal pressure due to gas generation.

【0003】特に、リチウム電池は内容物のリチウム金
属や有機電解液が可燃性であることから、異常発熱によ
り発火する危険性もある。また、リチウム二次電池の場
合においては、加圧・変形による内部短絡の他、過充電
が継続されることで活物質上に形成される樹枝状リチウ
ムの内部短絡によっても、前記同様に破裂や発火等のト
ラブルが発生する場合がある。
[0003] In particular, in lithium batteries, since the lithium metal and organic electrolyte contained therein are flammable, there is also a risk of ignition due to abnormal heat generation. In the case of a lithium secondary battery, in addition to internal short-circuiting due to pressurization and deformation, as described above, rupture and / or rupture also occur due to internal short-circuiting of dendritic lithium formed on an active material due to continuous overcharge. Troubles such as ignition may occur.

【0004】そこで、従来よりこのような化学反応性の
高い電池では、電池異常の際の破裂や発火を防止し、電
池の安全性を確保するための種々の安全機構が設けられ
ている。
[0004] Conventionally, such a battery having a high chemical reactivity has been provided with various safety mechanisms for preventing rupture or ignition in the event of a battery abnormality and ensuring the safety of the battery.

【0005】係る安全機構としては、例えば、極端な正
の温度特性を有するPTC素子等を用い、大電流通過時
にこのPTC素子の奏する高抵抗値によって電流を減少
させるといった電気的な電流抑制機構。あるいは、安全
弁を設けて電池内圧上昇の際に内部のガスを外部へ放出
させ、過渡の圧力上昇を防止するといった機械的な防爆
機構。さらには、電池内圧の上昇で電流路を機械的に遮
断する電流遮断機構などが夫々公知である。
As such a safety mechanism, for example, an electric current suppressing mechanism using a PTC element having an extremely positive temperature characteristic and reducing the current by a high resistance value of the PTC element when a large current passes. Alternatively, a mechanical explosion-proof mechanism in which a safety valve is provided to release the internal gas to the outside when the internal pressure of the battery increases, thereby preventing a transient increase in pressure. Further, a current interrupting mechanism for mechanically interrupting a current path when the internal pressure of the battery increases is known.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記P
TC素子を用いた電流抑制機構の場合においては、PT
C素子の取付け方法や、電池の温度上昇とPTC素子の
温度特性との整合性の問題等から、特に円筒型電池のよ
うな大型サイズの電池においては、電池異常の際の発熱
を効果的に抑制できないといった問題を有している。
However, the above P
In the case of a current suppressing mechanism using a TC element, PT
Due to the mounting method of the C element and the problem of consistency between the temperature rise of the battery and the temperature characteristics of the PTC element, especially in the case of a large-sized battery such as a cylindrical battery, it is possible to effectively reduce heat generation in the event of a battery abnormality. There is a problem that it cannot be suppressed.

【0007】また、前記安全弁による防爆機構や電流遮
断機構においても、一般的に電池異常で誘発される化学
反応は、電池内圧の上昇に比べて電池温度の上昇が急激
であることから、上記安全機構が有効に機能しない場合
も有る。
In addition, in the explosion-proof mechanism and the current cut-off mechanism using the safety valve, the chemical reaction generally induced by the abnormality of the battery causes the temperature of the battery to rise more rapidly than the internal pressure of the battery. In some cases, the mechanism does not work effectively.

【0008】本発明は、電極活物質上に臭素を含む樹脂
の薄膜を形成し、電池異常の際に誘発される化学反応を
極力抑制することにより、電池の異常発熱を防止した安
全性の高い非水電解液電池とその製造方法を提供するこ
とを目的としている。
The present invention forms a thin film of a resin containing bromine on an electrode active material and suppresses a chemical reaction induced in the event of a battery abnormality as much as possible, thereby preventing abnormal heat generation of the battery and ensuring high safety. An object is to provide a non-aqueous electrolyte battery and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】即ち、請求項1に記載の
本発明では、正極集電体(9)に正極合剤を塗布して成
る正極シート(1)と、負極集電体(10)に負極合剤
を塗布して成る負極シート(2)と、これらシート電極
の間に介在させたセパレータ(3)とを備えた非水電解
液電池において、前記正極シート(1)の表面および/
または前記負極シート(2)の表面に臭素を含む樹脂の
薄膜が形成されていることを特徴とする。
That is, according to the first aspect of the present invention, a positive electrode sheet (1) formed by applying a positive electrode mixture to a positive electrode current collector (9); ), A negative electrode sheet (2) formed by applying a negative electrode mixture, and a separator (3) interposed between these sheet electrodes. /
Alternatively, a thin film of a resin containing bromine is formed on the surface of the negative electrode sheet (2).

【0010】又、請求項2に記載の本発明では、臭素を
含む樹脂がフェノール系樹脂であることを特徴とする。
In the present invention, the resin containing bromine is a phenolic resin.

【0011】さらに、請求項3に記載の本発明では、ま
ず、テトラブロモビスフェノールAと1、4−ジイソシ
アネイトブタンを反応させたものを揮発性有機溶媒に分
散させて溶液濃度8〜15重量%の樹脂溶液を生成し、
つぎに、正極集電体(9)に正極合剤を塗布して成る正
極シート(1)および/または負極集電体(10)に負
極合剤を塗布して成る負極シート(2)を前記樹脂溶液
中に浸漬し、その後、前記揮発性有機溶媒を乾燥させ、
前記正極シート(1)および/または前記負極シート
(2)の表面に樹脂の薄膜を形成し、ついで、これら正
極シート(1)と負極シート(2)とを間にセパレータ
(3)を介在させて巻回すると共に、この巻回体をケー
ス(6)に収納して構成することを特徴とする。
Further, according to the present invention, first, a reaction product of tetrabromobisphenol A and 1,4-diisocyanatobutane is dispersed in a volatile organic solvent to give a solution concentration of 8 to 15% by weight. % Resin solution,
Next, a positive electrode sheet (1) formed by applying a positive electrode mixture to a positive electrode current collector (9) and / or a negative electrode sheet (2) formed by applying a negative electrode mixture to a negative electrode current collector (10) are prepared as described above. Immersed in a resin solution, then dried the volatile organic solvent,
A resin thin film is formed on the surface of the positive electrode sheet (1) and / or the negative electrode sheet (2), and a separator (3) is interposed between the positive electrode sheet (1) and the negative electrode sheet (2). And a structure in which the wound body is housed in a case (6).

【0012】[0012]

【発明の実施の形態】図1は本発明が適用される巻回式
の非水電解液二次電池の内部構成を示す縦断面図であ
る。
FIG. 1 is a longitudinal sectional view showing the internal structure of a wound type non-aqueous electrolyte secondary battery to which the present invention is applied.

【0013】まず、図1に基づいて、この巻回式の非水
電解液二次電池の構造およびその組み立てについて説明
すれば、1は正極であり、この正極1は正極活物質であ
るLiCoOと、導電材である炭素粉末と、結着剤で
ある四フッ化エチレン樹脂(PTFE)の水性ディスパ
ージョンを重量比100:10:10の割合で混合し、
これらを水でペースト状に混練して作製した正極合剤を
正極集電体9となる厚さ30μmのアルミニウム箔に両
面塗着した後、乾燥、圧延、切断して帯状の正極シート
1としたものである。この正極シート1の表面の合剤の
一部分を掻き取り、露出させた正極集電体9上にチタン
製の正極リード板4をスポット溶接で取り付けた。
First, the structure and assembly of this wound type non-aqueous electrolyte secondary battery will be described with reference to FIG. 1. Reference numeral 1 denotes a positive electrode, and the positive electrode 1 is LiCoO 2 which is a positive electrode active material. And an aqueous dispersion of carbon powder as a conductive material and an aqueous dispersion of ethylene tetrafluoride resin (PTFE) as a binder in a weight ratio of 100: 10: 10,
A positive electrode mixture prepared by kneading them into a paste with water was coated on both sides of a 30 μm-thick aluminum foil serving as a positive electrode current collector 9, and then dried, rolled, and cut into a belt-shaped positive electrode sheet 1. Things. A part of the mixture on the surface of the positive electrode sheet 1 was scraped off, and a positive electrode lead plate 4 made of titanium was mounted on the exposed positive electrode current collector 9 by spot welding.

【0014】なお、前記した正極活物質のLiCoO
は酸化コバルトと炭酸リチウムをモル比で2:1に混合
し、900℃で9時間加熱したものを使用した。
The above-mentioned positive electrode active material LiCoO 2
Used was a mixture of cobalt oxide and lithium carbonate at a molar ratio of 2: 1 and heated at 900 ° C. for 9 hours.

【0015】2は負極であり、この負極2は黒鉛系の炭
素粉末と結着剤であるPTFEの水性ディスパージョン
を重量比100:5の割合で混合し、水でペースト状に
混練して作製した負極合剤を負極集電体10となる厚さ
20μmの銅箔に両面塗着した後、乾燥、圧延、切断し
て帯状の負極シート2としたものである。この負極シー
ト2の表面の合剤の一部分を掻き取り、露出させた負極
集電体10上にニッケル製の負極リード板5をスポット
溶接で取り付けた。
Reference numeral 2 denotes a negative electrode. This negative electrode 2 is prepared by mixing a graphite-based carbon powder and an aqueous dispersion of PTFE as a binder in a weight ratio of 100: 5, and kneading the mixture with water to form a paste. The negative electrode mixture thus obtained was coated on both sides of a copper foil having a thickness of 20 μm serving as the negative electrode current collector 10, and then dried, rolled, and cut into a strip-shaped negative electrode sheet 2. A part of the mixture on the surface of the negative electrode sheet 2 was scraped off, and a negative electrode lead plate 5 made of nickel was attached to the exposed negative electrode current collector 10 by spot welding.

【0016】これら正極シート1と負極シート2をフェ
ノール系化合物粉末と架橋剤(1、4−ジイソシアネイ
トブタン)の混合物を揮発性有機溶媒に分散させて生成
した所定溶液濃度の樹脂溶液中に浸漬して前記シート電
極1および2の表面に臭素を含む樹脂の薄膜を形成する
と共にこれら樹脂コーティングされた正極シート1と負
極シート2を間にポリプロピレン製の多孔質フィルムセ
パレータ3を介在させて渦巻状に巻回した。この巻回体
を有底円筒型のケース6内に挿入すると共に、前記正極
リード板4の他端部をステンレス製の封口板7にスポッ
ト溶接して前記正極シート1をこの封口板7を介して正
極端子を兼ねる正極キャップ8に電気的に接続した。ま
た前記負極リード板5の他端部を負極端子を兼ねるケー
ス6の円形底面にスポット溶接して前記負極シート2を
ケース6に電気的に接続した。
The positive electrode sheet 1 and the negative electrode sheet 2 are placed in a resin solution having a predetermined solution concentration formed by dispersing a mixture of a phenolic compound powder and a crosslinking agent (1,4-diisocyanate butane) in a volatile organic solvent. The sheet electrodes 1 and 2 are immersed to form a thin film of a resin containing bromine on the surface of the sheet electrodes 1 and 2, and the resin-coated positive electrode sheet 1 and negative electrode sheet 2 are swirled with a porous film separator 3 made of polypropylene interposed therebetween. It was wound in a shape. The wound body is inserted into a bottomed cylindrical case 6, and the other end of the positive electrode lead plate 4 is spot-welded to a stainless steel sealing plate 7 so that the positive electrode sheet 1 is inserted through the sealing plate 7. And electrically connected to a positive electrode cap 8 also serving as a positive electrode terminal. The other end of the negative electrode lead plate 5 was spot-welded to the circular bottom surface of the case 6 also serving as a negative electrode terminal, and the negative electrode sheet 2 was electrically connected to the case 6.

【0017】以上の操作後、ケース6内にエチレンカー
ボネイトと1、2−ジメトキシエタンの混合溶媒中に過
塩素酸リチウム(LiClO)溶解した有機電解液を
注入して封口した。組立終了後の電池のサイズは単3形
(14.5Φmm×50mm)である。
After the above operation, an organic electrolyte in which lithium perchlorate (LiClO 4 ) was dissolved in a mixed solvent of ethylene carbonate and 1,2-dimethoxyethane was injected into the case 6, and the case 6 was sealed. The size of the battery after the assembly is AA type (14.5Φmm × 50 mm).

【0018】なお、11はポリプロピレン製の絶縁ガス
ケット、14は同じくポリプロピレン製の絶縁板、13
は電池異常で電池内圧が上昇した時に内部のガスを外部
へ放出させるための安全弁、12はポリプロピレン製の
絶縁底板である。
Reference numeral 11 denotes an insulating gasket made of polypropylene, 14 denotes an insulating plate also made of polypropylene, 13
Reference numeral 12 denotes a safety valve for releasing internal gas to the outside when the internal pressure of the battery rises due to battery abnormality. Reference numeral 12 denotes an insulating bottom plate made of polypropylene.

【0019】以上が本発明が適用された非水電解液二次
電池の概略構成であり、その特徴とするところは、既述
したように、正極シート1と負極のシート2の表面に臭
素を含む樹脂の薄膜を形成した点にある。
The above is the schematic configuration of the nonaqueous electrolyte secondary battery to which the present invention is applied. As described above, the surface of the positive electrode sheet 1 and the surface of the negative electrode sheet 2 are coated with bromine. The point is that a thin film of a resin is formed.

【0020】ところで、前述した内部短絡より発火に至
る化学反応は、内容物の有機電解液の分解などで生成さ
れるHラジカルやOHラジカル等が関与していると考え
られており、従って、それらのラジカルを臭素を含む樹
脂より発生するBr ラジカルと反応させることで発火に
至る連鎖反応を抑制することが可能となる。
It is believed that the chemical reaction from the internal short circuit to the ignition described above involves H radicals and OH radicals generated by decomposition of the organic electrolyte in the contents. By reacting this radical with Br radical generated from a resin containing bromine, a chain reaction leading to ignition can be suppressed.

【0021】すなわち、下記の反応式にしたがって、H
ラジカルおよびOHラジカルがトラップされるものと考
えられる。
That is, according to the following reaction formula, H
It is considered that radicals and OH radicals are trapped.

【0022】 RBr+H・ →HBr+R・ OH・+HBr→H2 O+Br・ Br・+RH →HBr+R・ 上記反応式において、RBrが臭素を含む樹脂を示して
おり、また、H・やOH・は有機電解液の分解や樹脂の
分解により生成されるHラジカルやOHラジカルを示し
ている。
RBr + H ・ → HBr + R ・ OH ・ + HBr → H 2 O + Br ・ Br ・ + RH → HBr + R ・ In the above reaction formula, RBr represents a resin containing bromine, and H ・ and OH ・It shows H radicals and OH radicals generated by decomposition and resin decomposition.

【0023】したがって、正極シート1や負極シート2
の表面に臭素を含む樹脂の薄膜を形成することによっ
て、電解液の分解などにより生成されるHラジカルが樹
脂に含まれる臭素と反応して臭化水素(HBr)を生成
すると共に、この臭化水素がOHラジカルと反応して水
としてトラップされる。この反応により生成されるBr
ラジカルより臭化水素が生成され、OHラジカルをトラ
ップするのである。
Therefore, the positive electrode sheet 1 and the negative electrode sheet 2
By forming a thin film of a resin containing bromine on the surface of the resin, H radicals generated by decomposition of an electrolytic solution and the like react with bromine contained in the resin to generate hydrogen bromide (HBr), Hydrogen reacts with OH radicals and is trapped as water. Br produced by this reaction
Hydrogen bromide is generated from the radical and traps the OH radical.

【0024】[0024]

【実施例】以下、前記樹脂膜形成のための樹脂コーティ
ングの手順について説明する。次ぎに示すものは濃度1
0重量%の樹脂溶液を用いて樹脂コーティングを行った
場合である。
The procedure of resin coating for forming the resin film will be described below. The following is concentration 1
In this case, the resin coating is performed using a 0% by weight resin solution.

【0025】先ず、ビーカー中でフェノール系化合物で
あるテトラブロモビスフェノールA(粉末)5.44g
と架橋剤としての1、4ジイソシアネイトブタン(液
体)1.40gを混合し、この混合物に揮発性有機溶媒
としてモレキュラーシーブによる脱水処理を施したベン
ゼン61.56gを加えて濃度10重量%の樹脂溶液を
作製する。
First, 5.44 g of a phenolic compound, tetrabromobisphenol A (powder), was placed in a beaker.
And 1.40 g of 1,4 diisocyanate butane (liquid) as a cross-linking agent, and 61.56 g of benzene dehydrated with a molecular sieve as a volatile organic solvent was added to the mixture to give a concentration of 10% by weight. Make a resin solution.

【0026】次に、正極リード板4および負極リード板
5をマスキングテープで被覆した正極シート1および負
極シート2を夫々この樹脂溶液に約1分間浸漬し、その
後引上げて表面のベンゼンを乾燥させる。
Next, the positive electrode sheet 1 and the negative electrode sheet 2 each having the positive electrode lead plate 4 and the negative electrode lead plate 5 covered with a masking tape are immersed in this resin solution for about 1 minute, and then pulled up to dry the benzene on the surface.

【0027】さらに、乾燥させた正極シート1および負
極シート2を100℃の乾燥機にて約12時間加熱し
て、各電極シートの表面に樹脂の薄膜を形成する。
Further, the dried positive electrode sheet 1 and negative electrode sheet 2 are heated by a dryer at 100 ° C. for about 12 hours to form a resin thin film on the surface of each electrode sheet.

【0028】このように形成される樹脂膜の厚みは、前
記したフェノール系化合物粉末と架橋剤の混合量を一定
とした場合、これに加えられる揮発性有機溶媒(ベンゼ
ン液)の量によって決定されることとなり、樹脂溶液の
濃度が高くなるほど樹脂膜は厚く形成される。
The thickness of the resin film thus formed is determined by the amount of the volatile organic solvent (benzene solution) added thereto when the mixing amount of the phenolic compound powder and the crosslinking agent is constant. That is, the higher the concentration of the resin solution, the thicker the resin film is formed.

【0029】ところで樹脂膜に必要とされる特徴はイ
オンが通過できるような網目構造であること。ラジカ
ル反応を抑制するためのBr(臭素)を確実に保持でき
ること。電解液および電池反応に対して安定であるこ
と。などであり、上記実施形態で使用したフェノール系
樹脂はこれらの条件を十分に満足するものである。
The feature required of the resin film is that it has a network structure through which ions can pass. Br (bromine) for suppressing a radical reaction can be reliably held. Stable against electrolyte and battery reaction. The phenolic resin used in the above embodiment sufficiently satisfies these conditions.

【0030】実施例1 前記した樹脂コーティング方法に基づき、濃度8重量%
の樹脂溶液を用い、正極シート1および負極シート2の
表面に樹脂の薄膜を形成した。これら正極シート1およ
び負極シート2を使用して単3形の非水電解液二次電池
を作製した。
Example 1 Based on the resin coating method described above, the concentration was 8% by weight.
A resin thin film was formed on the surfaces of the positive electrode sheet 1 and the negative electrode sheet 2 using the above resin solution. Using these positive electrode sheet 1 and negative electrode sheet 2, an AA nonaqueous electrolyte secondary battery was produced.

【0031】実施例2 濃度10重量%の樹脂溶液を用いて、実施例1と同様の
非水電解液二次電池を作製した。
Example 2 A non-aqueous electrolyte secondary battery similar to that of Example 1 was prepared using a resin solution having a concentration of 10% by weight.

【0032】実施例3 濃度15重量%の樹脂溶液を用いて、実施例1と同様の
非水電解液二次電池を作製した。
Example 3 A non-aqueous electrolyte secondary battery similar to that of Example 1 was produced using a resin solution having a concentration of 15% by weight.

【0033】比較例1 表面に樹脂膜が形成されていない従来の正極シート1お
よび負極シート2を使用して実施例1と同様の非水電解
液二次電池を作製した。
[0033] was used to fabricate a non-aqueous electrolyte secondary battery as in Example 1 using the comparative example 1 of a conventional resin film is not formed on the surface the positive electrode sheet 1 and the negative electrode sheet 2.

【0034】比較例2 濃度5重量%の樹脂溶液を用いて、実施例1と同様の非
水電解液二次電池を作製した。
Comparative Example 2 A non-aqueous electrolyte secondary battery similar to that of Example 1 was prepared using a resin solution having a concentration of 5% by weight.

【0035】比較例3 濃度20重量%の樹脂溶液を用いて、実施例1と同様の
非水電解液二次電池を作製した。
COMPARATIVE EXAMPLE 3 A non-aqueous electrolyte secondary battery similar to that of Example 1 was manufactured using a resin solution having a concentration of 20% by weight.

【0036】以上、作製した実施例1〜実施例3および
比較例1〜比較例3の非水電解液二次電池について、下
記条件での充放電サイクル試験および内部短絡による電
池の温度上昇試験を行った。
The non-aqueous electrolyte secondary batteries of Examples 1 to 3 and Comparative Examples 1 to 3 were subjected to a charge / discharge cycle test under the following conditions and a battery temperature rise test due to an internal short circuit. went.

【0037】充放電サイクル試験は充放電電流100m
A、充電終止電圧4.1V、放電終止電圧3.0Vの条
件下で行い、夫々の電池のサイクル特性を図2に示し
た。
The charge / discharge cycle test was performed with a charge / discharge current of 100 m.
A, under the conditions of a charge end voltage of 4.1 V and a discharge end voltage of 3.0 V, the cycle characteristics of each battery are shown in FIG.

【0038】その結果、臭素系樹脂による薄膜形成の際
の樹脂溶液の濃度が20重量%の比較例3については放
電容量が極端に減少したが、樹脂溶液の濃度が15重量
%以下の実施例1〜3および比較例1、2については放
電容量の減少は見られず、良好なサイクル特性が得られ
た。
As a result, in Comparative Example 3 in which the concentration of the resin solution at the time of forming the thin film using the bromine resin was 20% by weight, the discharge capacity was extremely reduced, but in Examples in which the concentration of the resin solution was 15% by weight or less. No reduction in the discharge capacity was observed for Comparative Examples 1 to 3 and Comparative Examples 1 and 2, and good cycle characteristics were obtained.

【0039】また、電池の温度上昇試験については、夫
々の仕様による電池を充電終止電圧の4.1Vまで充電
した後、各電池を万力を用いて直径の1/2の大きさに
圧縮し、その際の内部短絡で生ずる電池表面の温度の変
化を測定し、その結果を図3に示した。
Regarding the temperature rise test of the batteries, the batteries according to the respective specifications were charged to a final charging voltage of 4.1 V, and then each battery was compressed to a half of the diameter using a vice. The change in the temperature of the battery surface caused by the internal short circuit at that time was measured, and the result is shown in FIG.

【0040】その結果、従来品である比較例1と樹脂溶
液の濃度が5重量%の比較例2については、表面温度が
極端に上昇して発火に至ったが、樹脂溶液の濃度が8重
量%以上の実施例1〜3および比較例3については、電
池表面温度の急激な上昇は抑えられ、発火には至らなか
った。
As a result, in Comparative Example 1 which is a conventional product and Comparative Example 2 in which the concentration of the resin solution was 5% by weight, the surface temperature was extremely increased to cause ignition, but the concentration of the resin solution was 8% by weight. % Of Examples 1 to 3 and Comparative Example 3, the rapid increase in the battery surface temperature was suppressed, and no ignition was caused.

【0041】上記充放電サイクル試験および温度上昇試
験の結果より、シート電極表面に形成される樹脂膜が薄
過ぎた場合は電池異常の際の化学反応が抑制できず異常
発熱し、逆に樹脂膜が厚過ぎた場合は放電容量に悪影響
することから、樹脂膜形成の際の樹脂溶液の濃度は8〜
15重量%が好適であると判断できる。
According to the results of the charge / discharge cycle test and the temperature rise test, when the resin film formed on the surface of the sheet electrode is too thin, the chemical reaction at the time of battery abnormality cannot be suppressed and abnormal heat generation occurs. If the thickness is too large, the discharge capacity is adversely affected.
It can be determined that 15% by weight is suitable.

【0042】以上、実施形態では、正極シート1と負極
シート2の両方に樹脂膜を形成した場合について説明し
たが、係る樹脂膜は正極シート1または負極シート2の
いずれか一方のみに形成しても良く、いずれの場合も発
熱の抑制に効果的に作用するものである。
In the embodiment described above, the case where the resin film is formed on both the positive electrode sheet 1 and the negative electrode sheet 2 has been described, but the resin film is formed on only one of the positive electrode sheet 1 and the negative electrode sheet 2. In any case, it effectively acts to suppress heat generation.

【0043】[0043]

【発明の効果】以上説明したように、請求項1に記載の
本発明によれば、正極シートや負極シートの表面に臭素
を含む樹脂の薄膜を形成することにより、電池に内部短
絡が発生した際の化学反応が抑制されて異常発熱による
発火が防止できるため、非水電解液電池の安全性は著し
く向上する。
As described above, according to the present invention, an internal short circuit occurs in a battery by forming a thin film of a resin containing bromine on the surface of a positive electrode sheet or a negative electrode sheet. Since the chemical reaction at that time is suppressed and ignition due to abnormal heat generation can be prevented, the safety of the nonaqueous electrolyte battery is significantly improved.

【0044】また、請求項2に記載の本発明によれば、
使用したフェノール系樹脂はラジカル反応を抑制するた
めの臭素を確実に保持でき、且つ電解液および電池反応
に対して安定していることなどから、電解液や活物質の
分解の際のラジカル反応の抑制効果は極めて大となる。
According to the second aspect of the present invention,
The phenolic resin used can reliably retain bromine for suppressing the radical reaction and is stable against the electrolyte solution and the battery reaction. The suppression effect is extremely large.

【0045】さらに、請求項3に記載の本発明によれ
ば、樹脂膜形成の際の樹脂溶液の濃度を8〜15重量%
に設定することによって、電池のサイクル特性を損なう
こと無く、発熱を効果的に抑制することができる。
Further, according to the present invention, the concentration of the resin solution at the time of forming the resin film is 8 to 15% by weight.
, Heat generation can be effectively suppressed without deteriorating the cycle characteristics of the battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用される非水電解液二次電池の内部
構造を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing the internal structure of a nonaqueous electrolyte secondary battery to which the present invention is applied.

【図2】同、非水電解液二次電池の充放電サイクル特性
を示す図である。
FIG. 2 is a diagram showing charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery.

【図3】同、非水電解液二次電池の内部短絡による表面
温度の変化を示す図である。
FIG. 3 is a diagram showing a change in surface temperature due to an internal short circuit of the non-aqueous electrolyte secondary battery.

【符号の説明】[Explanation of symbols]

1 正極シート 2 負極シート 3 セパレータ 6 ケース 9 正極集電体 10 負極集電体 REFERENCE SIGNS LIST 1 positive electrode sheet 2 negative electrode sheet 3 separator 6 case 9 positive electrode current collector 10 negative electrode current collector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体(9)に正極合剤を塗布して
成る正極シート(1)と、負極集電体(10)に負極合
剤を塗布して成る負極シート(2)と、これらシート電
極の間に介在させたセパレータ(3)とを備えた非水電
解液電池において、 前記正極シート(1)の表面および/または前記負極シ
ート(2)の表面に臭素を含む樹脂の薄膜が形成されて
いることを特徴とする非水電解液電池。
1. A positive electrode sheet (1) formed by applying a positive electrode mixture to a positive electrode current collector (9), and a negative electrode sheet (2) formed by applying a negative electrode mixture to a negative electrode current collector (10). A non-aqueous electrolyte battery provided with a separator (3) interposed between these sheet electrodes, wherein the surface of the positive electrode sheet (1) and / or the surface of the negative electrode sheet (2) is made of a resin containing bromine. A non-aqueous electrolyte battery, wherein a thin film is formed.
【請求項2】 臭素を含む樹脂がフェノール系樹脂であ
ることを特徴とする請求項1に記載の非水電解液電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein the resin containing bromine is a phenolic resin.
【請求項3】 まず、テトラブロモビスフェノールAと
1、4−ジイソシアネイトブタンを反応させたものを揮
発性有機溶媒に分散させて溶液濃度8〜15重量%の樹
脂溶液を生成し、 つぎに、正極集電体(9)に正極合剤を塗布して成る正
極シート(1)および/または負極集電体(10)に負
極合剤を塗布して成る負極シート(2)を前記樹脂溶液
中に浸漬し、 その後、前記揮発性有機溶媒を乾燥させ、前記正極シー
ト(1)および/または前記負極シート(2)の表面に
樹脂の薄膜を形成し、 ついで、これら正極シート(1)と負極シート(2)と
を間にセパレータ(3)を介在させて巻回すると共に、
この巻回体をケース(6)に収納して構成することを特
徴とする非水電解液電池の製造方法。
First, a reaction solution of tetrabromobisphenol A and 1,4-diisocyanate butane is dispersed in a volatile organic solvent to form a resin solution having a solution concentration of 8 to 15% by weight. A positive electrode sheet (1) formed by applying a positive electrode mixture to a positive electrode current collector (9) and / or a negative electrode sheet (2) formed by applying a negative electrode mixture to a negative electrode current collector (10) are mixed with the resin solution. After that, the volatile organic solvent is dried to form a resin thin film on the surface of the positive electrode sheet (1) and / or the negative electrode sheet (2). A negative electrode sheet (2) and a separator (3) are interposed therebetween and wound,
A method for manufacturing a non-aqueous electrolyte battery, wherein the wound body is housed in a case (6).
JP8284767A 1996-10-28 1996-10-28 Non-aqueous electrolytic battery and manufacture thereof Pending JPH10134795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8284767A JPH10134795A (en) 1996-10-28 1996-10-28 Non-aqueous electrolytic battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8284767A JPH10134795A (en) 1996-10-28 1996-10-28 Non-aqueous electrolytic battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH10134795A true JPH10134795A (en) 1998-05-22

Family

ID=17682754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8284767A Pending JPH10134795A (en) 1996-10-28 1996-10-28 Non-aqueous electrolytic battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH10134795A (en)

Similar Documents

Publication Publication Date Title
EP1065744B1 (en) Lithium secondary battery
KR100749567B1 (en) Stacked-type lithium-ion rechargeable battery
US5962167A (en) Non-aqueous liquid electrolyte secondary cell
JP4240078B2 (en) Lithium secondary battery
JP2000058116A (en) Nonaqueous battery electrolyte and secondary battery using the same
KR20090096349A (en) Closed type battery
JP6747654B2 (en) Cylindrical battery with anti-rust gasket
JPH05325943A (en) Cylindrical secondary battery
JPH11176470A (en) Organic electrolyte secondary battery
JPH07254401A (en) Sealed battery
JP2011103181A (en) Lithium secondary battery
JP2000058112A (en) Nonaqueous battery electrolyte and secondary battery using the same
JPH11233149A (en) Nonaqueous electrolyte battery
JP2008204839A (en) Sealing plate for cylindrical battery cell
KR101310486B1 (en) Seal tape and secondary battery comprising the same
JP2000357505A (en) Nonaqueous electrolyte secondary battery
JP3352863B2 (en) Non-aqueous electrolyte battery
JPH10134795A (en) Non-aqueous electrolytic battery and manufacture thereof
JPH07296847A (en) Lithium secondary battery and its manufacture
JPH11204096A (en) Non-aqueous electrolyte battery and non-aqueous electrolyte battery pack
JP3428184B2 (en) Non-aqueous electrolyte secondary battery
JP3010973B2 (en) Non-aqueous electrolyte secondary battery
JP2007066616A (en) Non-aqueous electrolytic liquid battery
JP4827111B2 (en) Flat non-aqueous electrolyte secondary battery
JPH09306545A (en) Secondary battery